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Some renormalization group approaches have been proposed during the last few years which are
close in spirit to the Nightingale phenomenological procedure. In essence, by exploiting the �nite
size scaling hypothesis, the approximate critical behavior of model on in�nite lattice is obtained
through the exact computation of some thermal quantities of the model on �nite clusters. In this
work some of these methods are reviewed, namely the mean �eld renormalization group, the e�ective
�eld renormalization group and the �nite size scaling renormalization group procedures. Although
special emphasis is given to the mean �eld renormalization group (since it has been, up to now,
much more used to study a wide variety of di�erent systems) a discussion of their potentialities and
interrelations to other methods is also presented.

I Introduction

The renormalization group formalism introduced by

Wilson in the early 70's [1, 2] is by now one of the

basic strategies to solve fundamental problems in sta-

tistical mechanics. It is also a very useful tool to tackle

problems in several �elds of theoretical physics such

as the study of nonlinear dynamics and transitions

to chaos [3], disorder surface growth [4], earthquakes

[5], among others. The conceptual foundation of the

method, �rst laid by Kadano� [6] to qualitatively pre-

dict scaling behavior at a second-order phase transition,

is to reduce, in a step-by-step way, the degrees of free-

dom of the system leaving unchanged the underlying

physics of the problem. This reduction, carried out re-

peatedly through a renormalization recursion relation,

leads the original system with a large correlation length

(the range at which physical microscopic operators are

correlated) to one with correlation length of unity or-

der, where well-known methods as perturbation theory

can, at least in principle, be used to treat the prob-

lem. Depending on the mathematical technique, such

thinning of the degrees of freedom can be implemented

directly in the reciprocal (momentum) space or in the

real (position) space. The former approach makes use

of mathematical tools from quantum �eld theory with

the crystalline system being replaced by its continu-

ous limit. As a result, the so-called ��expansion pro-

posed by Wilson and Fisher [7] (and further developed

by using techniques of renormalized perturbation the-

ory [8, 9]) provides analytical and quite well controlled

asymptotically exact results for critical exponents (de-

spite being unable to predict values of critical points,

critical lines and phase diagrams). On the other hand,

the more intuitive real space version of the renormal-

ization group works directly in the position space. It

was introduced by Niemeijer and van Leeuwen [10] and

several di�erent techniques have been proposed and ap-

plied to a great variety of statistical models [11]. The

real space renormalization group (RSRG) has since be-

come an important apparatus in studying critical phe-

nomena.

The main feature of the renormalization group is

to obtain, from the renormalization recursion relations,

ow diagrams in the parameter space of the system,

i.e., the space spanned by the di�erent kinds of interac-

tions in the Hamiltonian. The attractors (trivial �xed

points) and their basins in the ow diagram correspond

to regions of di�erent thermodynamic phases. These re-

gions are separated by critical frontiers associated with

semi-stable attractors (relevant �xed points) which de-

termine the universality class of the critical exponents.
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More unstable attractors located on the critical surfaces

lead to multicritical frontiers (or, as it happens to be

more usual, just multicritical points). There can also

be a �rst-order frontier line linking a multicritical point

to a �rst-order �xed point located at in�nite values of

the Hamiltonian parameters. Moreover, the singulari-

ties of the critical frontiers on the multicritical regions

are characterized by the crossover exponents. So, from

the above general view, the topology of ux diagrams

allows one to achieve qualitative information about the

critical behavior of the system, e.g., universality, or-

der of transitions, crossover and multicriticality, among

others. Regarding the real space renormalization group

approach, which will be the subject of this work, one

can also say that in most cases rather accurate quanti-

tative values for the exponents and transition lines are

obtained.

Just for completeness we should say that, from a

di�erent and more modern point of view, the renormal-

ization group is essentially based on the fractal struc-

ture exhibited by the system at the critical point. A

fractal, named by Mandelbrot [12], describes structures

consisting of parts of any size (i.e., in any scale) which

are similar to the whole. Consequently, the renormal-

ization group commonly establishes a recursion rela-

tion transforming the parameter space of the Hamil-

tonian into itself, leaving thus the underlying physics

unchanged. Due to this continuous scale invariance a

fractional dimension is ascribed to the fractal (and, as

a consequence, to the critical exponents, as we shall

shortly see in this Introduction), in contrast to the inte-

ger dimension of the translationally invariant Euclidian

space. There are, however, systems exhibiting discrete

scale invariance (a weaker form of scale invariance sym-

metry which is not continuous) where dimensions or

exponents are complex. Even in such cases the renor-

malization group formalism turns out to be quite useful

[5]. The interested reader is referred to the recent re-

view by Sornette for further details concerning discrete

scale invariance and complex dimensions [13].

The renormalization group procedure has been ex-

tensively reviewed in literature (see, for instance, the

excellent reviews in References [2, 3, 9, 11]; see also

a more recent text by Yeomans on this subject [14]).

Regarding the RSRG several techniques have been pro-

posed and applied with success to various problems.

Among the simplest ones we have decimation [15],

Migdal-Kadano� [16] and Niemeijer-van Leeuwen cells

[10] approaches, which have also been discussed in the

reviews referenced above. More accurate procedures

include Monte Carlo renormalization group [17], cor-

relation function preserving renormalization group [18]

and phenomenological renormalization group [19]. It

is not the scope of the present work to discuss all the

methods above, rather just the phenomenological ones

will be treated. We should mention excellent reviews

on Monte Carlo renormalization group [20] and correla-

tion function phenomenological renormalization group

[21].

Despite its success, the ordinary RSRG has some

drawbacks in the core of its implementation. Although

exact results are in general achieved in classical models

for dimension d = 1, in most cases for d > 1 some un-

controllable, and rather obscure, approximations have

to be done in order to properly obtain the renormal-

ization recursion relations. In addition, one has also to

deal with the awkward \proliferation of parameters",

usually encountered in approaches such as decimation

[15].

One class of RSRG methods, free from the draw-

backs presented above, is the so-called \phenomenolog-

ical renormalization" or �nite size scaling approach. In

these methods one computes (exactly) thermodynamic

quantities PL and PL0 for two di�erent �nite systems

and, from the expected scaling relation obeyed for this

quantity P in the limit where L0(< L) tends to in�nity,

renormalization group recursion equations can be ob-

tained. In this way the critical properties of the in�nite

system are obtained (approximately) from the knowl-

edge of the corresponding properties of its �nite lattice

counterpart.

The �nite systems used in these phenomenological

renormalizations depend strongly on the geometry of

the lattice. For hypercubic lattices there are two spe-

ci�c geometries of particular interest:

i) a �nite system in all directions consisting of a

hypercube of side L on a d-dimensional lattice;

ii) a system in�nite in one direction and �nite in the

other d � 1 dimensions with cross-sectional area char-

acterized by the length L.

Other geometries, such as systems in�nite in two

dimensions, can also be considered. However, due to

the di�culty in obtaining exact solutions even for two-

dimensional models, such geometry will not be dis-

cussed here. On the other hand, boundary conditions

applied to the �nite systems depend on the particular

renormalization group strategy. The common ones are

the periodic boundary conditions and, in this case, just

bulk criticality is studied. There are, however, some

methods which allow to study bulk and surface critical-

ity by taking free boundary conditions on �nite lattices.
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Sometimes helical boundary conditions are imposed in

geometries ii) in order to obtain a sparse transfer sub-

matrix leaving the problem numerically more tractable

[22].

To illustrate, in a quite simple way, the procedure

of writing down a RSRG recursion relation for �nite

systems let us take, without loss of generality, the mag-

netic language by means of the spin-S Ising Hamiltonian

model de�ned as

H = �J
X
<i;j>

SiSj � h

NX
i=1

Si ; (1)

where the �rst term is a sum over nearest neighbor

pairs of spins < i; j > (which might be conveniently

extended to more distant neighbors) located on an ar-

bitrary lattice and the second term is a single sum over

all the N ! 1 spins of the lattice. J is the exchange

interaction which is ferromagnetic for J > 0 or anti-

ferromagnetic for J < 0 and h is an applied exter-

nal magnetic �eld. The spin variables Si take values

Si = S; S � 1; :::;�S where S is a �xed integer or semi-

integer positive number. This model exhibits a second-

order phase transition at K = Kc and H = 0, where

K = �J is the reduced exchange interaction, H = �h is

the reduced external magnetic �eld, � = 1=kBT and kB
is the Boltzmann constant. At zero external �eld the

correlation length � close to the transition is expected

to diverge as

� � j�j�� ; (2)

where � = K � Kc � 0 and � is the corresponding

critical exponent.

From the Kadano� block construction [6] it is shown

that close to the transition the singular part of the free

energy per site fs(�;H) is a homogeneous function of

its thermodynamic variables (as stated by Widom in

1965 [23]) i.e.,

fs(�;H) = `�dfs(`
1=��; `yHH) ; (3)

where ` is an arbitrary scaling factor, d is the dimen-

sionality of the corresponding lattice, and yH is the

magnetic critical exponent related to the magnetization

m through m = H1=�, with � = yH=(1�yH). Now, any

other quantity P , obtained as derivatives of the above

free energy, will behave as power laws

P � j�j�� ; (4)

where � is the critical exponent of the quantity P . For

example, the magnetization

m(K;H) =
Tr
�

1
N

PN
j=1 Sj

�
exp(��H)

Tr exp(��H)
; (5)

is obtained, close to criticality, from

m(�;H) = �
@fs(�;H)

@H
= `�d+yHm(`1=��; `yHH) : (6)

At H = 0 and choosing `�1=� = � (� > 0) Eq.

(6) gives, after comparing to Eq. (4), � = � =

�(d � yH )�. Similarly, for the zero �eld speci�c heat

C = �T
�
@2fs=@T

2
�
H=0

and zero �eld magnetic sus-

ceptibility � = (@m=@H)H=0 it is easy to obtain � =

� = 2�d�, and � =  = (2yH�d)�, respectively. These

power laws are a signature of the continuous scale in-

variance of the system at criticality.

On the other hand, a �nite system of linear dimen-

sion L close toKc will of course present a non-diverging

characteristic length and its correlation length will, at

the maximum, be given by � � L. Inserting this rela-

tion in Eq. (2) and substituting for � in Eq. (4) one

gets

P � L�=� = L� ; (7)

where � = �=� is called the anomalous dimension of the

quantity P . As � is commonly a fractional number it

is clear again from the above relation the e�ects of con-

tinuous scale invariance on dimensions and exponents

of critical systems.

According to the �nite size scaling hypothesis, the

generalized scaling relation obeyed by any thermody-

namic quantity P taking into account the �nite size L

of the system can be expressed as [24, 25]

P (�;H; L) = `�P (`1=��; `yHH; `�1L) ; (8)

where L !1 is the linear dimension of the �nite sys-

tem and � � 0;H � 0. By identifying the right hand

side of Eq. (8) to the respective quantity P for a smaller

system of linear dimension L0 we choose the scaling fac-

tor

` =
L

L0
: (9)

Expressing now the variables `1=�� = �0 = K0�Kc and

`yHH = H0, Eq. (8) can be rewritten as

PL0(K
0;H 0)

L0�
=

PL(K;H)

L�
; (10)

where the system size is now given as a subscript in-

stead of a variable (to be more apparent) and primed

quantities refer to the smaller system L0. This is the ba-

sic equation from which a mapping (K;H) ! (K0;H0)

is obtained with the rescaling factor de�ned in Eq. (9).

It is clear that the only source of inaccuracy in this re-

lation resides in the �nite values taken for L and L0 in
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order to get exact calculations for PL and PL0 . Nev-

ertheless, it has been noted that such approaches are

applicable to rather small systems of no more than a

few degrees of freedom. Of course, the bigger the �nite

systems, the better the results achieved, and it turns

out that sometimes they exceed in accuracy more con-

ventional methods such as series expansion, �-expansion

or other renormalization group procedures.

Di�erent quantities P will of course generate di�er-

ent approaches. The �rst procedure, and in our opinion

one with the most accurate results, was proposed by

Nightingale [19] by using the correlation length com-

puted for �nite lattices consisting of in�nite strips with

�nite width, i.e., the geometry ii) discussed above.

From the basic ideas of the renormalization group the-

ory it is well known that the transformed system with

less degrees of freedom has a smaller correlation length

which is the old one reduced by the rescaling factor `,

namely

�0(K0;H0) =
�(K;H)

`
: (11)

From equations (9) and (11) we then get

�0(K0;H0)

L0
=

�(K;H)

L
: (12)

This means that for the correlation length the anoma-

lous exponent � is equal to unity and the above equa-

tion was interpreted by Nightingale as a renormaliza-

tion group transformation of the in�nite system from

which �xed points, critical exponents, etc., are ob-

tained. Since Eq. (12) involves just a single function,

we obtain just one scalar recursion relation instead of

the usual multidimensional recursion relation on a set of

coupling constants such as (K;H) in the present exam-

ple. So, ow diagrams analyses are not possible when

the Hamiltonian has more than two parameters. How-

ever, second-order transition lines and estimates of crit-

ical exponents can be obtained by determining a map-

ping,

K ! K0 = R(K; r); (13)

for a �xed value of r = H=K, where the recursion re-

lation R(K; r) is, in principle, obtained from Eq. (12).

