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Stochastic models with irreversible elementary processes are introduced, and their macroscopic
behaviors in the in�nite-time and in�nite-volume limits are studied extensively, in order to discuss
nonequilibrium stationary states and phase transitions. The Domany-Kinzel model is a typical
example of such an irreversible particle system. We �rst review this model, and explain that in
a certain parameter region, the nonequilibrium phase transitions it exhibits can be identi�ed with
directed percolation transitions on the spatio-temporal plane. We then introduce an interacting
particle system with particle conservation called friendly walkers (FW). It is shown that the m = 0
limit of the correlation function of m friendly walkers gives the correlation function of the Domany-
Kinzel model, if we choose the parameters appropriately. We show that FW can be considered as
a model of interfacial wetting transitions, and that the phase transitions and critical phenomena
of FW can be studied using Fisher's theory of phase transitions in linear systems. The FW model
may be the key to constructing a uni�ed theory of directed percolation transitions and wetting
transitions. Descriptions of FW as a model of interacting vicious walkers and as a vertex model are
also given.

I Introduction

Understanding irreversibility in macroscopic systems,

based on reversible processes of elementary particles,

is one of the motivations of statistical mechanics. In

the usual equilibrium statistical mechanics, however, we

consider statistically stationary states (invariant mea-

sures) in which detailed balance between each elemen-

tary process and the corresponding time-reversed pro-

cess is satis�ed. One way to drive the system out of

equilibrium is to impose an external force or �eld and

observe the response of the system, or the relaxation

back to the equilibrium state after turning o� the ex-

ternal force. Another way to study irreversibility is

through coarse-grained modeling: We start at a meso-

scopic level with elementary processes which are them-

selves irreversible, and construct a macroscopic system

from them [1].

A typical example of models with irreversible el-

ementary processes is the contact process, which is

a model of the spread of infection of a disease. In

this model system, the elementary processes are (i)

spread of a disease from an infected individual to one

of its healthy neighbors and (ii) recovery from infec-

tion. These processes are irreversible and detailed bal-

ance does not hold at all. When an infection rate is

low, the disease will be exterminated, while when it is

high, coexistence of healthy individuals and infected

ones can be observed if the system is large enough.

Such a change of state becomes a sharp transition in

the double limits of in�nite-time and in�nite-volume

(thermodynamic limit), and de�nes a nonequilibrium

phase transition at a certain critical value of the infec-

tion rate. Taking the in�nite-time and in�nite-volume

limits is necessary to have a mathematically well de-

�ned macroscopic system constructed from mesoscopic

levels. The supercritical phase in which healthy and

infected individuals coexist is a typical example of a

nonequilibrium stationary state. Detailed descriptions

of such nonequilibrium systems will be one of the start-

ing points to construct a general theory of nonequilib-

rium statistical mechanics.

In the present paper, we consider the discrete-

time version of contact processes, which is called the

Domany-Kinzel model [2] and a related process called

friendly walkers (FW) [3], and discuss two kinds of

phase transitions, directed percolation (DP) transitions

and interfacial wetting transitions. In Section II we de-

�ne the Domany-Kinzel model and give its percolation

representation on the spatio-temporal plane in a cer-
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tain parameter region. Using this representation, we

can easily understand that nonequilibrium phase tran-

sitions in the Domany-Kinzel model (as well as the con-

tact process) can be identi�ed with the DP transitions

in two dimensions. Though DP is a famous unsolved

model even in two dimensions, rigorous lower and up-

per bounds of the critical line on a phase diagram have

been demonstrated; they are reviewed there. Then we

introduce FW with two parameters in Section III. The

Domany-Kinzel model involves creation and annihila-

tion of particles, while the number of walkers is con-

served in FW. We can prove, however, however, the

m = 0 limit of the correlation function of m friendly

walkers gives the correlation function of the Domany-

Kinzel model, when we impose a certain relation among

parameters. In Section IV we show that, if we iden-

tify the spatio-temporal plane on which trajectories of

FW are described with two-dimensional space, the m

FW can be regarded as a model of interfacial wetting

transitions in a two-dimensional (m+1)-phase systems,

where FW trajectories describe the con�gurations of

interfaces; Fisher's theory of phase transitions in such

systems [4] can be applied. The generating functions

of two FW can be evaluated exactly by a combinato-

rial method. Combining this exact result and Fisher's

theory, the critical line and critical exponents are deter-

mined for m = 2. Two-dimensional wetting transitions

are usually modelled by vicious walkers [4, 5, 6]. Sec-

tion V is devoted to the possible description of FW as

interacting vicious walkers and as a vertex model in two

dimensions.

At the end of Section III we claim that the Domany-

Kinzel model can be regarded as a \grand-canonical"

ensemble of FW in a sense. This new point of view lets

us consider the possibility of applying standard meth-

ods of statistical mechanics, in the canonical ensemble,

to the m-FW problem. Using the exactly solved case,

m = 2, we demonstrate in Section V that the asymp-

totic form of the partition function of the vertex model,

which is equivalent to two FW, can be determined by

the Bethe ansatz method. Generalization of the present

demonstration form � 3 is a challenging open problem.

II Directed Percolation (DP)
Transitions in Irreversible
Stochastic Models

II.1 The Domany-Kinzel Model

Domany and Kinzel [2,7] introduced a class of

discrete-time processes �t on the 1+1 dimensional

spatio-temporal plane

V = f(x; t) 2 Z2 : x+ t = even; t = 0; 1; 2; � � �g; (1)

where Z = f� � � ;�2;�1; 0; 1; 2; � � �g. Their models are

stochastic cellular automata, which simulate creation

and annihilation processes of particles caused by short-

ranged interactions among them [8]. Each site x 2 V

exists in one of two states, 0 (vacant) or 1 (occupied

by a particle). Let Ze = f� � � ;�4;�2; 0; 2; 4; � � �g and

Zo = f� � � ;�3;�1; 1; 3; � � �g; the state at time t= even

(resp. odd) is given by the set �t of sites occupied by

particles �t � Ze (resp. Zo). The time evolution of

state �t is given by the following stochastic rule,

Prob(x 2 �t+1j�t) = f(j�t \ fx� 1; x+ 1gj); (2)

where Prob(!1j!2) is the conditional probability of !1
given !2, jAj denotes the number of sites included in a

set A, and a function f is parameterized by p1 and p2
as

f(N) =

8<
:

0 N = 0
p1 N = 1
p2 N = 2

(3)

with 0 � p1; p2 � 1. Fig. 1(a) shows the elementary

processes. We assume that the initial state is a �nite

set A � Ze, jAj < 1, and write the process starting

from A as �At . In particular, when A is a singleton

fyg; y 2 Ze, we simply write �yt . For example, �0t is the

process starting from only one particle at the origin.

Since f(0) = 0, the state in which all sites are vacant

is an absorbing state and the process is irreversible.

Figure 1. (a) The elementary processes of the Domany-
Kinzel model �t. The full (resp. open) denote sites occu-
pied by particles (resp. empty site). (b) The gadgets for
the directed percolation representation.

The Domany-Kinzel model can be regarded as the

discrete-time version of the contact process. The con-

tact process is a continuous-time stochastic process on a
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lattice (an interacting particle system) [9-11,1,12]. The

state at time t is given by the set �t 2 Z of lattice sites

which are occupied by particles. The system evolves as

follows:

(i) if x 2 �t, then x becomes vacant at rate 1,

(ii) if x =2 �t, then x becomes occupied at rate

g(j�t \ fx� 1; x+ 1gj) with

g(N) =

8<
:

0 N = 0
� N = 1
�� N = 2

(4)

where � and � are non-negative parameters [13-15]. Fig.

2 illustrates the above elementary processes. The con-

tact process is a model of spread of an infectious disease

in one dimension. An individual at x 2 Z is considered

infected if x 2 �t, and healthy if x =2 �t. The param-

eter � is the infection rate in the case that one of the

neighbors is infected. In the case where both neighbors

are infected the infection rate is given by � multiplied

by �. The process with � = 2 is usually called the

basic contact process, and was �rst studied by Harris

[16]. The process with � = 1 is called the threshold

contact process by Liggett [17]. The basic contact pro-

cess is equivalent to the Reggeon quantum spin model

in high-energy physics [18-20]. Dickman and Burschka

[21] studied a nonequilibrium lattice model as a simpli-

�ed version of the model for catalytic surfaces proposed

by Zi� et al [22]. Their model is called the A model but

is equivalent to the threshold contact process. See also

Dickman and Tom�e [23] for other related models.

Figure 2. The elementary processes of the contact process.
The full circles denote particles and the open circles denote
vacancies.

The contact process exhibits a nonequilibrium phase

transition from the extinction phase to the survival

phase upon increasing the infection rate �, for each �.

The former phase, in which unique stationary state is

the trivial absorbing state, represents the extermina-

tion of disease, while in the latter phase the process

has a nontrivial, nonequilibrium stationary state, which

represents the coexistence of infected and healthy indi-

viduals. The phase diagram of the contact process was

studied in [14,15,24]. The Domany-Kinzel model shows

nonequilibrium phase transitions which are similar to

the transitions of the contact process.

II.2 DP Transitions

In the parameter region

p1 � p2 � 2p1; (5)

we see direct correspondence between the phase tran-

sitions of the Domany-Kinzel model and directed per-

colation transitions [2,7,10,25]. As shown in Fig.1 (b),

at each triangle of three sites (x � 1; t); (x + 1; t) and

(x; t + 1), the following `gadgets' are placed indepen-

dently: Two arrows with probability p, one arrow with

probability q (to the northeast and to the northwest,

respectively), and nothing with probability 1� p� 2q.

The arrow means that the directed bond from the site

at the bottom of the arrow to the site at the top of

the arrow is open. If there is a sequence (x0; t) =

(x; t); (x1; t + 1); � � � ; (xn; t + n) = (y; t + n) (n � 1)

of sites in V such that for each 0 � i � n� 1 the bond

from (xi; t+ i) to (xi+1; t+ i+1) is open, this sequence

is called an open path from (x; t) to (y; t + n) and we

write (x; t) �! (y; t + n). Then for a set A � Ze we

de�ne a set �̂At by

�̂At =
[

x:x2A

fy : (x; 0) �! (y; t)g: (6)

It is easy to con�rm that if and only if

p1 = p+ q and p2 = p+ 2q; (7)

the process �At that evolves by (2) with (3) from the

initial state A � Ze is equal to �̂
A
t . Since we must have

0 � p; q � 1 and 0 � 1 � p� 2q � 1, this directed per-

colation representation of the process is possible if and

only if (5) is satis�ed.