The critical line is given by the �xed point solutions

K0 = K = K� = R(K�; r) as a function of r, and es-

timates of the critical exponent are obtained from the

linearization of R around K�,

K0 �K� = �T (K �K�) ; (14)

where the thermal eigenvalue �T is given by

�T =
@K 0

@K

����
K�

=
@R(K; r)

@K

����
K�

; (15)

with the corresponding thermal critical exponent

`1=� = �T : (16)

Estimates of the magnetic critical exponent are ex-

tracted from

`yH =
@H0

@H

����
K�

; (17)

from which, using Eq.(12), we have

`2yH+1 =

 
@2�0=@H02

(@2�=@H2

!
K�

: (18)

The second derivatives appear in obtaining yH since �

is commonly an even function of H. The procedure

outlined above is quite general when using only one re-

cursion relation and should be applied to any function

R(K; r) (coming, for example, from other renormaliza-

tion group scheme) as well as to any couplings (not

necessarily an external �eld).

Other thermodynamic functions (such as, for in-

stance, speci�c heat or magnetic susceptibility) can also

be used to study the critical properties of statistical me-

chanical systems through Eq. (10). The main problem

in these cases is that the exponent � is in general not

known. The method can, nevertheless, be implemented

by force through the use of three di�erent �nite sys-

tems (L; L0; L00) and taking � as the value that yields

the same �xed point solution for the recursion relation

(10) from (L; L0) and (L0; L00) clusters, respectively

[26]. In the present work we will be concerned only

with methods where � has a known value.

By taking P as the order parameter of the sys-

tem and together with mean �eld calculations one can

obtain the so-called mean �eld renormalization group

(MFRG) approach [27]. Here, it is possible to over-

come the di�culty of not knowing the order parame-

ter anomalous dimension � and �nding out a recursion

relation free from any exponent. This procedure will

be discussed in more detail in the next section. It is

also possible, in some models having more than one

order parameter, to obtain complete ux diagrams in

the Hamiltonian coupling space due to additional re-

cursion relations. Moreover, by taking three clusters at

the same time, it is allowed to study bulk and surface

critical behavior since the used �nite lattices must have

open boundary conditions.

It is clear from Eq. (10) that in carrying out phe-

nomenological renormalization group calculations one
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desires to choose quantities P in which their anoma-

lous dimensions are known a priori. A more recent pro-

posal, for particular quantities having � = 0, has been

introduced by de Oliveira in the �nite size scaling renor-

malization group (FSSRG) method [28, 29, 30]. This

method is also capable to circumvent, in some cases, the

lacking of ow diagram lines in the parameter space by

considering more than one quantity at the same time

and obtaining additional recursion relations, as in some

versions of the previous MFRG approach, even for mod-

els presenting just one order parameter. This approach

will also be discussed later on.

The purpose of this work is thus to review some phe-

nomenological real space renormalization group proce-

dures namely, the mean �eld renormalization group,

the e�ective �eld renormalization group (EFRG) and

the �nite size scaling renormalization group. We will

not discuss in detail the Nightingale phenomenological

renormalization since it has already been widely dis-

cussed in literature (see, for instance, Reference [31]

and references therein). Special emphasis will then be

given to the MFRG since it has been extended and im-

proved in di�erent ways and applied to a vast class of

models (classical, quantum, geometrical, pure and di-

luted, static and dynamic). We will also not discuss

the results achieved in each of its applications. We will

be mainly concerned here with all the versions of the

method and its general formulations, some of them not

previously published in the literature. A simple list

of references in alphabetical order (without any com-

ments) on works involving the use of MFRG up to the

year 1993 has already been given by Croes and Indekeu

[32].

This review is arranged as follows. In the next sec-

tion we present the formalism of the mean �eld renor-

malization group for the study of static and dynamic

critical phenomena. In Section III the exact results

from the MFRG are presented. Section IV gives an up

to date application of the method in static problems,

and Section V does the same concerning the dynamic

critical behavior. Related phenomenological renormal-

ization group approaches are presented in section VI

and some �nal remarks are discussed in section VII.

II PhenomenologicalMean �eld

renormalization group ap-

proach

The phenomenological mean �eld renormalization

group approach uses the order parameter as the quan-

tity to be renormalized. In magnetic models it is given

by the magnetization of the system which can gener-

ally be written as m(K;H), where the vector K repre-

sents all the reduced coupling constant interactions of

the Hamiltonian and H is the reduced external mag-

netic �eld. It means that the �rst sum in Eq. (1)

may now not be restricted to �rst neighbors but may

also include more distant interactions as well as ad-

ditional �elds. For instance, when K is written as

K = (K1;K2;K3;K4; :::), K1 should represent nearest

neighbor interaction, K2 next nearest neighbor interac-

tion,K3 a crystal �eld interaction, K4 a four spin inter-

action, and so on. Since the MFRG has been proposed

by Indekeu, Maritan and Stella in 1982 [27] the method

has been widely used in treating several statistical me-

chanical problems as well as frequently improved in dif-

ferent aspects of its formulation. This section is devoted

to review its basic assumptions and discuss some new

implementations.

A. MFRG

In the original MFRG one �rst considers two clus-

ters of interacting spins containingN and N 0 sites, with

N 0 < N . The surrounding spins of these clusters are

�xed to a value b and b0, respectively, which, in a sense,

can be viewed as e�ective magnetizations representing

the remaining spins of the in�nite lattice and behave as

a symmetry breaking �eld in each cluster. The magne-

tizations per site mN (K;H; b) and mN 0 (K0;H0; b0) can

exactly be computed from

mN (K;H; b) =
Tr
�

1
N

PN
j=1 Sj

�
exp(��HN )

Tr exp(��HN )
; (19)

where the trace is taken over the ensemble de�ned by

the cluster HamiltonianHN (K;H; b) and Sj is the cor-

responding spin operator. Similar expression holds for

the smaller cluster N 0. The usual mean �eld type ap-

proximation is obtained by assuming mN (K;H; b) = b

(ormN 0 (K0;H0; b0) = b0) from whichm = b (or m0 = b0)

is solved self-consistently at H = 0 (H0 = 0) and the

criticality is identi�ed with the bifurcation point in the

above equations. Although this mean �eld approxima-

tion improves the critical couplings as the cluster size

gets larger, the critical exponents are always the clas-

sical ones (in particular, for the Ising model described

in Eq. (1) one has � = 0, � = 1=2 and  = 1 for any

lattice dimension).

Instead of the naive assumption of just equalling the

symmetry breaking �elds to the magnetization per spin
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for each cluster, the MFRG assumes that these magne-

tizations are related through the scaling relation given

by Eq. (6) for the order parameter of the in�nite system

close to criticality [10]

mN 0 (K0;H0; b0) = `d�yHmN (K;H; b) ; (20)

where the rescaling factor ` can be de�ned by the usual

way

` = (N=N 0)
1=d

; (21)

which is equivalent to de�nition (9) for symmetric

blocks of size N = Ld. As Eq. (20) should hold for

systems near the critical point, the magnetizations for

each �nite cluster must be very small. Such condition

is achieved by letting b � 1 and b0 � 1, as well as

H � 1 and H 0 � 1, since any �nite system has no

spontaneous magnetization. Equation (20) can thus be

expanded and, to lowest order in b; b0 and H; H0 gives

c

gN 0 (K0)H 0 + fN 0 (K0)b0 = `d�yHfN (K)b + `d�yH gN (K)H ; (22)

where

fN 0 (K0) =
@mN 0 (K0;H0; b0)

@b0

����
H0=0;b0=0

; fN (K) =
@mN (K;H; b)

@b

����
H=0;b=0

; (23)

gN 0 (K0) =
@mN 0 (K0;H0; b0)

@H 0

����
H0=0;b0=0

; gN (K) =
@mN (K;H; b)

@H

����
H=0;b=0

: (24)

d

As b and b0 are also viewed as magnetizations and

are very small they are assumed to satisfy the same

scaling relation given by Eq. (20), i.e.,

b0 = `d�yH b : (25)

From equations (22) and (25) one then gets

fN 0 (K0) = fN (K) ; (26)

obtaining by equalling the coe�cients of b0 and

gN 0 (K0)H0 = `d�yHgN (K)H ; (27)

obtaining by equalling the external �eld terms. Equa-

tion (26), which is independent of any exponent, is

interpreted as a recursion relation for the coupling

constants K according to the ordinary MFRG, while

equation(27), as shown below, is used to estimate the

magnetic critical exponent yH (the recursion relation

does not depend on the external �eld). Clearly, for

a multidimensional Hamiltonian parameter space this

scalar recursion relation (26) does not provide com-

plete ux diagrams. This sole equation can, how-

ever, be used to estimate critical exponents and lo-

cate critical surfaces by considering a mapping K1 !

K0
1 = R(K1; r1; r2; :::) for �xed values of the ratio

r1 = K2=K1, r2 = K3=K1, ..., where K = (K1;K2; :::)

and the function R is, in principle, obtained from the

rescaling relation (26). By computing the �xed point

solution K1 = K0
1 = K�

1 = R(K�
1 ; r1; r2; :::) as a func-

tion of r one determines the critical surface, represented

here as K� = (K�
1 ; r1; r2; :::), and the corresponding ex-

ponents are achieved through

� =
ln `

ln�T
; (28)

as stated by Eq. (16) for the correlation length critical

exponent where

�T =
@K0

1

@K1

����
K�

=

 
@fN
@K1

�
@fN 0

@K0
1

��1!�����
K�

; (29)

and

gN 0 (K�) = `d�2yHgN (K
�) (30)

for the magnetic critical exponent yH , where the rela-

tion H0 = `yHH has been used in Eq. (27).

This approach has been applied to a great variety

of statistical models and quite good results have been

obtained even by taking the simplest choice for the clus-

ters, namely, N 0 = 1 and N = 2. Some exact results

are also obtained from this method when treating some

speci�c systems. A summarized discussion of such stud-

ies will be given in the next sections. However, in order

to taste the simplicity of the method and its potentiali-

ties let us apply it to three di�erent problems by taking

the smallest clusters depicted in Fig. 1.

spin-1/2 nearest neighbors Ising Model

The HamiltoniansH1 and H2 for the clusters of one

and two spins shown in Figs. 1(a) and 1(b) can be writ-

ten as

H1 = �cJ 0b0S1 � h0S1 ; (31)
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H2 = �JS1S2� (c�1)Jb(S1+S2)�h(S1+S2) ; (32)

where Si = �1 and c is the coordination number of the

lattice. From the de�nition of the magnetization (19)

one easily has

m1 = tanh(cK0b0 +H0) ; (33)

m2 =
sinh[2(c� 1)Kb+ 2H]

cosh[2(c� 1)Kb+ 2H] + e�2K
; (34)

which, for small values of b; b0;H and H0 reduce to

m1 = cK0b0 +H0 ; (35)

m2 =
2(c� 1)Kb

1 + e�2K
+

2H

1 + e�2K
: (36)

The usual mean �eld approximation assumes m1 = b0

and m2 = b yielding, at zero external �eld, Kc = 1=c

and 1 + e�2Kc = 2(c � 1)Kc. One can note that from

both clusters there is a (wrong) �nite critical temper-

ature Tc 6= 0 for the one-dimensional model (c = 2).

For a future comparison to the two-dimensional model

(c = 4) the later expressions give Kc = 0:250 and

Kc = 0:286 for N 0 = 1 and N = 2, respectively. More-

over, by further expanding equations (33) and (34) up

to order b03 and b3 it is easy to show that the corre-

sponding critical exponents take the classical values,

independent of the dimensionality of the lattice.

Reminding now equations (22-27) the corresponding

MFRG recursion relation

cK0 =
2(c� 1)K

1 + e�2K
(37)

gives

Kc =
1

2
ln

1

c� 2
; (38)

where Kc = K0 = K is the non-trivial �xed point solu-

tion of the equation (37). The above result is the same

as that obtained from the Bethe approximation [33].

The critical exponents according to equations (29) and

(30) are

`1=� = 1 +
(c � 2)

2(c� 1)
ln

c

c� 2
; (39)

`d�2yH =
(c � 1)

c
; ` = 21=d :

In this case, for the one-dimensional model (c = 2)

one has the exact critical temperature Tc = 0 and crit-

ical exponent yH = 1 (these values are in fact obtained

for any cluster sizes), while the critical exponent � = 1

is only achieved by comparing two chains with N and

N � 1 spins in the limit N !1. Numerical values for

the two-dimensional model are Kc = 0:347, � = 1:667

and yH = 1:415, which are, when compared to the pre-

vious mean �eld results (and without further e�ort),

closer to the exact ones, mainly for the critical coupling

(see Table I). The corresponding results for the d = 3

lattice using the present clusters are listed in Table II.

Site percolation

The site percolation [42] is a geometrical problem

de�ned on a regular in�nite lattice where each site can

independently be occupied or empty with probabilities

p and 1 � p, respectively (p is also viewed as the con-

centration of the occupied sites). A cluster is formed

by grouping together nearest neighbors occupied sites.

At p = 1 one has an in�nite cluster linking all sites. On

the other hand, for small p one has an in�nite number

of independent �nite clusters. Then there is a critical

concentration pc above which the size of the clusters (at

least one) becomes in�nite. The mean linear size of the

clusters is the correlation length � which, close to the

critical threshold diverges as

� � jp� pcj
��p ; (40)

where �p is the percolation correlation length critical

exponent. pc depends on the topology of the lattice

and �p depends only on the lattice dimensionality.