In the parameter region (5), the Domany-Kinzel

model includes the following percolation models as spe-

cial cases.

directed site percolation (DSP) with site con-

centration �

p1 = p2 = � (p = �; q = 0) (8)

directed bond percolation (DBP) with bond

concentration �

p1 = �; p2 = �(2� �) (p = �2; q = �(1� �)) (9)

directed site-bond percolation with site

(resp. bond) concentration � (resp. �)
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p1 = ��; p2 = ��(2� �) (p = ��2; q = ��(1� �))

(10)

When (5) is satis�ed, we can de�ne a percolation

transition for the Domany-Kinzel model. Consider the

probability

�t(p1; p2) = Prob(�0t 6= ;): (11)

In the parameter region (5), since the percolation rep-

resentation ensures that it is non-increasing in t, the

in�nite-time limit is well-de�ned,

�(p1; p2) = lim
t!1

�t(p1; p2): (12)

(It is easy to prove that �(p1; p2) = 0 for 0 � p1 � 1=2,

0 � p2 � 1 [10]. ) For each 0 � p2 � 1, �(p1; p2)

is a non-decreasing function of p1, if p1 � p2, and we

can uniquely de�ne the critical value p1c(p2) by using

�(p1; p2) as an order parameter of the percolation tran-

sition as

p1c(p2) = supf0 � p1 � 1 : �(p1; p2) = 0g
= inff0 � p1 � 1 : �(p1; p2) > 0g: (13)

We call �t(p1; p2) the t-step percolation probability and

�(p1; p2) the percolation probability of the Domany-

Kinzel model with parameters p1; p2. In the region (5),

p1 = p1c(p2), 0 � p2 � 1, gives a critical line on the

(p1; p2)-phase diagram. The p1 coordinates of the cross-

ing points of this critical line with the lines p2 = p1 and

p2 = p1(2� p1) give the critical concentrations �c and

�c of DSP and DBP, respectively.

Rigorous lower and upper bounds for the critical

line (13) were calculated in the region (5) by Katori

and Tsukahara [25] and by Liggett [26], respectively.

Let

c

B`(p1; p2) = f1� p1(p2 � p1)gf1� (p2 � p1)g
� �1� f1� (2p1 � p2)gp1 � (p2 � p1)

2(1� p1)
�
b1(p1; p2)

+fp2 � p1(2� p1)gp21(p2 � 1)(p1 � 1)2b2(p1; p2) (14)

with

b1(p1; p2) = 2p61 � (p2 + 2)p51 � (p22 � 2p2 � 2)p41 + (3p22 � 3p2 � 1)p31

�4p2(p2 � 1)p21 + (3p2 � 1)(p2 � 1)p1 � (p2 � 1)2; (15)

b2(p1; p2) = (p2 + 1)p61 � (3p22 + 3p2 � 1)p51 + p22(3p2 + 4)p41

�(p42 + 3p32 + 4p22 � p2 � 2)p31 + (p42 + 4p32 � p22 � 2p2 + 1)p21

�(p2 � 1)(p32 + p22 + 2p2 + 1)p1 + (p2 + 1)(p2 � 1)2; (16)

and

Bu(p1; p2) = p2 � 4p1(1� p1): (17)

De�ne

p1`(p2) = supfp1 : p2=2 � p1 � p2 and B`(p1; p2) < 0g
p1u(p2) = supfp1 : p2=2 � p1 � p2 and Bu(p1; p2) > 0g: (18)

Then [25,26]

d

p1`(p2) � p1c(p2) � p1u(p2): (19)

For the DSP (8) and the DBP (9) cases, (19) gives

0:688 � �c � 3=4; 0:626 � �c � 2=3; (20)

where the lower bound of �c was originally given by

Dhar [27]. The most reliable values for �c and �c es-

timated so far are given by Jensen and Guttmann [28]

by the series expansion method as �c = 0:705485 �
0:000005 and �c = 0:6447006� 0:0000010.

Fig. 9 in [25] shows the lower and upper bounds in

the (p1; p2)-plane. We can see that limp2!1 p1`(p2) =
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limp2!1 p1u(p2) = 1=2 and then (19) determines

p1c(1) = 1=2. Exact values of p1c(p2) are not known

except for this special case p2 = 1. Though we do not

know the exact location of the critical line, the bounds

(19) ensure that both extinction phase (non-percolation

phase) and the survival phase (percolation phase) are

non-empty in the phase diagram, and we certainly ob-

serve directed percolation transitions in the region (5)

of the Domany-Kinzel model.

III Friendly Walkers (FW)

III.1 De�nition of FW

Let us consider an enumeration problem of weighted

paths of m(� 1) walkers on Z with discrete time. At

time t = 0, all walkers are at the origin and they move

simultaneously in time. At each time step t ! t + 1,

each walker steps either to the right or left nearest-

neighbor site with equal probability. Two or more walk-

ers can occupy the same site on Z and they can walk

together. We call a set of walkers which occupy the

same site a group. (When there is only one walker at a

site, the group is a singleton.) We label the m walkers

by integers 1,2, � � �m and the location of the i-th walker

at time s is written as xi(s). We impose the following

non-crossing condition.

Non-Crossing Condition: For any s � 0,

x1(s) � x2(s) � � � � � xm(s): (21)

We introduce two parameters p � 0 and � � 0; the

weights of the movement of the m walkers are deter-

mined as follows.

Weight pss: At each time 1 � s � t,

let ss be the number of groups (i.e. ss =

jfx1(s); x2(s); � � � ; xm(s)gj). Then we include a factor

pss in the weight.

Weight � `s : At each time 1 � s � t, let `s be the

number of distinct sites at which two di�erent groups

of walkers join together at that time, the two groups

having been separate at the previous time. We include

a factor � `s in the weight.

When two or more walkers walk together along the

same path, ss remains small, but if they tend to walk

separately, then ss increases and the weight pss de-

creases, since 0 � p � 1. This shows that the walk-

ers prefer to work together than walk alone. For this

reason, they are called friendly walkers (FW) [3,29,30].

Fig. 3 (a) shows an example of trajectories of the three

(m = 3) FW up to t = 17.

III.2 Generating Functions of FW

It should be noted that the set of sites (x; t) on Z2,

on which walkers can pass up to time t � 0, de�nes a

downward-pointing triangular region in the lattice

Vt = f(x; s) 2 Z2 : x+ s = even; 0 � s � tg: (22)

The trajectory of one walker is expressed by a path,

which is a sequence of successive bonds, and a set of

trajectories of m walkers is a union of such paths.

We consider a union of paths, each of which starts

from the origin (0; 0) and terminates at one of the

sites in f(x1; t); (x2; t); � � � ; (xk; t)g, where x1 < x2 <

� � � < xk . Such a union of paths makes a graph g

with gj0 = f0g and gjt = fx1; x2; � � � ; xkg. We de�ne

�t(0;x1; x2; � � � ; xk) to be the set of all such graphs.

Each graph g 2 �t(0;x1; x2; � � � ; xk) is characterized by

the following quantities,

s(g) = the number of sites in g ;

b(g) = the number of bonds in g ;

`(g) = the number of loops in g : (23)

By de�nition, s(g) =
Pt
s=1 ss and `(g) =

Pt
s=2 `s;

where ss and `s are powers of weights p
ss and � `s for

the s-th step of the FW.

For a given graph g 2 �t(0;x1; x2; � � � ; xk), how-

ever, there may be many di�erent realizations ofm FW,

which correspond to the same graph g. Let c(g;m) be

the number of the distinct realizations of m FW cor-

responding to graph g. The (k + 1)-point generating

function of m friendly walkers is de�ned as

c

Zt(p; � ; 0;x1; x2; � � � ; xk;m) =
X

g:g2�t(0;x1;x2;���;xk)

c(g;m)� `(g)ps(g)�1: (24)

Then we de�ne the generating function of m FW as

Zt(p; � ;m) =
X
k:k�1

X
fxig:x1<x2<���<xk

Zt(p; � ; 0;x1; x2; � � � ; xk ;m): (25)
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III.3 Relation between DP and FW

De�ne the (k + 1)-point correlation function

Ct(p1; p2; 0;x1; x2; � � � ; xk) = Prob(�0t (xi) = 1 for 1 � i � k) (26)

for the Domany-Kinzel model, where fx1; x2; � � � ; xkg � Ze (resp. Zo) for t=even (resp. odd), and we assume that

x1 < x2 < � � � < xk. Arrowsmith and Essam [31] proved the following formula for directed site-bond percolation

(10),

Ct(��; ��(2 � �); 0;x1; x2; � � � ; xk) =
X

g:g2�t(0;x1;x2;���;xk)

(�1)`(g)�s(g)�1�b(g); (27)

where � and � are the site and bond concentrations, respectively. This is called the low-density expansion formula,

since the right-hand side is a power series with respect to the concentrations � and �; it has been used for calculating

series expansions for the pair-connectedness functions for directed percolation models [32, 33]. This formula can be

generalized for the Domany-Kinzel model as

Ct(p1; p2; 0;x1; x2; � � � ; xk) =
X

g:g2�t(0;x1;x2;���;xk)

(�1)`(g)
�
2p1 � p2

p1

�`(g)
p
s(g)�1
1 : (28)

The proof is given in [34].

So far we have assumed thatm is an integer, but we can allowm be any real number, since c(g;m) is a polynomial

in m and the generating functions of the m FW depend on m only through c(g;m). Cardy and Colaiori [29] proved

lim
m!0

c(g;m) = (�1)k�1+`(g); (29)

for g 2 �t(0;x1; x2; � � � ; xk). Then we have

Ct(p1; p2; 0;x1; x2; � � � ; xk) = lim
m!0

(�1)k�1Zt(p1; 2p1 � p2
p1

; 0;x1; x2; � � � ; xk;m): (30)

Let �t(p1; p2) and Zt(p; � ;m) be the t-step percolation probability of the Domany-Kinzel model de�ned by (11)

and the generating function of the m FW de�ned by (25). By the principle of inclusion and exclusion

�t(p1; p2) =
X
k:k�1

(�1)k�1
X

fxig:x1<x2<���<xk

Ct(p1; p2; 0;x1; x2; � � � ; xk); (31)

we can conclude that

d

�t(p1; p2) = lim
m!0

Zt(p1;
2p1 � p2

p1
;m): (32)

By the de�nition of c(g;m), if m is �xed as a non-

zero �nite integer, c(g;m) = 0 for graphs having m+1

or more sites on a constant-time line (horizontal line)

in Vt. This means that Zt(p; � ; 0;x1; x2; � � � ; xk;m) is

a partial sum of the graphs g in �t(0;x1; x2; � � � ; xk).
On the other hand, (29) shows that c(g; 0) 6= 0 for

any g and the formula (28) asserts that the total sum-

mation of all graphs g 2 �t(0;x1; x2; � � � ; xk) gives

the (k + 1)-point correlation function for the Domany-

Kinzel model. This is reason why we can obtain the

Domany-Kinzel model, in which particles are created

and annihilated, as a limit of FW, in which particles

are conserved. If we consider the m FW as a canon-

ical system with a �xed number of particles m, then

we can say that the Domany-Kinzel model is a \grand-

canonical" ensemble of FW.