Let us now consider the same clusters (a) and (b)

in Fig. 1 for this problem [43, 44]. The order parame-

ter PN is de�ned by the probability of a particular site

to belong to the in�nite cluster. b and b0 will be now

the e�ective values of the probability, for surrounding

sites of each block, to belong to the in�nite cluster. For

the one site cluster (N 0 = 1) its probability of belong-

ing to the in�nite cluster is p0b0 times the number c of

surrounding sites, i.e.

P1 = cp0b0 : (41)

In a similar way, the probability of any of the two sites

of the N = 2 cluster is, up to �rst-order in b, given by

P2 = p(1� p)(c� 1)b+ 2p2(c� 1)b = p(1 + p)(c� 1)b :

(42)

The �rst term on the left hand side of the above equa-

tion takes into account the contribution of the con�g-

uration where one site of the cluster is occupied and

the other one is empty, and the second term the contri-

bution when both sites are occupied. In all terms just

con�gurations with one surrounding site occupied with

probability b are taken since con�gurations presenting

two or more mean �eld sites will contribute to the order

parameter a factor of order b2 or greater. Mean �eld ap-

proximation (P1 = b0 and P2 = b) gives pc = 1=c for the
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smaller cluster and pc =
1
2

�q
c+3
c�1 � 1

�
for the bigger

one, while the MFRG furnishes the recursion relation

p0c = p(1 + p)(c� 1) ; (43)

from which one obtains the non trivial �xed point

p = p0 = pc

pc =
1

c� 1
; (44)

again identical to the Bethe approximation [45]. The

corresponding critical exponent is given by

`1=�p =
c+ 1

c
: (45)

As in the previous case, for the one-dimensional model

the mean �eld approximation results pc < 1, contrary

to the exact value pc = 1. This exact result is how-

ever obtained from the MFRG recursion relation (44).

The correct value of �p = 1 is achieved only in the

limit of in�nite chains. For the two-dimensional square

lattice equations (44) and (45) furnish pc = 1=3 and

� = 1:55, which should be compared to the series values

pc = 0:59 and � = 1:33 [46]. The results are analogous

for d = 3. In addition, the related problem of bond per-

colation where bonds are independently present linking

two neighboring sites with probability p or absent with

probability 1� p can similarly be treated from this for-

malism. It turns out that the results are identical to

those above for the site problem when using the small-

est clusters. Only by taking bigger �nite systems the

approach is able to distinguish between the site perco-

lation and the bond percolation problems.

Directed self-avoiding random walk

Let us briey mention the directed self-avoiding ran-

dom walk since it is, in some sense, related to the site

percolation problem treated above. In order to de�ne

the directed self-avoiding randomwalk (DSARW) let us

consider a d-dimensional hypercubic lattice [47]. The

DSARW is the geometrical object built by starting at

a given point (the origin) and advancing at random

through steps linking nearest neighbors sites, with the

constraint that any step be only along the positive di-

rections of the cartesian axis. Letting w be the fugacity

associated with a step, one has that for w larger than a

critical value wc the walk will, on average, extend to an

arbitrarily large distance. In this case one can distin-

guish two di�erent directions: one parallel (k) de�ned

along the bisectrix of the angle formed by the cartesian

axis, and another perpendicular (?) taken orthogonally

to the previous one. It turns out that as w approaches

wc the root mean square of the parallel and perpendic-

ular displacements diverge as power laws of the form

(w � wc)
�k and (w � wc)

�? , respectively, with �k and

�? being the corresponding critical indices. Figs. 1(c)

and 1(d) illustrates the smallest possible clusters which

can be used by the MFRG in order to treat the DSARW

on a two-dimensional lattice.

De�ning now the order parameter PN as the gener-

ating function of all walks that begin at the origin site

and end at the mean �eld sites (with b being the e�ec-

tive value of this order parameter for the surrounding

sites) one arrives at

P1 = 2w0b0 ; (46)

since there are two ways with probabilityw0b0 of linking

the origin of this smallest cluster to its two boundary

sites and

P2 = 4w2b ; (47)

where for this cluster one has four di�erent ways of

linking the origin to the three boundary sites all having

the same probability w2b. The MFRG recursion rela-

tion is then w0 = 2w2 from which one has the exact non

trivial �xed point wc = 1=2. Exact values for the criti-

cal indexes (which are more laborious to be computed)

�k = 1 and �? = 1=2 are also obtained (in fact, for any

cluster size, as well as for any dimension d. See Ref.

[48] for more details).

Although in all models above the calculation of

the order parameters could be readily performed for

the smallest clusters, larger systems will drastically in-

crease the analytical and computational e�ort. Tables

I and II contain the results obtained for the spin-1/2

Ising model with nearest neighbor interactions up to

the greatest size treated so far (L = 6 for the two-

dimensional model and L = 3 for the three-dimensional

one), and Table III the corresponding values for the

two-dimensional site percolation problem. A more de-

tailed discussion of the values in these tables will be

given in the next subsection.

Despite its simplicity the usual MFRG treated

above deserves some critics regarding the use of larger

clusters. Since the symmetry breaking �elds b and b0,

in some sense, take into account the remaining of the

in�nite lattice, the scaling imposed for the magnetiza-

tions mN 0 and mN is the relation obeyed by the in�-

nite system order parameter (note that equation (20)

comes from the Wilson renormalization group strat-

egy). On the other hand, the �nal expression of the

MFRG, namely Eq. (26), is independent of the sym-

metry breaking �elds. From this equation the functions
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fN and fN 0 can be thought of being quantities satisfy-

ing the �nite size scaling relation (10) with anomalous

dimension � = 0. However, for very large clusters such

relation for fN and fN 0 (with � = 0) is not true. This is

most easily seen by taking the limit of N and N 0 going

to in�nity. It is clear that while the computed magne-

tizations are bulk quantities, the surrounding e�ective

magnetizations on each cluster behave as surface quan-

tities and must properly scale as surface �elds. In this

limit Eq. (25) is no longer valid once yH is the bulk

magnetic critical exponent. As a consequence, the pro-

cedure will not reproduce, in general, the exact results

as the size of the systems tend to in�nity.

Table I: Critical values for the d = 2 Ising model on a square lattice according to the ordinary MFRG (two clusters)

and SBMFRG (three clusters). The two entries for the critical indices in the SBMFRG correspond to the values

given from equations (50) and (51), respectively [1].

MFRG
N;N 0 Kc � yH yHS �yH
4, 1 0.361 1.45 1.50 2.17
9, 4 0.381 1.28 1.57 2.01
16, 9 0.393 1.22 1.60 1.95
25,16 0.401 1.19 1.62 1.93

SBMFRG

N;N 0; N 00 Kc � yH yHS �yH
9, 4, 1 0.413 1.23-1.37 1.63-1.56 0.50-0.56 2.00
16, 9, 4 0.425 1.16-1.22 1.68-1.65 0.49-0.52 1.95
25,16, 9 0.430 1.13-1.16 1.71-1.69 0.49-0.51 1.92
36,25,16 0.433 1.10-1.12 1.73-1.72 0.49-0.50 1.91
exact [2] 0.441 1 1.875 0.5 [3] 1.875

[1]Data from Refs. [27] and [32] for hypercubic �nite clusters.
[2]Refs. [34, 35].
[3]Ref. [36].

Table II. The same as Table I for the d = 3 simple cubic Ising model. For hypercubic clusters one has N = L3, and
for rectangular prisms N = L(L � 1)2 or N = L2(L� 1) [1].

MFRG
N;N 0 Kc � yH yHS �yH
2, 1 0.203 1.50 1.89 2.84
4, 1 0.207 1.22 2.00 2.44
9, 4 0.212 1.05 2.08 2.18

SBMFRG
N;N 0; N 00 Kc � yH yHS �yH
4, 2, 1 0.212 1.23-1.49 2.00-1.91 1.03-1.12 2.85
8, 4, 2 0.215 0.96-1.22 2.15-2.00 0.90-1.05 2.44
12, 8, 4 0.201 1.32-1.03 1.95-2.09 0.99-0.85 2.15
18,12, 8 0.216 1.04-1.19 2.09-2.01 0.95-1.03 2.39
27,18,12 0.217 0.88-0.99 2.20-2.09 0.86-0.97 2.07

other methods 0.222 [2] 0.63 [3] 2.48 [3] 0.8 [4] 1.56

[1]Data from Refs. [27] and [32].
[2]Ref. [37, 38, 39, 40].
[3]Ref. [38, 39, 40, 41].
[4]Ref. [36].
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B. Surface-Bulk MFRG (SBMFRG)

A way to handle this situation has also been pro-

posed by Indekeu and co-workers [49]. For large clus-

ters, except for spins at corners or edges, almost all

boundary spins are subject to the same e�ective �eld

which is proportional to the surrounding �xed magne-

tizations. According to a rigorous �nite size scaling

derivation these surrounding �elds do not scale like a

magnetization itself but like a surface �eld [36]. So, for

b and b0 one has

b0 = `yHSb ; (48)

where yHS is the corresponding surface �eld critical

exponent. One can note that now the factor `d�yH

is no more eliminated from equations (22) and (48)

and a simple formulation, as expressed by Eq. (26),

is not available. It is needed then three clusters N ,

N 0 and N 00 (with N > N 0 > N 00), instead of two,

in order to get a renormalization group transforma-

tion. In this case, from mN (K;H; b), mN 0 (K0;H0; b0)

and mN 00 (K00;H00; b00) one computes fN (K), fN 0 (K0),

fN 00 (K00) and from Eq. (22) at H = H0 = H00 = 0

together with

b0 = `yHS

NN 0b ; b00 = `yHS

N 0N 00b
0 ; (49)

it is easy to obtain

fN 0 (K0) = `d�yH�yHS

NN 0 fN (K) ; (50)

fN 00 (K00) = `d�yH�yHS

N 0N 00 fN 0 (K0) ; (51)

where

`NN 0 = (N=N 0)1=d ; `N 0N 00 = (N 0=N 00)1=d : (52)

Following the well-established optimization strategy

[26] the exponent d � yH � yHS is determined self-

consistently by imposing that the two di�erent map-

pings with rescaling factors `NN 0 and `N 0N 00 possess

the same �xed point K = K0 = K00 = K�. This pro-

cedure allows one to obtain unambiguously the index

d� yH � yHS while two di�erent estimates for the crit-

ical exponents �, yH and yHS are achieved from each

of the renormalization group transformations (50) and

(51) (there are in fact three di�erent estimates since

from equations (50) and (51) one can construct an ad-

ditional relation between fN 00 and fN ).

At this point it is worthwhile to see a quantita-

tive and comparative application of these methods in

the well known control system square two-dimensional

Ising model. Table I shows the critical temperature

and critical exponents for di�erent growing �nite size

square clusters. It is clear that a better accuracy

is achieved from SBMFRG as compared to the usual

MFRG, mainly for larger clusters, where the approach

to the exact results is rather apparent. However, con-

cerning small clusters, the distinction of both methods

is not so profound. First, in assumption (26) the ordi-

nary MFRG assumes a zero value for the critical index

d� yH � yHS (the exact one being �0:375). From the

SBMFRG one gets the best value d�yH�yHS = �0:217

for the biggest systems while for the simplest choice

N = 4; N 0 = 2 and N 00 = 1 one has �0:124 [49], which

is a quite small value. Second, for small clusters there

is no even a clear distinction between surface and bulk

quantities. This means that the fact of the SBMFRG

being exact when N , N 0 and N 00 ! 1 does not make

it more correct than the original MFRG for small sys-

tems. Which method should be applied to a particular

problem must be decided on practical grounds. Table

II lists the results for the d = 3 Ising model and Table

III the values for the d = 2 site percolation problem.

Table III. The same as Table I for the critical values of

the d = 2 site percolation problem.

MFRG

N;N 0 pc �p ypHS
2, 1 1/3 1.56
4, 2 0.427 1.52
9, 4 0.443 1.47
16, 9 0.473 1.43

SBMFRG

N;N 0; N 00 pc �p ypHS
9, 4, 1 0.602 1.25-1.35 0.72-0.69
16, 9, 4 0.585 1.35-1.35 0.66-0.65

other methods 0.593 [1] 1.33 [2] {

[1]Ref. [42].

[2]Ref. [46].

Another point deserving some discussion concerns

the de�nition of the rescaling factor `. As pointed out

by Slotte [50] the rescaling factors given by equations

(21) and (52) are, to some extent, arbitrary. Di�erent

de�nitions strongly a�ect the results of the critical ex-

ponents for small clusters. Slotte suggested a de�nition

of the rescaling factor where the length of the cluster

is measured by the number of interactions, including

those with the surrounding mean �eld sites, instead of

just the e�ective number of sites, i.e.,

L =

 
1

d

X
i

L�2i

!� 1

2

; (53)
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where the sum runs over cartesian directions and Li
are the number of bonds along each direction. The one

spin cluster has then L = 2 and the two-spin cluster

L = 6
p
d=(9d� 5). Such de�nition improves substan-

tially the critical exponents [50]. There are, however,

in the original MFRG, some quantities that are inde-

pendent of `. One of them is clearly the �xed point

K�, as can be seen from Eq. (26). The other one is

the product �yH . By abandoning the de�nition given

by Eq. (21) the relation (30) can be rewritten as

N 0gN 0(K�) = `�2yHNgN (K
�) ; (54)

which gives

yH =
1

2

lnNgN (K�)=N 0gN 0(K�)

ln `
; (55)

where `d in (30) has been replaced by N=N 0. While the

exponents � and yH separately depend on the rescal-

ing factor, it is easy to see now from equations (28) and

(55) that the product �yH is independent of `, removing

thus a principal weakness of the MFRG. In the uni�ed

SBMFRG this is no longer strictly true, but should still

hold to a �rst approximation. It is then expected that

the critical exponent product �yH will present a bet-

ter precision than the exponents themselves. Indeed,

from the last column of Table I one can see that the

best product �yH from SBMFRG is within 1:8% of er-

ror from its exact value, whereas the error in critical

exponents ranges between 7:8%�9:4%. The �gures for

MFRG are, respectively, 3% and 14%� 16%. Roughly

the same behavior is noticed in the data of Table II for

the d = 3 Ising model.

Table IV. Critical values for the d = 2 Ising model on a

square lattice according to the SBMFRG including the

corner magnetic exponent yHC [1].

N;N 0; N 00 Kc � yH �yHC
16, 9, 4 0.469 1.08-1.13 1.78-1.72 0.57-0.51
25,16, 9 0.460 1.07-1.10 1.80-1.76 0.63-0.59
36,25,16 0.454 1.06-1.07 1.81-1.78 0.68-0.65
exact [2] 0.441 1 1.875 1 [3]

[1]Data from Ref. [32] applying clusters in which

the corner exponent can be de�ned.

[2]Ref. [34, 35].

[3]Ref. [52].

Similar results are also obtained in an extended

version of the present approach by including surface

and corner critical exponents in two-dimensional mod-

els [51]. In such d = 2 systems the distinction between

surface and corner �elds is easily made. All one has to

do is to include an additional corner �eld critical ex-

ponent yHC in the formalism above. Table IV quotes

the results from Croes and Indekeu [32] for the two-

dimensional square Ising model. In this reference one

also �nds critical values for other two-dimensional lat-

tices namely, triangular, honeycomb, hexagonal as well

as the square lattice with next nearest neighbors inter-

actions. On the other hand, additional edge �elds will

be present in three-dimensional �nite lattices. However,

bigger �nite systems will require much computational

e�ort and inclusion of edge �elds would not be so rele-

vant in rather small systems.

C. Extended MFRG (EMFRG)

In the previous subsections just Hamiltonianmodels

with one parameter have been discussed where the triv-

ial one-dimensional renormalization group ux is ob-

tained. Let us now turn our attention to the case where

the Hamiltonian presents more than one parameter (or

coupling constant). It is clear that in this case the

complete renormalization ow diagram is not de�ned

through just the one-dimensional recursion relation as

given by Eq. (26). In the particular two-dimensional

case where we have K = (K1;K2), which is the most

studied in literature and will be treated in this sec-

tion, estimates of critical lines and critical exponents for

models presenting only one order-parameter are often

obtained through the mapping K1 ! K0
1 = R(K1; r),

for �xed values of the ratio r = K2=K1, as has al-

ready been discussed in the Introduction. That is what

one �nds, for instance, in the random Ising model or

the transverse Ising model. However, depending on the

system we are studying, other additional patterns may

occur where the above simple scheme cannot be applied

for a two-fold coupling space (in some models even for

a one order-parameter system). In these cases the ther-

modynamic quantities should be considered in a proper

way. This subsection is devoted to present a detailed

discussion of what has been done in overcoming such de-

bility of the method as well as to present an attempt to

unify the approaches done so far by using the MFRG.

The formalism is intended to be quite general. How-

ever, whenever possible, some reference to particular

models (without presenting results; the corresponding

reference will be listed in section IV) exhibiting the be-

havior under consideration will be made just for clarity

and as a matter of example.
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one order-parameter

For systems like, for example, the antiferromagnetic

spin-1/2 Ising model in an external �eld (recall Eq. (1))

H = J
X
<i;j>

SiSj � h
X
i

Si ; Si = �1 ; (56)

where K1 = �J and K2 = �h and the spin-1 Blume-

Capel [53, 54] model

H = �J
X
<i;j>

SiSj ��
X
i

S2i ; Si = �1; 0 ; (57)

where K1 = �J and K2 = �� (the latter interaction

being the crystal �eld anisotropy), one has two cou-

plings K = (K1;K2) and just one order-parameter,

namely, the di�erence m+ �m� of the sublattice mag-

netizations m+ and m� in the former case, and the

mean value of the spin < Si > at any site of the lattice

in the later model. Thus, for a �nite cluster of N sites

one can compute the order-parameter O1 = O1(K; b; q)

and the other non-critical variable O2 = O2(K; b; q)

(in the above examples O2 is the net magnetization

m+ + m� of the antiferromagnet and the mean value

of the square of the spin < S2i > in the Blume-Capel

model). b is the �eld conjugated to the order-parameter

O1 and q the respective �eld conjugated to the non-

critical variable O2. Close to the transition just O1 is

small so the expressions above are expanded for small

b to give

O1 = F1(K; q)b ; (58)

O2 = O2(K; b = 0; q) = F2(K; q) : (59)

Note that as b ! 0 one has O1 ! 0 and O2 6= 0, irre-

spective of the value of q 6= 0, whereas O2 ! 0 when

one further has q ! 0. Similarly, for a smaller cluster

of N 0 sites one �nds

O0
1 = F 0

1(K
0; q0)b0 ; (60)

O0
2 = O0

2(K
0; b0 = 0; q0) = F 0

2(K
0; q0) : (61)

From now on we will omit the subscripts N and N 0 and

just denote the corresponding thermodynamic func-

tions for di�erent clusters by unprimed and primed

quantities, respectively. According to the ordinary

MFRG one then �nds

F 0
1(K

0; q0) = F1(K; q) ; (62)

which, although independent of any exponent and

rescaling factor, depends on the additional �elds q and

q0. It should be said that the above behavior is not quite

general. Counter examples are, among others, disor-

dered systems [55, 56] and some quantum spin models

[56] where, despite having a two parameter Hamilto-

nian, they present no non-critical variables being un-

necessary the introduction of extra �elds q and q0. As

a result, Eq. (62) is just dependent on K and K0 and

the procedure K1 ! K0
1 = R(K1; r), for �xed values of

the ratio r = K2=K1, outlined in the preamble of this

subsection can easily be implemented.

In studying the antiferromagnetic Ising model in the

triangular lattice Slotte [57] has proposed the mean �eld

Ansatz where q and q0 are self consistently obtained by

requiring that O0
2 = q0 and O2 = q. Reasonable re-

sults, specially for the value of Kc have been achieved.

This approach has also been used in the study of the

Blume-Capel model [58] where results, not consistent

with the expected ones (mainly by taking the smallest

cluster sizes) have been obtained, including an unex-

pected phase transition at a �nite critical temperature

for the one-dimensional version (as seen in section II.A

the exact result is expected to be obtained from small-

est clusters at least for the one-dimensional model).

A di�erent choice, and equally natural, for the size

dependence of the non-critical variable has been pro-

posed by Plascak and S�a Barreto [59] and successfully

applied to the Ashkin-Teller model. As this variable

has its own size dependence which is not governed by

�nite size scaling at the transition it is assumed a renor-

malization group Ansatz in a way that q0 = q, O0
2 = O2,

or

F 0
2(K

0; q) = F2(K; q) ; (63)

from which q = q0 is obtained as a function ofK andK0

and inserted in Eq. (62). This renormalization group

Ansatz has been proved to be better than the mean

�eld one for the antiferromagnetic Ising model[60] and

has been subsequently used in treating non-critical vari-

ables such as in the random Potts model [61]. Con-

cerning the Blume-Capel model de�ned in Eq. (57),

this improved formalism provides now exact results for

its one-dimensional version and better values for the

critical exponents and critical temperatures in dimen-

sions d > 1 [62] when compared to those from the pre-

vious usual application of the method [58]. Besides,

for the particular spin-1/2 case, the above formalism

reproduces the early results of the Ising model since

O2 =< S2i >= O1 = 1=4 is automatically satis�ed.

The renormalization group Ansatz allows one to ob-

tain, in addition, an unambiguous estimate for the non-

critical thermodynamic function O2 at criticality (note

that the mean �eld Ansatz gives two di�erent estimates

O2 = q and O0
2 = q0, respectively). However, it is not

free from extracting results only in plausible invariant

subsets given by �xed ratios r = K2=K1. So, complete

analysis of the ux diagram is still not possible in such
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models.

two uncoupled order-parameters

Some systems present two di�erent and indepen-

dent order-parameters which can be used to go beyond

the limitation (lacking of ux diagram) of the usual

MFRG discussed so far. For example, in the symmet-

ric Ashkin-Teller model [63] where two di�erent spin

variables exist on each lattice site, it is possible to iden-

tify two order-parameters in the problem. In a similar

way, for the two-dimensional Ising model with cross-

ing bonds one can select appropriate pairs of order-

parameters depending on the region of the parameter

space. In such models, for a �nite block of N spins,

one has O1 = O1(K; b1) and O2 = O2(K; b2), where b1
and b2 are the symmetry breaking �elds related to the

order-parameters O1 and O2, respectively. Since for the

uncoupled order-parameters O1 ! 0 when b1 ! 0 (ir-

respective of the value of b2) and O2 ! 0 when b2 ! 0

(irrespective of the value of b1) one has, to leading order

in the b0s,

O1 = F1(K)b1 ; O2 = F2(K)b2 : (64)

By doing the same calculations for a smaller block of N 0

sites and assuming that both order-parameters are de-

scribed by the same critical exponent (which is usually

the case) one gets

F 0
1(K

0) = F1(K) ; (65)

F 0
2(K

0) = F2(K) : (66)

So, contrary to the procedure prescribed in Eqs. (13)-

(18), in this case from equations (65) and (66) one

can obtain renormalization group ux diagrams of the

usual type, furnishing isolated �xed points, critical ex-

ponents, universality classes, etc. Quite good results

(including some exact values at some special points

in the phase diagrams) have been obtained in the

Ashkin-Teller model [64] and in the two-dimensional

Ising model with crossing bonds [65] through the above

scheme.

two coupled order-parameters { EMFRG

The independence of the order-parameters, as

stated in Eq. (64), is not commonly veri�ed and

there are some models where they do not behave in

such a simple form as discussed above. In the most

general case one may have O1 = O1(K; b1; b2) and

O2 = O2(K; b1; b2) so that, to leading order in b1 and

b2, one gets

O1 = F11(K)b1 + F12(K)b2 ; (67)

O2 = F21(K)b1 + F22(K)b2 ; (68)

where both order-parameters depend on b1 and b2. This

general problem can be tackled by de�ning the vectors

O =
�
O1

O2

�
and b =

�
b1
b2

�
so that equations (67) and (68)

can be written as

O = Fb ; (69)

where the matrix F is given by

F =

�
F11 F12
F21 F22

�
: (70)

Similar expressions are obtained by considering a �-

nite system N 0 with less degrees of freedom. It is now

easy to see that when the two order-parameters have

the same critical exponents the corresponding vectors

O and O0 satisfy the scaling relation

O0 = Ld�yHO ; (71)

and the same for the symmetry breaking �eld vectors

b0 = Ld�yHb (72)

if we take the usual MFRG. As a result, one ends up

with the following matricial equation

(F0 �F)b0 = 0 : (73)

The above matricial approach is a natural extension to

the general problem of two-fold Hamiltonian parame-

ters. This extended mean �eld renormalization group

(EMFRG) reproduces the previous cases as well as an-

other particular approach proposed more recently by

Likos and Maritan [66]. Moreover, it can give the cor-

rect Bethe limit by using the smallest clusters in treat-

ing the mixed spin Ising model (an early MFRG study

of the mixed spin-1/2{spin-1 [67] Ising model has failed

to obtain the corresponding Bethe results due to a dif-

ferent mean �eld assumption in order to decouple the

order parameters). Some procedures in treating of the

matricial Eq. (73) are now in order:

(i) The simplest solution of Eq. (73) is given by

det(F0 �F) = 0 : (74)

From the above equation we do not have ow diagrams

and the critical lines are obtained only for �xed val-

ues of r = K2=K1. This is a generalization of the

corresponding one-order parameter where one has just

F 0(K0) = F (K). Now, by using the computed expres-

sions of reference [67] for the two order-parameters of

the mixed spin-1/2{spin-1 Ising model one obtains the
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corresponding equation (74) which gives the same criti-

cal temperature from the Bethe approximation by using

the clusters depicted in Fig.1(a) and (b), as expected.

(ii) If the two parameters are decoupled one has

Fij = 0; i 6= j for any cluster and another solution for

Eq. (73) can be given by equating to zero all the matrix

elements of F0 �F, i.e.,

F 0
11 � F11 = 0 and F 0

22 � F22 = 0 ; (75)

which is the same result given by equations (65) and

(66).

(iii) For the types of models considered by Likos and

Maritan [66, 68] (in particular, models de�ned on a bi-

partite lattice with only two di�erent ground states, a

ferromagnetic and an antiferromagnetic one, separated

by a stable borderline) one has F11 = F22 and F12 = F21
for any �nite system. The last two relations reect the

additional symmetry O1(K; b1; b2) = O2(K; b2; b1) ex-

hibited by these order parameters. So, by equalling

again to zero all the matrix elements of F0 � F one gets

F 0
11 � F11 = 0 and F 0

12 � F12 = 0 ; (76)

which are the same expressions as those proposed in

reference [66] in a di�erent context.