IV Wetting Transitions

IV.1 Fisher's Theory of Phase Transi-
tions in Linear Systems

The relations (30) and (32) imply that the Domany-

Kinzel model can be considered as the m = 0 limit

of the m-FW problem. As explained in Section II,

the Domany-Kinzel model exhibits DP-like transitions.

What are the corresponding phase transitions in sys-

tems of m FW ? Since the order parameter (12) of the

DP transition is de�ned as a t!1 limit of �t(p1; p2),
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the asymptote of Zt(p; � ;m) for t� 1 should be studied

in the m FW.

In Fig.3 (a), which shows an example of a set of

trajectories of 3-FW, we can classify the time intervals

into two types: The intervals in which all walkers walk

together (i.e. there is only one group), and those in

which they are separated into two or more groups. If

we ignore the details of the ways of walking in the latter

intervals, the set of trajectories can be represented by

a simple linear system in the form of a \necklace" as

shown in Fig.3 (b).

Figure 3. (a) An example of trajectories of three (m = 3)
FW up to t = 17. (b) A linear system in the form of a
\necklace".

Fisher discussed a simple but general mathematical

mechanism which makes such linear systems to display

phase transitions [4]. In his paper, many possible appli-

cations of his theory to physical phenomena are given.

We select one of them here, an interfacial wetting tran-

sition in a two-dimensional (m+1)-phase system. Fig.

4 (a) illustrates the system, in which the B1; � � � ; Bm�1
phases are con�ned between the bulk A and bulk C

phases. As a parameter (e.g., the temperature of the

system) is varied, the interface AjjC becomes wet by

intermediate phases B1; � � � ; Bm�1, that is , a wetting

transition occurs (Fig.4(b)). Now we borrow Fisher's

theory and discuss the phase transitions and critical

phenomena of the m FW.

Figure 4. A interfacial wetting transition from the (a) non-
wetting phase to the (b) wetting phase.

The reduced free energy per unit (time) length is

de�ned as

f(p; � ;m) = � lim
t!1

1

t
lnZt(p; � ;m): (33)

Fisher pointed out that an e�ective way to calculate f

is to introduce the grand generating function

G(p; � ;m; z) =

1X
t=0

ztZt(p; � ;m); (34)

where z is the activity-like variable. Then if

zmin(p; � ;m) is the positive real singularity of

G(p; � ;m; z) nearest the origin z = 0, then

f(p; � ;m) = ln zmin(p; � ;m): (35)

Here the singularity of G(p; �; ;m; z) will come from a

simple pole � 1=(zmin�z), or from a nonanalytic point,

such as a square-root branch point � pzmin � z.

For our FW system, the grand generating functions

are constructed as follows. First we de�ne sets of graphs

�
(k)
t (0) =

[
fxig:x1<x2<���<xk

�t(0;x1; x2; � � � ; xk) (36)

and

�t(0) =
[
k:k�1

�
(k)
t (0): (37)

Then (25) with (24) is rewritten as

Zt(p; � ;m) =
X

g:g2�t(0)

c(g;m)� `(g)ps(g)�1: (38)

In general we �nd a site, except the origin (0; 0), in a

graph g 2 �t(0), such that, if we delete that site, then
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the origin (0; 0) 2 Vt is disconnected from any site in

g \ f(x; t) : x 2 Zg. Such sites are called nodal points

[35].

In terms of the FW, the nodal points are the sites

(except the origin at t = 0) at which all m walkers form

a single group, (i.e., through which the trajectories of

all walkers must pass). De�ne

c

�Nt (0;x) = a set of all graphs in �t(0) which have only one

nodal point at (x; t) except at (0; 0), (39)

�
N(1)
t (0) =

[
x:x2Z

�Nt (0;x); (40)

�Nt (0) = a set of all graphs in �t(0) which have no nodal point

point except at (0; 0). (41)

The superscript N means non-nodal graphs. Then we introduce, for m � 2,

G1(p; � ;m; z) =

1X
t=2

zt
X

g:g2�
N(1)
t

(0)

c(g;m)� `(g)ps(g)�1 (42)

and

G2(p; � ;m; z) =

1X
t=1

zt
X

g:g2�N
t
(0)

c(g;m)� `(g)ps(g)�1: (43)

It should be noted that G1(p; � ;m; z) and G2(p; � ;m; z) are the partial generating functions for \beads" in the

middle and at the end of the \necklace" of Fig.3(b). The partial generating function for \string" parts of the

necklace is

G0(p; � ; z) =

1X
t=0

zt(2p)t

=
1

1� 2pz
: (44)

It is easy to con�rm that

G(p; � ;m; z) = G0 +G0G1G0 +G0G1G0G1G0 + � � �
+ G0G2 +G0G1G0G2 +G0G1G0G1G0G2 + � � � (45)

and for suÆciently small z,

G(p; � ;m; z) =
G0(p; � ; z)(1 +G2(p; � ;m; z))

1�G0(p; � ; z)G1(p; � ;m; z)
: (46)

The pole of G(p; � ;m; z) is determined by 1�G0(p; � ; z)G1(p; � ;m; z) = 0, that is,

G1(p; � ;m; z) = 1� 2pz: (47)

d

Since 2pz+G1(p; � ;m; z) is by de�nition increasing

in z (42), the equation (47) has at most one real root.