One can thus see that the present matricial EM-

FRG is capable to generalize all the previous isolated

treatments done on two-dimensional parameter Hamil-

tonians. One can also notice that:

(a) in the general case where all the matrix elements

of F are di�erent from each other, Eq. (73) can furnish

four distinct recursion relations, i.e., at �rst sight more

equations than parameters. However, it should be pos-

sible, in these cases, to augment the original Hamilto-

nian by a suitably chosen number of interactions un-

til the number of couplings matches the number of re-

cursion relations. From the ow diagram so obtained

in this enlarged space one could get the corresponding

ows in the original restricted domain by taking the ap-

propriate subspace in the complete Hamiltonian space.

(b) in addition, the present formalism can also be

straightforwardly applied to models having more than

two order-parameters simply by computing the dimen-

sional enhanced vectors O and b and the corresponding

matrix F for any �nite cluster.

Unfortunately, the extensions (a) and (b) above have

not yet been tested in studying statistical mechanics

systems from MFRG and one can not say, a priori,

that this approach will succeed in giving the correct

critical behavior in these cases, as is usual in ordinary

real space renormalization group procedures.

D. Dynamic MFRG (DMFRG)

So far, just equilibrium static properties have been

treated through MFRG. In this subsection we discuss

the extension of the mean �eld renormalization group

ideas to non-equilibrium phenomena. Despite the sim-

plicity of the formalism, the MFRG has been applied

to a very few number of systems out of the thermody-

namic equilibrium. It was employed for the �rst time

by Indekeu, Stella and Zhang [69] to study the dy-

namics of the kinetic Ising model with single spin-ip

Glauber transitions [70] near the equilibrium states. It

has also been used to treat the dynamic critical prop-

erties of quantum spin systems [71]. As the extensions

to treat the dynamics of quantum models is (at least in

principle) straightforward to be done, we present below

just the formalism for treating kinetic classical models

with special emphasis to the Ising model by considering

larger clusters than in the original work of Indekeu et

al [69]. Extensions to other problems are rather easy to

be performed and will be summarised in section V.

In the dynamic approach of the MFRG one starts

from the scaling relation of the magnetization, close to

equilibrium and criticality. For su�ciently long times

t we expect the magnetization of the in�nite system to

scale as [72]

m(�;H; t) = `�d+yHm(`1=��; `yHH; `�zt); (77)

which is a generalization of Eq. (6) where z is the cor-

responding dynamic critical exponent.

Let S = (S1; S2; : : : ; Si; : : : ; SN ), with Sj = �1,

represent a state of the �nite system with N spins, and

P (S; t) the probability of �nding the system in the state

S at instant t. The time evolution of P (S; t) is given

by the master equation

dP (S; t)

dt
=

NX
i=1

[P (Si; t)Wi(S
i)�P (S; t)Wi(S)] ; (78)

where Wi(S) is the transition rate, per unit time, to ip

the spin Si, and Si = (S1; S2; : : : ;�Si; : : : ; SN ). The

�rst sum in the above equation takes into account all

transitions to the state S and the second sum all the

transitions out from the state S. If f(S) is a given

function of state S, we can evaluate its average value

by

< f(S) >=
X
S0

f(S0)P (S0; t) ; (79)
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and its time evolution through the expression

d < f(S) >

dt
=

NX
i=1

< [f(Si)� f(S)]Wi(S) > : (80)

By taking the function of state as being the local mag-

netization of the spin i, we can easily write

d < Si >

dt
= �2 < SiWi(S) > : (81)

Let mN (t) and mN 0 (t0) be the time dependent mag-

netizations of two �nite clusters with N and N 0 spins,

respectively, i.e.,

mN (t) =
1

N

NX
i=1

< Si >; (82)

mN 0 (t) =
1

N 0

N 0X
i=1

< S0i > ; (83)

where the time dependence comes from< Si > through

Eq. (81). Following the original idea of the MFRG ,

each spin Si of the border of the cluster couples with an

in�nitesimal symmetry breaking �eld b(t). The equa-

tions of motion for mN (t) and mN 0 (t0) are computed

from Eqs. (79)-(81) by using [70]

Wi(S) =
1

2
[1� Si tanh(K

X
j 6=i

Sj + ciKbN )] ; (84)

where ci is the number of �rst neighbors of Si, which

are external to the cluster, and

c

PN (S; t) =
1

2N
(1 +

X
i

mi(t)Si +
X
i;j

i 6= j

pij(t)SiSj +

X
i;j;k

i 6= j 6= k

qijk(t)SiSjSk + : : :) ; (85)

d

where mi(t) =< Si >, pij(t) =< SiSj >, qijk(t) =<

SiSjSk >, etc. The transition rate Wi(S) is chosen to

satisfy the detailed balance condition P (Si; t)Wi(S
i) =

P (S; t)Wi(S) in the limit of t ! 1. This is a suf-

�cient condition to the equilibrium be attained, i.e.,

dP (S; t)=dt = 0 as t!1 with the expected probabil-

ity distribution PN (S; t ! 1) / e��E(S), where E(S)

is the energy of the state S. The expression for the

probability PN (S; t), Eq. (85), is an exact one and can

be worked out just for rather small systems.

In general, for small clusters atH = 0 and linearized

in bN (t) and bN 0(t0) the time derivatives of the order

parameters can be written as

dmN (t)

dt
= �AN (K)mN (t) +BN (K)bN (t) ; (86)

dmN 0 (t0)

dt0
= �AN 0 (K0)mN 0 (t0) +BN 0 (K0)bN 0 (t0) ;

(87)

where the expressions for AN (K), AN 0 (K0), BN (K)

and BN 0 (K0) are computed from Eqs. (79)-(85).

According to the strategy of MFRG, we impose now

the following scaling relations for the magnetizations

and symmetry breaking �elds:

mN 0 (K0; 0; `�zt; bN 0(`�zt)) = `d�yHmN (K; 0; t; bN(t)) ;

(88)

and

bN 0 (`�zt) = `d�yH bN (t) ; (89)

where ` = ( NN 0 )
1

d and t0 = `�zt with N 0 < N .

Taking the derivative of Eq. (88) with respect to

t, and using Eqs. (86), (87) and (89), we arrive at the

following recursion relations for the A0s and B0s coe�-

cients:

AN 0 (K 0) = `zAN (K) ; (90)

BN 0 (K 0) = `zBN (K) : (91)

The solution of the above system of equations provides

the non-trivial �xed point (K = K0 = Kc) and fur-

nishes also the value of the dynamic critical exponent z.

As a simple example, let us take the one and two

spin clusters depicted in Fig. 1(a) an (b) for this dy-

namic treatment in the d-dimensional Ising model. We

have then
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c

dm1(t)

dt
= �2

X
fS1g

S1
1

2
[1� S1 tanh(cK

0b1)]
1

2
[1 +m1S1] ; (92)

dm2(t)

dt
= �2

X
fS1;S2g

S1
1

2
[1� S1 tanh(KS2 + (c� 1)Kb2)]�

�
1

4
[1 +m2(t)S1 +m2(t)S2 + p12(t)S1S2] ; (93)

where in the latter relation we have used the fact that both spins in the two site cluster of Fig. 1(b) have the same

time dependence. Performing the sum over the corresponding states in the two relations above one gets

dm1(t)

dt
= �m1(t) + cK0b1(t) ; (94)

dm2(t)

dt
= �(1� tanhK)m2(t) + (c� 1)K(1� tanh2K)b2(t) ; (95)

from which one has

1 = `z(1� tanhK) ; (96)

cK0 = `z(c� 1)K(1� tanh2K) : (97)

By taking the ratio of Eq. (97) to Eq. (96) it is easy to

see that the non-trivial �xed point and the related ther-

mal critical exponent are the same as those obtained in

the static procedure of section IIA (as well as the mag-

netic critical exponent yH if one includes the external

�eld H), as expected. Estimates of the corresponding

dynamic critical exponent z are also readily achieved

from above equations (see Table V).

Table V. Critical temperature and dynamic critical exponent for the Ising model according to the DMFRG.

d=2 d=3
N;N 0 Kc z N;N 0 Kc z
2,1 0.347 1.17 2,1 0.203 0.97
4,1 0.361 1.39 4,2 0.207 1.15
4,2 0.370 1.60 8,2 0.207 1.32
9,4 0.381 2.13 8,4 0.209 1.49

0:441[1] 2:2� 0:2[2] 0:222[3] 2:0[4]

[1]Refs. [34, 35].

[2]Ref. [73].

[3]Ref. [37, 38, 39, 40].

[4]Ref. [74].

In Table V we show the results obtained in the study

of the Ising model for clusters of up to 9 spins in two di-

mensions (a cluster with non-equivalent boundary sites

which has not been previously considered in the dy-

namic treatment of the model) and with up to 8 spins in

three dimensions. One can see from this Table that the

results are consistent with those from other approaches.

However, some di�culties arise in considering bigger

clusters in the present case:

(a) when we consider a cluster with four spins, by

using Eq. (85) it appears correlations between pairs of

spins which are located at the diagonals of the cluster;

(b) we must also be careful in the calculation of the

mean values < Si >, because for clusters with more

than four spins they are not all equivalent. It should
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be stressed that this non-equivalence among spins in-

side the �nite cluster for N > 4 in two-dimensions (and

N > 8 in three-dimensions) implies in the necessity to

diagonalize a system of equations in order to obtain an

expression like that of Eq.(86), since in this case mN (t)

is no longer an eigenmode of the dynamics but is cou-

pled to higher spin correlations;

(c) besides, another great di�culty arises when

we try to increase the size of the clusters in this

non-equilibrium approach of the MFRG. Although the

method does not produce couplings of longer range in

space, it is necessary to take account of the higher than

two spin correlations, which naturally appear for big-

ger clusters. Then, we need to use methods of equilib-

rium statistical mechanics to evaluate these higher or-

der correlations, although we are interested only in the

determination of the equation of motion for the mean

magnetization of the cluster.

As a result, the dynamic MFRG must be applied

only to small clusters.

III Exact results from MFRG

Besides the great qualitatively success achieved by ap-

plying the MFRG to a great variety of statistical sys-

tems (even by taking the simplest choice for the clus-

ters) some expected rigorous quantities are obtained in

some particular cases, as we have already seen in the

previous section. That is what happens, for instance,

when treating the one-dimensional spin-1/2 Ising model

[27], the two-dimensional spin-1/2 isotropic Heisen-

berg model [75] and the spin-S one-dimensional Blume-

Capel model [62]. While the exact critical temperature

(Tc = 0) is reproduced in all models above for clusters

of any size, in some of them the exact critical exponent

is only obtained in the limit of in�nite cluster (except

for the magnetic exponent yH in the Ising model and

the thermal exponent � in the d = 2 Heisenberg model,

where they are exact even for the smallest clusters).

One also obtains expected quantitative values at

some special points in the global phase diagram of the

Ashkin-Teller model [59, 64] and the Ising model with

crossing bonds [65, 66]. Exact results are also achieved

by applying the method in the study of the geometrical

problem of directed self-avoiding random walk in two

dimensions and the Ising model on the Bethe lattice

[48]. These rigorous results reproduced by the MFRG

in so many di�erent systems such as classical, quan-

tum and geometrical statistical problems assign indeed

to the method a high reliability when studying more

complex models.

IV Static Problems Applica-

tions

The previous two sections give us an idea of the perfor-

mance and potentiality of the phenomenological mean

�eld renormalization group when used to treat some

particular models. In this and in the next section we

will present, in a summarized way, the applications of

the method (in its various forms) to several di�erent

statistical mechanical systems. It is not the purpose

here to discuss the results obtained for every studied

system (which amounts to over 120 papers). Rather,

just an update of the treated models by employing the

method will be presented. Moreover, this section is in-

tended to be self-contained in the sense that all the

references already commented in the text is referenced

here again when listing the corresponding model where

it has been used.

The Ising model has been extensively studied and

has also been a test system for all proposed procedures

involving the MFRG approach [27, 32, 49, 50, 51, 76,

77, 78], including a combination with the decimation

procedure [79, 80], the e�ects of reaction [81] and sym-

metry dependent �elds [82], and treatments of some

extended models such as: antiferromagnetic model on

triangular [57] and square lattices with external �eld

[60]; anisotropic Ising model on a triangular lattice[68];

surface e�ects in pure and random semi-in�nite mod-

els [83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93]; the Ising

system on a compressible lattice (Domb model) [94];

and the model with crossing bonds in two-dimensions

[65, 66, 95]. Additional diluted versions of the Ising

model have been treated by considering the e�ects of

di�erent kinds of random dilution including spin-glass

[55, 81, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105,

106, 107, 108, 109], dilution in the antiferromagnetic

model in an external �eld [110] and random �eld sys-

tems [55, 111].

Geometrical critical phenomena and percolation

have been studied by De'Bell [43, 44] and das Neves

and Kamphorst Leal da Silva [112], and some exact re-

sults have been achieved [48]. The method has also

been used in the study of directed percolation hypoth-

esis for stochastic cellular automata [113], lattice gas

model [114], and nematic ordered states at low temper-

atures [115, 116].

Other related systems include: Ashkin-Teller model

[59, 64, 117]; coupled spin-1/2 Ising models [118];

ANNNI model [119]; mixed spin-1/2 spin-1 model

[67, 120]; di�erent versions of pure and random Potts

models on in�nite and semi-in�nite lattices [61, 121,

122, 123, 124, 125, 126, 127]; the Z4 spin model [128];
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Hamiltonian version of the two-dimensional Z(q) sym-

metric spin models [129, 130]; quenched and annealed

random-bondD-vector models [131]; the planar random

anisotropic model [132]; q-state clock spin-glass mod-

els [133]; classical [58, 62, 134, 135, 136] and quantum

random versions of the Blume-Capel model [137]; the

Blume-Emmery-Gri�ths model [138]; the �nite tem-

perature SU(2) lattice gauge theory at the strong cou-

pling limit [139]; and classical XY and Heisenberg mod-

els [140].

A great variety of quantum spin systems have al-

ready been studied from the MFRG approach. Among

them we have: anisotropic Heisenberg model [75,

141, 142, 143, 144]; anisotropic Heisenberg model in

a transverse �eld [145]; pure and random spin-1/2

[56, 146, 147] and spin>1/2 [148, 149, 150, 151] trans-

verse Ising models; quantum Ising model with annealed

antiferromagnetic bond randomness [152]; Ising model

in random transverse �eld [151, 153, 154, 155, 156,

157]; random mixture of Ising and Heisenberg mod-

els [158, 159]; spin-1 anisotropic Heisenberg chain [160]

and spin-1 Ising model in a transverse �eld [161]; quan-

tum models applied to granular superconductors [162];

and anisotropic Heisenberg model with Dzyaloshinskii-

Moryia interaction [163].

More recent extensions of the method include the

study of the MFRG approach with the Tsallis Statis-

tics [164] and non ambiguous location of multicritical

points [136].

V Dynamic Problems Applica-

tions

Although fewer in number, the DMFRG has been ap-

plied in the study of dynamics and non-equilibrium

properties of some interesting systems. For instance,

the classical approach of Indekeu et al [69] has been ex-

tended in the treatment of the intrinsic dynamic critical

properties of quantum spin models [71]. In this case,

good results for the critical exponent z have been ob-

tained when compared to others from more laborious

approaches.

It was also applied to non-equilibriumproblems aris-

ing from the competition between microscopic mech-

anisms. This is the case, for instance, of the Ising

model subject to two locally competing temperatures

[165, 166]. In this model, for each temperature, the

corresponding transition rate satis�es the principle of

detailed balance. When the two processes are consid-

ered at the same time, a continuous phase transition is

observed between steady states. By using clusters of

one and two spins Marques [165] was able to determine

the phase diagram of the model in the temperature ver-

sus gradient of temperature plane. She also obtained

values for the critical exponent � of this non-equilibrium

model in two and three dimensions, and they compare

very well with the values of the corresponding equilib-

rium Ising model. On the other hand, if one of the tem-

peratures becomes negative, the ferromagnetic system

can display an antiferromagnetic order [166]. The heat

bath at negative temperature simulates a ux of energy

into the system. The MFRG was also applied to other

non-equilibrium models which exhibit steady states:

non-equilibrium Ising model with competing dynam-

ics [167], critical behavior of non-equilibrium 3-state

systems [168], stochastic cellular automata in one and

two dimensions [113], competition between di�usion

and anihilation of many particles [169], dilution in the

contact process [170], critical surface behavior of mod-

els with one absorbing state [171] and one-dimensional

models with multiple absorbing con�gurations [172].

This methodology has also been used to study the

dynamic critical behavior of a semi-in�nite system of

spins in a simple cubic lattice with nearest-neighbor fer-

romagnetic interactions. As this approach has not been

published in the literature and presents some similari-

ties with the one discussed in section II.C.3 we outline

below the general procedure. It is assumed that in the

surface plane of the semi-in�nite system the exchange

coupling is given by KS , while all the other couplings

are given by K. For � = KS=K greater than a value

�c the surface orders before the bulk while for � < �c
the surface orders when the bulk does. As an example,

in the one-site cluster of the MFRG, we take one spin

in the i� th plane, and it interacts with the symmetry

breaking �elds: bi1(t) of the i � th plane, and bi�1i (t)

and bi+11 (t) of the adjacent planes. Here, and from now

on, the superscript designates the particular plane away

from the i = 1 surface. As is usual, these �elds are as-

sumed to be very small, that is, we are considering the

problem in the neighborhood of the surface phase tran-

sition. The equation of motion for the magnetization

taking the one-site cluster, in each plane, is then given

by

dm1
1(t)

dt
= �m1

1(t) + 4K0
Sb

1
1(t) +K0b21(t) ; (98)

for the magnetization on the surface i = 1 and, for

i � 2,

dmi
1(t)

dt
= �mi

1(t)+K
0[bi�11 (t)+4bi1(t)+b

i+1
1 (t)] : (99)

Eq. (99) is a generalization of Eq. (94) for the bulk

magnetization with di�erent symmetry breaking �elds

in di�erent planes and Eq. (98) is a particular case of
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relation (99) for the surface magnetization with intra-

plane interactions KS . Similarly, the generalized ex-

pressions for the two spin cluster contained in each

plane read

c

dm1
2(t)

dt
= �(1� tanhKS)m

1
2(t) + (1 � tanh2KS)[3KSb

1
2(t) +Kb22(t)] ; (100)

dmi
2(t)

dt
= �(1� tanhK)mi

2(t) + (1� tanh2K)[Kbi�12 + 3Kbi2(t) +Kbi+12 (t)] : (101)

In general, the magnetization for the planes i taking a small block of N spins inside each layer can be written as

dm1
N (t)

dt
= �A1

N (KS)m
1
N (t) +

2X
j=1

Bj
N (K;KS)b

j
N (t) ; (102)

dmi
N (t)

dt
= �Ai

N (K)mi
N (t) +

i+1X
j=i�1

Bj
N (K)bjN (t) ; i � 2 ; (103)

d

where the explicit dependence of the coe�cients Ai
N

and Bi
N on K and KS has been given.

By considering now two clusters of N and N 0 spins

and the scaling relations given by equations (88) and

(89) for the magnetizations on each plane (and intro-

ducing adequately the exponents yHs and zS for the

surface magnetization and yH and z for the bulk quan-

tities) one �nds, after taking the derivative with respect

to the time t, a set of linear equations relating the mag-

netizations and the corresponding symmetry breaking

�elds of di�erent layers. The set of linear equations for

the magnetizations can be written as

ANMN = AN 0MN 0 ; (104)

where MN is a column vector composed by the layer

magnetizations m1
N ; m

2
N ; m

3
N ; :::; and AN is a diago-

nal matrix whose elements are straight related to Ai
N .

The same holds for the smaller system. A solution of

(104) is obtained by equating all the terms of the diag-

onal of the matrices and, as all terms for i � 2 are the

same, results basically in

A1
N (KS) = `�zSA1

N 0 (K0
S) ; Ai

N (K) = `�zAi
N 0 (K0) ;

(105)

which gives a relation among KS , K, z and zS at crit-

icality. The set of linear equations for the remaining

symmetry breaking �elds can be put in the following

form

Bb = 0 ; (106)

where b is the column vector composed by the symme-

try breaking �elds b1N ; b
2
N ; b

3
N ; :::; and B is a three-

diagonal matrix whose elements, using relations (105),

are just functions of KS and K at criticality. It is easy

to see that the critical coupling to give an ordered sur-

face over a paramagnetic bulk phase is found when the

determinant of matrix B vanishes. One then obtains an

equation for the surface critical temperature as a func-

tion of � = KS=K, as is usual in the MFRG approach

of two parameter systems. The previous bulk dynamic

properties are reproduced, as expected, for i� 1.

For the simplest �nite systems of Fig. 1 it is not

di�cult to show from Eqs. (98)-(101) and (104)-(106)

that

tanhKSc

1� 3tanhKSc
= � ; (107)

for the surface critical temperature KSc as a function

of the ratio � and

1� tanhKs = l�zs ; 1� tanhK = l�z ; (108)

from which the dynamic critical exponents are ob-

tained. The numerical results from above equations

are shown in Table VI together with those obtained

by taking the plaquette of four spins. We can note

that the DMFRG is easily extended to study the crit-

ical dynamic phenomena on surfaces and, in particu-

lar, furnishes a value for �c = 1:48 comparable to that

from Monte Carlo simulations �c = 1:52 [173], while

the mean �eld result is �c = 1:25 [36, 174]. It should

also be noticed that in the present approach with rather

small clusters the surface magnetic exponent yHS is in-

determinate since it cancels out in the renormalization

group equations.
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Table VI. Surface dynamic critical exponent zS and

critical surface coupling �c for the three-dimensional

Ising model according to the DMFRG.

N;N 0 zS �c
2, 1 1.35 1.35
4, 2 1.88 1.48

Monte Carlo [1] | 1.52

[1]Ref. [173].

VI Related Phenomenological

RG

Di�erent phenomenological renormalization group pro-

cedures based on exact calculations in �nite systems

have also been proposed in the literature. In this sec-

tion some of them will be discussed, namely, the e�ec-

tive �eld renormalization and �nite size scaling renor-

malization groups. Few other methods, which are less

used or applied in approaches other than the renormal-

ization group scheme, will be referenced in the next

section. Here, as in the MFRG case, we are mainly

concerned in describing the methods themselves and

their interrelations and similarities, and just a list of

their applications in di�erent statistical models will be

presented.

A. E�ective Field Renormalization
Group (EFRG)

The MFRG in its several formulations computes ex-

actly the magnetization (order parameter) for each �-

nite cluster of spins according to the canonical distri-

bution (19). An alternative way of obtaining this order

parameter for a Hamiltonian model system H has been

proposed by some authors [175, 176, 177] by employing

an e�ective �eld theory based on the exact generalized

Callen-Suzuki identity [178, 179]

hOni =

�
TrnOn exp��Hn

Trn exp��Hn

�
; (109)

where the partial trace Tr is taken over the set of n

spins variables speci�ed by a �nite system Hamiltonian

Hn, On is the corresponding order parameter (or, in

general, any other function of all the n spins of the clus-

ter) and < � � � > indicates the usual canonical thermal

average taken over the ensemble de�ned by the com-

plete Hamiltonian H. The idea is simply to replace H

by a cluster of n = N spins surrounded by �xed magne-

tizations at values b. In this way the order parameter

m = O in Eq. (109) can be computed by employing

the exponential operator technique [180] resulting, for

b << 1, in an equation of a similar form as before for

H = 0, namely,

mN = fN (K)bN : (110)

Doing the same for a smaller system (N 0 < N ) and us-

ing the mean �eld renormalization group assumptions

given by equations (20) and (25) one obtains the EFRG

recursion relation

fN 0 (K0) = fN (K) ; (111)

from which phase diagrams and estimates of critical ex-

ponents are computed.

In order to illustrate the method let us consider the

spin-1/2 Ising model and n = 1 in Eq. (109). The

Callen-Suzuki identity (109) then reads

m1 =< S1 >=

*
tanh(K0

cX
j=1

Sj)

+
; (112)

where the sum is over all nearest neighbors spins of S1.

By using the exponential operator technique [180]

e�Dxf(x) = f(x + �); Dx =
@

@x
; (113)

the Eq. (112) can be written as

m1 =


e�Dx tanh(x) jx=0

�
; � = K0

cX
j=1

Sj ; (114)

and, as the hyperbolic tangent does not depend on any

spin con�guration one has

c

m1 =

*
cY

j=1

eK
0SjDx

+
tanh(x) jx=0=

*
cY

j=1

[cosh(K0Dx) + Sj sinh(K
0Dx)]

+
tanhx jx=0 ; (115)
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where in the last expression we have used the van der

Waerden identity for the two state system

eaSi = cosh(a) + Si sinh(a); Si = �1 : (116)

The above equations are still exact relations and com-

putation ofm1 will commonly require some approxima-

tions such as decoupling the mean values of product of

spins in product of spin mean values [180]. We can also

see from Eq. (115) that the mean value m1 is strongly

dependent on the number of �rst neighbors c. By tak-

ing the one spin cluster N 0 = 1 of Fig. 1(a) we see that

Sj = b1 for all j. The order-parameter for the one-

dimensional lattice Eq. (115) assumes then the form

m1 =


[cosh(K0Dx) + b1 sinh(K

0Dx)]
2
�
tanh(x) jx=0 :

(117)

Since sinh(K0Dx) cosh(K0Dx) tanh(x)jx=0 =
1
2 tanh(2K

0), sinh2(K0Dx) tanh(x)jx=0 = 0

and cosh2(K0Dx) tanh(x)jx=0 = 0 one has for a homo-

geneous system

m1 = tanh(2K0) b1 : (118)

It is interesting to note that the usual mean �eld ap-

proach m1 = b1 gives the exact result Tc = 0 even for

the one spin cluster. In fact, this approach reproduces

all the expected results for the thermodynamic proper-

ties, such as magnetic susceptibility and speci�c heat,

of the linear chain in zero external �eld [181] and re-

ects the fact that, besides appearing at most just pair

correlation functions in the thermodynamic functions,

the auto-correlation < S2i >= 1 has been taken into

account exactly in the van der Waerden relation (116).

Analogously, for the two-dimensional square lattice one

gets [180]

m1 =
1

2
[tanh(4K) + 2 tanh(2K)]b1 ; (119)

which furnishes the mean �eld critical temperature

Kc = 0:324, and for the three-dimensional cubic lat-

tice

m1 =
3

24
[tanh(6K0) + 4 tanh(4K0) + 5 tanh(2K0)] b1;

(120)

giving Kc = 0:197 [180]. As usual, from the above sim-

ple approach one always obtains classical critical expo-

nents (as can be seen by expanding further up to the

order b31).