We can see that the root of (47) is smaller than the

pole of G0(p; � ; z), z0 = 1=(2p). We will assume that

the singularities of G2(p; � ;m; z) are equal to those of

G1(p; � ;m; z). (We can see this is the case for m = 2.)

We are interested in the wetting transition as illus-

trated by Fig.4. A local structure at the end of the

\necklace" described by G2(p; � ;m; z) will not a�ect

the global structure of \necklace" at least in the non-

wetting phase. Then the singularity of G(p; � ;m; z)

may be either a simple pole at the real root of (47),

or the positive real singularity of G1(p; � ;m; z). The
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problem is to determine which is smaller. If the order

of these two points on the real axis of z is changed as

the parameters change, the change of f(p; � ;m) may be

nonanalytic, and must correspond to a phase transition.

Fisher [4] considered the following possible forms of

G1(p; � ;m; z) in the vicinity of the singularity z1 = 1=w.

c

G1(p; � ;m; z) ' G1s

(1� wz)1� 
for  < 1 (48)

' G1s ln(1� wz)�1 for  = 1 (49)

' G1c �G1s(1� wz) �1 +G11(1� wz) + � � �
for  > 1; (50)

where

d

G1c = G1c(p; � ;m)

� G1(p; � ;m; 1=w) (51)

and G1s is the amplitude of the leading singularity. It

is concluded [4] that when  � 1, zmin = ef is always

given by the real root of (47) and there is no phase

transition. On the other hand, when  > 1, there is a

phase transition. We show in the next subsection that

the latter is the case for two friendly walkers (m = 2),

when we regard it as a model of interfacial wetting tran-

sitions.

IV.2 Wetting Transitions of the m = 2

FW

It is easy to calculate the grand generating functions

for two FW (m = 2) by the method of images [36, 4].

In particular, G1(p; � ; 2; z) is determined as

c

G1(p; � ; 2; z) = (p2z)�
1X
t=1

��
2(t� 1)

t� 1

�
�
�
2(t� 1)

t+ 1

��
(p2z)t�1 � (p�z)

= �pza(p2z); (52)

where a(x) is the generating function of the Catalan number [37]

a(x) =
1

2x

�
1� 2x�p1� 4x

�
: (53)

We can rewrite (52) as,

G1(p; � ; 2; z) =
�

4p
� �

2p
(1� 4p2z)1=2 +

�

4p
(1� 4p2z): (54)

Then the third case (50) is realized with

1

z1
= w = (2p)2 and  =

3

2
: (55)

d

It should be noted that a square-root branch-point

z1 = 1=w = 1=(2p)2 is a singular point but G1(p; � ; 2; z)

remains �nite as z ! z1� : G1c(p; � ; 2) = �=(4p) <1.

Now we determine the wetting transition point of

two FW (m = 2) following the theory of Fisher. First

we consider the special case in which � = 1. Fig. 5 (a)

shows y = G1(p; 1; 2; z) and y = 1 � 2pz as functions

of z for p = 0:6. The crossing point gives a root of the

equation (47), which is smaller than z1 = 1=(2�0:6)2 =
0:694 � � �. On the other hand, when p = 0:8, (47)

has no real root, as shown in Fig.5 (c). Figure 5 (b)

shows the critical case with p = pcw = 3=4. In this

case, a line y = 1 � 2pz goes through a critical point

(z1; G1c(p; 1; 2)) = (1=(2pcw)
2; 1=(4pcw)) = (4=9; 1=3).
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Then for the case � = 1, when p < 3=4, the reduced

free energy f is given by the root of (47) and the sys-

tem is non-wetting (the case of Fig.4 (a)), and when

p > 3=4, f = ln z1 = �2 ln(2p) and the system is wet-

ting (the case of Fig.4(b)). The wetting transition oc-

curs at p = 3=4. In the general case � � 0, we can

conclude the following.

�

4p
< 1� 1

2p
() wetting

�

4p
> 1� 1

2p
() non-wetting: (56)

For each � � 0, the critical value of p at which the

wetting transition occurs is given by

pcw(�) =
�

4
+

1

2
: (57)

For p < pcw the real root of (47), at which G(p; � ; 2; z)

has a simple pole, is given by

zpole(p; �) =
1

(2� �)2p2

h
(2� �)p� � + �

p
(� � 2)p+ 1

i
:

(58)

Since

zpole(p; �) � 1

(2p)2
' � 16

(� + 2)2�2
(pcw(�) � p)2 (59)

for 0 < pcw(�)�p� 1, we have the reduced free energy

in the form

f(p; � ; 2) = fr(p; 2) + fs(p; � ; 2) (60)

with a regular part

fr(p; 2) = �2 ln(2p) (61)

and a singular part

c

fs(p; � ; 2) =

(
� 4

�2
(pcw(�)� p)2 + � � � for p � pcw(�)

0 for p > pcw(�):
(62)

d

Figure 5. The curves y = G1(p; 1; 2; z) and lines y = 1�2pz
for (a) p = 0:6, (b) p = 3=4 and (c) p = 0:8.