For a two spin cluster n = 2 Eq. (109) reduces to

[182]

c

m2 =
1

2
hS1 + S2i =

*
c�1Y
j=1

eKSjDx

c�1Y
j0=1

eKSj0Dy

+
sinh(x+ y)

cosh(x+ y) + e�2K cosh x� y)
; (121)

where Dy =
@
@y and the sum in j is over the �rst neighbors of the spin 1, and the sum in j0 is over the �rst neighbors

of the spin 2. It is now easy, though rather lengthy, to compute the expressions for m2 taking the cluster of Fig.

1(b) on di�erent lattices. We quote below just the results for the one- and two(square)-dimensional lattices which

are, respectively,

m2 =
f(2)

g(2) + e�2K
b2 ; (122)

m2 =
3

24

�
f(6)

g(6) + e�2K
+

4f(4)

g(4) + e�2Kg(2)
+

2f(2)

g(2) + e�2Kg(4)
+

3f(2)

g(2) + e�2K

�
b2 ; (123)

d

where f(u) = sinhuK and g(u) = coshuK. A com-
plete set of coe�cients for other types of lattices taking

the smallest clusters can be found in reference [177].

Eq. (122) gives also Tc = 0 for the one-dimensional

case and one gets Kc = 0:331 and Kc = 0:198 for d = 2
and d = 3, respectively [182].

The EFRG obtained from Eqs. (110), (111), (118)

and (122) reproduce the exact one-dimensional results,

including the expected thermal critical exponent � even

for the smallest systems. In general, the correspond-
ing renormalization recursion relations for dimensions

d > 1 give better values than the MFRG, as can be seen

in Table VII, where a comparison is made on square and

simple cubic Ising models. In addition, the two spin
block is, within this formalism, able to distinguish the

two dimensional triangular lattice from the simple cubic

one (both with the same coordination number c = 6)
regarding the critical temperature (Kc = 0:244 for the
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triangular lattice and the exact value is Kc = 0:275

[35]). This distinction comes from the fact that on a

triangular lattice the total number of surrounding mean
�eld sites for N = 2 cluster is 8 and in the simple cu-

bic one is 10. While Eq. (121) depends on this value,

in the MFRG approach expressed by Eq. (38) it only
matters the number of neighbors on each site and, in

some sense, the common neighbors on the triangular

lattice is counted twice. The price paid, however, for

such improvements in rather small systems taking the
EFRG procedure clearly reects the more elaborate cal-

culations needed to obtaining the order parameters. As

a result, contrary to the MFRG, this drastically limits
the size of the employed clusters in such a way that the

bigger system used in literature is N = 4.

Besides pure and diluted Ising models [175, 176,

177, 183, 184, 185, 186] the EFRG has also been ap-
plied in the study of the Ashkin-Teller model [176], sur-

face criticality in semi-in�nite Ising ferromagnets [187],

classical XY and Heisenberg models [140], O(n) vector
ferromagnetic and antiferromagnetic models [188], the

transverse Ising model [189, 190], and quantum spin-

1/2 anisotropic Heisenberg models [191, 192]. The same

qualitative results have been achieved in all applica-
tions.

B. Finite Size Scaling Renormalization
Group (FSSRG)

The �nite size scaling renormalization group

(FSSRG) has been originally proposed by de Oliveira

[28, 29] to treat Hamiltonian systems having two en-
ergy terms. The main idea of the method is to consider

quantities having zero anomalous dimension, i.e., � = 0

in equation (10). For the simple Ising model in an ex-

ternal magnetic �eld de�ned in Eq. (1) such quantities
can be given by

Q(K;H) =

*
sign

 
1

N

NX
i

Si

!+
; (124)

and

R(K;H) =

*
sign

0
@ 1

Ns1

Ns1X
i

Si

1
A sign

0
@ 1

Ns2

Ns2X
i

Si

1
A+ ;

(125)

where N = Ld is the number of spins on a d-

dimensional lattice and sign(x) = �1; 0; 1, whether
x < 0; x = 0; x > 0, respectively. s1 and s2 are two

parallel surfaces with Ns1 = Ns2 and separated by a

distance L=2 apart when taking periodic boundary con-
ditions. For �nite lattices with open boundary condi-

tions the surfaces s1 and s2 can be taken as being the

top and the bottom hypersurfaces of the corresponding

hypercube, respectively.

Let us consider �rst the quantity Q and see that

it has zero anomalous dimension for an in�nite system.

While the magnetizationm =
D�

1
N

PN
i Si

�E
is zero for

T > Tc and behaves as

m � �� ; (126)

when H ! 0+ and T ! T�c , the quantity Q = +1

for T < Tc and is zero above Tc meaning that Q = �0

and, from Eq. (7), � = 0. Regarding now the sec-
ond quantity R we have that the probability of �nd-

ing 1
Ns1

PNs1

i Si and
1

Ns2

PNs2

i Si with the same sign is

greater than �nding them with opposite signs since, ac-
cording to the weak version of the Gri�ths inequality

[193], one has hSiSji � 0 for any pair of spins on the

lattice. Thus, for the same reasoning, we also have a

zero anomalous exponent for R.
By taking two �nite systems of sizes N;N 0 and com-

puting the above quantities for both clusters one then

gets the renormalization recursion relations

QN 0(K0;H0) = QN (K;H) ; (127)

and

RN 0 (K0;H0) = RN (K;H) : (128)

From equations above the complete renormalization
ow in the K �H plane can be exploited. It turns out

that for the Ising model the FSSRG gives the quantita-

tive correct behavior as N > N 0 !1 for all the �xed
points (K !1;H = 0), (K = 0;H = 0) and the Ising

critical point (Kc;H = 0), while expected qualitative

behavior is achieved for �nite systems. For instance,

taking N = 4 and N 0 = 2, which are the smallest possi-
ble systems allowed by this approach, one readily gets

sinh(2H0)

Z2
=

e4K sinh(4H) + 4 sinh(2H)

Z4
; (129)

cosh(2H 0)� e�2K
0

Z2
=
e4K cosh(4K)� 1

Z4
; (130)

where

Z2 = cosh 2H 0 + e�2K
0

; (131)

Z4 = 2 + e�4K + 4 cosh(2H) + e4K cosh(4H) ; (132)

from which one obtains the values quoted in Table VIII

for the Ising critical point. Results from analytical cal-

culations on bigger lattices are also listed in that table.
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Table VII. Critical temperature and thermal critical exponent for the Ising model according to the EFRG. It is

quoted in parenthesis the values from MFRG for comparison.

d=2 d=3
N;N 0 Kc � N;N 0 Kc �
2,1 0.358 (0.347) 1.39 (1.67) 2,1 0.206 (0.203) 1.37 (1.50)
4,1 0.379 (0.361) 1.17 (1.45) 4,1 0.207 (0.207) 1.24 (1.22)
4,2 0.371 (0.370) 1.01 (1.28) 4,2 0.208 (0.207) 1.14 (1.27)

0:441[1] 1 [1] 0:222[2] 0.63 [3]

[1]Refs. [34, 35].

[2]Refs. [37, 38, 39, 40].

[3]Refs. [38, 39, 40, 41].

Figure 1. (a) and (b) show schematically the smallest clusters for hypercubic lattices and (c) and (d) the same for the directed
self avoiding random walk (DSARW) in two dimensions. Full circles represent sites belonging to the cluster itself and open
circles the corresponding surrounding sites (mean �eld sites).

However, contrary to the previous approaches, the

FSSRG method has the great advantage of allowing

Monte Carlo simulations for bigger �nite systems in or-

der to obtain the desired quantities Q and R . Such

Monte Carlo simulations are not so easily implemented

and has not yet been done in the mean �eld like renor-

malization group treatments discussed herein (apart

from a theory of mean �eld Monte Carlo simulation

proposed by Netz and Berker in a di�erent context

[194, 195, 196]). These results are also shown in Ta-

ble VIII and, even taking into account the rather small

computational e�ort, they are quite close to the exact

ones. The FSSRG can also be used to treat other sys-

tems with di�erent kinds of energy and coupling con-

stants by conveniently choosing the quantities Q and R

and even, in principle, be extended to study more than

two parameter Hamiltonians, such as ux diagrams in

three dimensions.
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Apart from the pure Ising model [28, 29, 197], the

FSSRG has also been applied to the diluted Ising model

[30], the spin-1 and spin-3/2 Blume-Capel model [198],

and the q-state Potts model [199]. An extension to the

dynamic critical behavior (for short and long times) of

the Ising [200] and Potts model [201] has also been done

through Monte Carlo simulations on �nite systems. In

this case, quite good accurate results for the dynamic

critical exponents z have been achieved.

It should also be mentioned that the FSSRG ap-

proach is identical to the phenomenological renormal-

ization group proposed by Nightingale [19] when in

the former one considers clusters consisting of in�nite

strips with �nite width [202]. In order to see this

equivalence let us take a strip with �nite width L and

length nL ! 1 at zero external �eld (for simplic-

ity). Correspondingly, the transfer matrix will be of

order 2L � 2L. In this case the quantity QL, com-

puted from the transfer matrix, is zero and one gets

QL0(K0;H0 = 0) = QL(K;H = 0) = 0 for any values

of L and L0 < L. On the other hand, the quantity RL

is just a correlation function between the states of two

columns separated by a distance nL=2 apart, which can

be written as [203]

RL(K) = AL

�
�<L
�>L

�nL=2
; (133)

where AL is a function of K but independent of nL
and �>L and �<L are the greatest and second greatest

eigenvalues of the corresponding transfer matrix, re-

spectively. For two strips with L0 < L one then has

AL0

�
�<L0

�>L0

�nL0=2
= AL

�
�<L
�>L

�nL=2
; (134)

where nL; nL0 !1. Taking now the logarithm of both

sides of the above equation, dividing by nL0=2 and re-

calling that the scaling factor ` = L=L0 can also be

obtained from

` =

�
N

N 0

�1=d
=

�
nLL

d�1

nL0L0
d�1

�1=d
=

�
L

L0

�
; (135)

(from which we have nL
nL0

= L
L0 ) we �nally get

L0 ln

�
�<L0

�>L0

�
= L ln

�
�<L
�>L

�
; (136)

which is the same as Eq. (12) since ��1L = ln
�
�<
L

�>
L

�
(the

same for L0).

It is interesting that two completely di�erent phe-

nomenological renormalization group procedures have

the same (quite good) results for the properties of one

parameter critical models. One can think of the FSSRG

as a generalization of the original Nightingale renor-

malization group for completely �nite systems (a fact

that, in some way, explains the accuracy of the FSSRG

critical values, specially in the Ising case). On the

other hand, ux diagrams for two-dimensional parame-

ter Hamiltonians (for instance, the Blume-Capel model

[204]) taking in�nite strips within FSSRG can be read-

ily obtained (which is not possible from the Nightingale

procedure).

Another real space renormalization group approach

preserving the two spin correlation function in �nite

clusters proposed by Tsallis et al [18, 21] has also been

shown to be connected to the Nightingale procedure.

However, it seems rather di�cult to implement the cal-

culations by taking in�nite self-dual clusters in the for-

mer method.

VII Final Remarks

In the above discussion we have been mainly concerned

with renormalization group procedures based on �nite

size scaling hypothesis having a relatively wide applica-

tion in rather di�erent statistical mechanics problems.

There are, however, some other renormalization group

approaches based on �nite lattice calculations. One of

them, still close in spirit to the ones we have been de-

scribed so far, is the new mean �eld renormalization

group [205] transformation (NMFRG). To briey illus-

trate this method let us recall Eq. (19) in the mean

�eld approximation mN = b. Close to the mean �eld

transition TNc the order parameter can be expanded as

mN = FN (K)��
�

N + GN (K)H��
�

N ; (137)

where � = (K � KN
c )=K, KN

c is the mean �eld crit-

ical temperature and �� and � are the usual mean

�eld exponents (�� = 1=2 and � = 1). At K = KN
c

the functions FN (K) and GN (K) are called anomaly

coe�cients, introduced by Suzuki [206, 207] and from

which non-classical exponents are also achieved (the so-

called coherent anomalymethod - CAM). In the present

renormalization group context one expands the order

parameter for two di�erent clusters N 0 < N and as-

sumes a scaling relation of the form given in Eq. (20) for

the approximate order parameters and the same rela-

tion for the quantities ��
�

N and ��
�

N 0 , i.e., �
��

N 0 = `d�yH ��
�

N .
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So, in the same way as previously done for the MFRG

one then gets

FN 0 (K0) = FN (K) ; (138)

from which the critical �xed point Kc = K0 = K is

obtained, as well as the thermal exponent �, whereas

the corresponding magnetic exponent is given by

`yH =

�
�N 0

�N

���+�
GN (Kc)

GN 0 (Kc)
: (139)

It is apparent that although the anomaly coe�cients are

based on the classical values �� and �, non-classical

exponents are extracted from the linearization of the

recursion relation (138) around the �xed point. This

approach gives quite good results for the Ising model

as well as for geometrical phase transitions [205], and

can also be extended by using the e�ective �eld the-

ory through the use of Callen-Suzuki identity [208]. It

is also veri�ed that the larger the value of N and N 0,

the better the approximation since more uctuations

are included in the mean �eld calculations within each

cluster.

Just to mention, another approach, used in a dif-

ferent context, is the density matrix renormalization

group [209, 210] which gives accurate numerical re-

sults in studying one-dimensional quantum lattice mod-

els [211], the two-dimensional Ising model [212] and

strongly correlated electron systems [213]. Neverthe-

less, it is clear that other phenomenological renormal-

ization group proposals can still be done by exploiting

relation (10) for quantities where � is known in the in-

�nite system.

Concerning the present schemes there are still some

open problems whose study would be natural exten-

sions of the methods discussed herein. Among them,

for instance, we have:

(i) there is no uni�ed approach (as in the MFRG

case) to the SBMFRG (and its corner �eld partner) in

order to get complete ux diagrams for models with

more than one Hamiltonian parameter space. In fact,

just for the Ashkin-Teller model a ow diagram in

the Hamiltonian parameter space has been obtained

through the SBMFRG [64];

(ii) there is also a lack of a SBMFRG scheme to

treat critical dynamics by considering three clusters.

Only the two cluster approach has been implemented

in the MFRG to dynamics;

(iii) it would be interesting to extend the EFRG

procedure to account for obtaining ow diagrams;

(iv) ow diagrams in more than two Hamiltonian

parameter space has not yet been considered by using

neither the MFRG nor the FSSRG approach;

(v) �nally, Table IX shows roughly a picture of the

models treated by the MFRG approach presented in

sections III-V. It is also presented the applications of

the other procedures discussed herein. So, besides new

systems to be treated and studied from the present ap-

proaches, all the lacunae in Table IX are straight exten-

sions to be done on this subject. Perhaps, some readers

will �nd it easy to readily �ll in some gaps.

Table VIII. Critical temperature and thermal critical exponent for the Ising model according to the FSSRG. The
�gures for N = 4096 and N 0 = 1024 are from Monte Carlo simulations with the parenthesis indicating the �rst
uncertain digit, according to statistical uctuations [1].

d=2 d=3
N;N 0 Kc � N;N 0 Kc �
4,2 0.473 0.905 8,2 0.225 1.052
16,4 0.432 1.053

4096,1024 0.440(8) 1.00(0)
0:4407[2] 1 [2] 0:222[3] 0.63 [4]

[1]Data from reference [28].
[2]Refs. [34, 35].
[3]Refs. [37, 38, 39, 40].
[4]Refs. [38, 39, 40, 41].
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Table IX. Some models studied by means of the methods described in the text (indicated by \x").

model MFRG EFRG FSSRG NMFRG
geometrical x

Classical (static)
pure Ising like x x x x

random Ising like x x x x
surface critical x x
spin-glass x

random-�elds x
XY and Heisenberg x x

Ashkin-Teller x x
ANNNI x

mixed spin x
Z(q) symmetric spin x
random D-vector x

q-state clock spin-glass x
Potts x x

Blume-Capel x x
lattice gas x

liquid crystal x
Tsallis Statistics x

Quantum (static)
pure and random transverse Ising x x

anisotropic Heisenberg x x
random-mixture x

Dzyaloshinskii-Moryia x
granular superconductors x

Dynamic
Ising like x x
Potts x

contact-process x
surface critical x
quantum spin x

cellular automata x

Acknowledgements

The authors would like to thank J. Ricardo de

Souza, P. M. C. de Oliveira, J. Kamphorst Leal da Silva

and J. G. Moreira for valuable discussions. Financial

support from CNPq, FINEP, CAPES and FAPEMIG

(Brazilian Agencies) is also gratefully acknowledged.

References

[1] K. G. Wilson, Renormalization group and critical phe-
nomena. I. Renormalization group and Kadano� scal-
ing picture, Phys. Rev. B 4, 3174 (1971); Renormal-
ization group and critical phenomena. II. Phase-space
cell analysis at critical behavior, ibidem 3184.

[2] K. G. Wilson, The renormalization group, Rev. Mod.
Phys. 773 47, (1975); see also Problems in physics with
many scales of length, Sc. Am. 241, 140 (1979).

[3] For a review, see for example, Bambi Hu, Introduction
to real-space renormalization group methods in critical
and chaotic problems, Phys. Rep. 91, 233 (1982).

[4] A.-L. Barabasi and H. E. Stanley, in Fractal Concepts

in Surface Growth, Cambridge (1995).

[5] H. Saleur, C. G. Sammis and D. Sornette, Renormal-
ization group of earthquakes, Nonlinear Processes Geo-
phys. 3, 102 (1996).

[6] L. P. Kadano�, Scaling laws from Ising models near Tc,
Physics 2, 263 (1966).

[7] K. G. Wilson and M. E. Fisher, Critical exponents in
3.99 dimensions, Phys. Rev. Lett. 28, 240 (1972).

[8] E. Br�ezin, J. C. Le Guilou and J. Zinn-Justin, Field
theoretical approach to critical phenomena, in Phase

Transitions and Critical Phenomena, vol. 6 (London;
Academic) ed C. Domb and M. S. Green (1976).

[9] D. J. Wallace and R. K. P. Zia, The renormalization
group approach to scaling in physics, Rep. Prog. Phys.
41, 1 (1978).



Brazilian Journal of Physics, vol. 29, no. 3, September, 1999 605

[10] Th. Niemeijer and J. M. J. van Leeuwen, Wilson the-
ory for spin systems on triangular lattice, Phys. Rev.
Lett. 31, 1411 (1973). See also Renormalization the-
ory for Ising-like spin systems, in Phase Transition and

Critical Phenomena, vol. 6 (London, Academic) ed. C.
Domb and M. S. Green (1976).

[11] See, for instance, T. W. Burkhardt and J. M. J.
van Leeuwen, eds., in Real Space Renormalization

(Springer, Berlin, 1982).

[12] B. B. Mandelbrot, The Fractal Geometry of Nature, W.
H. Freeman, San Francisco, (1982).

[13] D. Sornette, Discrete scale invariance and complex di-
mensions, Phys. Rep. 297, 239 (1998).

[14] J. M. Yeomans, in Statistical Mechanics of Phase Tran-

sition, (Oxford, Clarendon Press, 1992).

[15] H. J. Maris and L. P. Kadano�, Teaching the renor-
malization group, Am. J. Phys. 46, 652 (1978).

[16] A. A. Migdal, Zh. Eksp. Fiz. 69, 810 and 1457 (1975);
A. A. Migdal, Phase transitions in gauge and spin lat-
tice systems, Sov. Phys. - JETP 42, 743 (1976); L. P.
Kadano�, Notes on Migdal's recursion formulas, Ann.
Phys., NY 100, 359 (1976).

[17] R. H. Swendsen, Monte Carlo renormalization group,
Phys. Rev. Lett. 42, 859 (1979); R. H. Swendsen,
Monte Carlo renormalization group studies of the d = 2
Ising model, Phys. Rev. B 20, 2080 (1979).

[18] C. Tsallis, A. M. Mariz, A. L. Stella, L. R. da Silva,
Criticality of the discrete N -vector ferromagnet in pla-
nar self-dual lattices, J. Phys. A 23, 329 (1990).

[19] M.P. Nightingale, Scaling theory and �nite systems,
Physica 83A, 561 (1976).

[20] see R. H. Swendsen, in Real Space Renormalization

T. W. Burkhardt and J. M. J. van Leeuwen, eds.,
(Springer, Berlin, 1982).

[21] C. Tsallis and A. C. N. de Magalh~aes, Pure and random
Potts-like models: real space renormalization group ap-
proach, Phys. Rep. 268, 305 (1996).

[22] See, for example, J. C. Xavier, F. C. Alcaraz. D. Pen~a
Lara and J. A. Plascak, The critical behavior of the
spin-3/2 Blume-Capel model in two dimensions, Phys.
Rev. B 57, 11575 (1998).

[23] B. Widom, Equation of state in the neighborhood of
the critical point, J. Chem. Phys. 43, 3898 (1965).

[24] M. E. Fisher, in Proceedings of the International School
Enrico Fermi, course LI, Critical Phenomena, M. S.
Green, ed., Varenna, Italy (Academic Press, New York,
1971). See also M. E. Fisher and M. N. Barber, Scaling
theory for �nite-size e�ects in the critical region, Phys.
Rev. Lett. 28, 1516 (1972).

[25] M. N. Barber, Finite size scaling, in Phase Transition

and Critical Phenomena, vol. 8 (London, Academic)
ed. C. Domb and J. L. Lebowitz (1983).

[26] R. R. dos Santos and L. Sneddon, Finite-size scaling
transformations, Phys. Rev. B 23, 3541 (1981).

[27] J. O. Indekeu, A. Maritan and A. L. Stella, Renormal-
ization group recursions by mean-�eld approximations,
J. Phys. A 15, L291 (1982).

[28] P. M. C. de Oliveira, Finite size scaling renormalization
group, Europhys. Lett. 20, 621 (1992).

[29] P. M. C. de Oliveira, RG based only on �nite size scal-
ing, Physica A 205, 101 (1994).

[30] J. M. Figueiredo Neto, S. M. Moss de Oliveira and
P. M. C. de Oliveira, Finite size scaling RG: detailed
description and applications to diluted Ising systems,
Physica A 206, 463 (1994).

[31] M. P. Nightingale, Transfer matrix, phase transitions,
and critical phenomena: numerical methods and ap-
plications, in Finite Size Scaling and Numerical Simu-

lations of Statistical Systems, ed. V. Privman (World
Scienti�c, Singapore, 1990).

[32] K. Croes and J. O. Indekeu, Mean-�eld renormaliza-
tion group: Bibliography and new applications using
large clusters, Mod. Phys. Lett. B (Singapore) 7, 699
(1993).

[33] H. A. Bethe, Statistical theory of superlattices, Proc.
Roy. Soc. (London) A150, 552 (1935).

[34] L. Onsager, A two-dimensional model with an order-
disorder transition, Phys. Rev. 65, 117 (1944).

[35] R. J. Baxter, Exactly Solved Models in Statistical Me-

chanics (Academic: London 1982).

[36] K. Binder, Critical behavior at surfaces, in Phase Tran-
sitions and Critical Phenomena, eds. C. Domb and J.
L. Lebowitz, vol. 8, (Academic, London, 1983).

[37] C. Domb, Ising model, in Phase Transitions and Crit-

ical Phenomena, eds. C. Domb and M. S. Green, Vol.
3, (Academic, London, 1974).

[38] D. P. Landau, Computer simulation studies of critical
phenomena, Physica A 205, 41 (1994).

[39] H. W. J. Bloete, E. Luijten and J. R. Heringa, Ising
universality in three dimensions: a Monte Carlo study,
J. Phys. A 28, 6289 (1995).

[40] A. L. Tapalov and H. W. J. Bloete, The magnetization
of the 3D Ising model, J. Phys. A 29, 5727 (1996).

[41] J. C. Le Guillou and J. Zinn-Juntin, Critical exponents
from �eld theory, Phys. Rev. B 21, 3976 (1980).

[42] D. Stau�er and A. Aharony, in Introduction to Perco-

lation Theory (Taylor and Francis, London) second ed.
(1992).

[43] K. De'Bell, Mean �eld renormalization group transfor-
mation for geometric phase transitions, J. Phys. A 16,
1279 (1983).

[44] K. De'Bell and T. Lookman, Mean �eld renormaliza-
tion group calculations for directed percolation on the
square lattice, J. Phys. A 17, 2733 (1984).

[45] S. Sarbach, Phase diagram of random spin systems: II.
Bethe approximation, J. Phys. C 13, 5059 (1980).

[46] J. W. Essam, Percolation theory, Rep. Prog. Phys. 43,
833 (1980).

[47] B. K. Chakrabarti and S. S. Manna, Critical behav-
ior of directed self-avoiding walks, J. Phys. A 16, L113
(1983).



606 J. A. Plascak et.al.

[48] A. das Neves, J. Kamphorst Leal da Silva and J. A.
Plascak, Some exact results from the mean �eld renor-
malization group, Physica A 189, 367 (1992).

[49] J. O. Indekeu, A. Maritan and A. L. Stella, Mean �eld
renormalization group: uni�ed approach to bulk and
surface critical behavior, Phys. Rev. B 35, 305 (1987).

[50] P. A. Slotte, Length scaling in mean �eld renormaliza-
tion group, J. Phys. A 20, L177 (1987).

[51] J. O. Indekeu and G. Menu, Corner critical exponents
from the mean-�eld renormalization group, J. Phys. A
21, L523 (1988).

[52] J. H. Cardy, Critical behavior at an edge, J. Phys. A
16, 3617 (1983).

[53] M. Blume, Theory of �rst-order magnetic phase change
in UO2, Phys. Rev. 141, 517 (1966).

[54] H. W. Capel, On the possibility of �rst-order phase
transition in Ising systems of triplet ions with zero �eld
splitting. I. Physica 32, 966 (1966); II. ibidem 33, 295
(1967); III. ibidem 37, 423 (1967).

[55] M. Droz, A. Maritan and A. L. Stella, Mean �eld like
renormalization group for disordered systems, Phys.
Lett. A 92, 287 (1982).

[56] J. A. Plascak, Mean �eld renormalization group for the
disordered transverse Ising model, J. Phys. A 17, L279
(1984).

[57] P. A. Slotte, Mean-�eld renormalization group trans-
formation for the triangular Ising antiferromagnet, J.
Phys. A 17, L85 (1984).
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