If we de�ne the speci�c-heat critical exponent �
through fs � (pcw(�)� p)2��, we have

� = 0: (63)

Fisher gave a general scaling relation

� =
2 � 3

 � 1
; (64)

where  is the exponent in (48)-(50) [4].

The result (30) shows that if we set p = p1 and
� = (2p1 � p2)=p1, and take the m ! 0 limit, then
FW becomes the Domany-Kinzel model. Here we set
p = p1; � = (2p1 � p2)=p1 for the two FW (m = 2).
Fig. 6 shows the phase diagram of two FW in the
(p1; p2)-plane. The critical line (57) is now given by
p1 = p1cw(p2) with

p1cw(p2) =
1

2
+

1

2

p
1� p2: (65)

It should be noted that p1 = p1cw(p2) coincides with
the line p1 = p1u(p2) given by (18) with (17), which
gives the upper bound for the DP critical line of the
Domany-Kinzel model in the region p1 � p2 � 2p1 [26].
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Figure 6. The phase diagram of the two FW (m = 2) on
the (p1; p2)-phase diagram. The hatched region, p2 > 2p1,
should be ignored, since � < 0 there.

To close this section, we give an interpretation of
the results for two FW again from the viewpoint of the
wetting transition. When m = 2, the system is a two-
dimensional, three-phase system composed of A;B and

C phases (see Fig.4). If we write the surface tensions
of the AjB and BjC interfaces at temperature T as
�AB(T ) and �BC(T ), respectively, the regular part of
the reduced free energy may be written as

fr(p; 2) = (�AB(T ) + �BC(T ))=kBT: (66)

Comparing this with (61), we can put �AB(T ) =
�BC(T ) = �kBT ln(2p) or

2p = e��AB(T )=kBT = e��BC(T )=kBT : (67)

Therefore, changing the parameter p corresponds to
changing the temperature T of the system. On the
other hand, the parameter � can be regarded as an
activity associated with the end of the \beads" of B
phase. Let Tcw(�) be the critical temperature of wet-
ting transition corresponding to pcw(�) and �AC(T ) be
the surface tension between the bulk A and C phases.
Then (60)-(62) gives

c

�AC(T )

=

�
�AB(T ) + �BC(T )�A0(Tcw(�) � T )2 + � � � for T � Tcw(�)
�AB(T ) + �BC(T ) for T > Tcw(�)

(68)

d

with a constant A0. This description of interfacial wet-

ting transitions in two-dimensional 
uids is found in

[4].

V FW as an Interacting Vicious
Walkers and Vertex Model

V.1 Interacting Vicious Walkers

In this section, we consider the m FW with a con-

dition

� = p; (69)

which corresponds to DBP when we put p = p1,

� = (2p1 � p2)=p1 and m = 0. Using Euler's law

`(g) = b(g)� s(g) + 1, (38) becomes

Zt(p; p;m) =
X

g:g2�t(0)

c(g;m)pb(g): (70)

As shown in Fig. 7(a), we consider m FW, in which

all walkers start from the origin and the non-crossing

condition (21) has been imposed. For each set of tra-

jectories of m FW, we can make a set of trajectories

by shifting the i-th trajectory to the right by (i � 1)

lattice-units as shown in Fig. 7(b). Such a graph is

called a polymer brush with m branches [6].

Figure 7. Construction of the vertex model from them FW.

The non-crossing condition is mapped to the condi-

tion with strict inequalities,

x1(s) < x2(s) < � � � < xm(s): (71)
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Walkers subject to the condition (71) are described as

vicious walkers [4, 5, 6, 38, 39], since they can be re-

garded as the surviving walkers who shoot each other

dead (i.e., pair annihilation) when whey arrive at the

same site (xi(s) = xi+1(s) for some i). If p = 1, (70)

is the total number of ways of m vicious walkers to

walk such that they all survive for at least t time-steps

starting from the sites xi = i� 1 (i = 1; � � � ;m).

Let h(g) be the number of pairs of bonds which

run parallel to each other, maintaining a distance of

one lattice unit (h(g) = 6 for Fig. 7(b)). Then

pb(g) = pmt � p�h(g) for m walkers up to time t. It

means that the m FW model is an interacting vicious

walker model, in which if a pair of nearest-neighboring

walkers walk parallel to each other for one time step, the

walk is weighted by p�1. (If three neighbors walk par-

allel to one another, they are regarded as two pairs and

the weight carries a factor of p�2.) Since p�1 > 1, the

walkers prefer to walk parallel to one another. Thus we

can say that these vicious walkers are friendly to their

neighbors, as long as they don't get too close!

V.2 Ten-Vertex Model

Interacting vicious walkers can be described by a

kind of vertex model. For each trajectory of the inter-

acting vicious walkers, draw a right contour as shown in

Fig. 7(c). Then erase the trajectories of the interacting

vicious walkers and identify a set of contours as a line

of con�gurations of a vertex model (Fig. 7(d)). Note

that all lines have directions which are represented by

arrows at each bond (segments of lines).

We introduce a ten-vertex model. The ten local di-

rected line con�gurations at a vertex are shown in Fig.

8. Each bond is in one of the four states represented by

an upward arrow, a leftward arrow, a rightward arrow,

or nothing. Down arrows are forbidden and the non-

crossing condition is imposed. We assign the weights

a0; ar; a`; b0; br; b`; cr; c`; c
0
r; c

0
` for the ten con�gurations,

as shown in Fig.8. We assume the initial con�guration

(the boundary condition at the bottom on a spatio-

temporal plane Vt), such that there are m upward lines

at x = 0; 1; 2; � � � ;m� 1, and sum up all con�gurations

of directed lines with appropriate weights in which m

directed lines are conserved up to time t. There is no

restriction on the con�gurations at the �nal time t. The

partition function of the ten-vertex model is de�ned as

c

Z10v
t (a0; ar; a`; b0; br; b`; cr; c`; c

0
r; c

0
`;m) =

X
allowed con�g:

Y
(weights): (72)

d

The construction of the vertex model for m FW

shown in Fig.7 yields the identity

Zt(p; p;m) = pmtZ10v
t (1;

1

p
;
1

p
; 0; 0; 0; 1; 1; 1; 1;m):

(73)

Since all straight lines across a vertex are forbidden,

b0 = br = b` = 0, and the left-right symmetry relations,

ar = a`(= 1=p), cr = c`(= 1), and c0r = c0`(= 1), are

satis�ed, we can say that the m FW with (69) can be

mapped to a symmetric seven-vertex model.

If we consider the totally asymmetric case such that

a` = b` = c` = c0` = 0, where all leftward lines are for-

bidden, the arrows put on bonds can be erased and the

con�gurations are represented by undirected lines. In

this case the system is identi�ed with the six-vertex

model [40],

Z10v
t (a; a; 0; b; b; 0; c; 0; c; 0;m) = Z6v

t (a; b; c;m): (74)

As shown in [40], the six-vertex model can be mapped

to the critical q-state Potts model. We have the fa-

mous result by Kasteleyn and Fortuin [41, 42], that for

an arbitrary undirected �nite lattice, the percolation

problem can be formulated using the q ! 1 limit of

the q-state Potts models. Then we can conclude that

the undirected percolation problem can be formulated

in terms of the totally asymmetric (six-)vertex model.

Figure 8. The ten kinds of directed-line con�gurations in
the ten-vertex model with their weights.

On the other hand, we have shown that m FW with
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(69), whose m = 0 limit gives the DBP system, is

mapped to the symmetric (seven-) vertex model. The

following correspondence is now clari�ed.

Percolation Vertex Model

undirected () asymmetric

directed () symmetric (75)

It is interesting to see that directed percolation, which

can be de�ned as a process with time-irreversibility,

(that is, totally asymmetric in time direction) corre-

sponds to the symmetric case of the vertex model.

V.3 Bethe Ansatz and Exact Solvability

The six-vertex model can be solved exactly by the

Bethe ansatz [40]. We can see that the total asymme-

try of the six-vertex model is essential to allow us to

use the Bethe ansatz to solve the problem. We will

show here, however, an attempt to apply the Bethe

ansatz method to the symmetric vertex model. First

we consider a �nite square lattice with t rows (t steps

in the time direction) and L columns (L sites in the

spatial direction) and assume periodic boundary condi-

tions in the spatial direction. The state X on each row

is speci�ed by the locations of m lines on the L sites,

X = fx1; x2; � � � ; xmg. Let T be the row-to-row trans-

fer matrix of our ten-vertex model, � an eigenvalue of

T , and g the corresponding eigenfunction, then

�g(X) =
X
Y

T (X;Y )g(Y ): (76)

When t is large, Z10v
t � �tmax, where �max is the max-

imum eigenvalue of T .
The m = 1 case is trivial. For m = 2, we assume

the form of the Bethe ansatz for g(X),

g(x1; x2) = A12�
x1
1 �x22 +A21�

x2
1 �x12 ; (77)

where A12; A21; �1; �2 are complex numbers. We

�nd for the symmetric seven-vertex model,

(a0; ar; a`; b0; br; b`; cr; c`; c
0
r; c

0
`) =(1, 1=p, 1=p, 0, 0, 0,

1, 1, 1, 1), that if the Yang-Baxter relations

�N1 =
A12

A21
; �N2 =

A21

A12
;

A12

A21
= ��2[(1� p)(�21 + 1=�22)� p]

�1[(1� p)(�22 + 1=�21)� p]
(78)

are satis�ed, then

�(�1; �2) =

�
�1 +

1

�1

��
�2 +

1

�2

�
: (79)

The maximum eigenvalue �max will be obtained by

setting �1�2 = 1 and the solution of (78) determines, in

the L!1 limit,

�max(p) =
(p� 2)2

2p(1� p)
: (80)

Then (73) gives

Zt(p; p; 2) � �tmax for t� 1 (81)

with

�max(p) = p2�max(p)

=
p(p� 2)2

2(1� p)
: (82)

It should be noted that the relation

�max(p) =
1

zpole(p; p)
(83)

holds, where zmin(p; p) is given by (58) with � = p.

That is, in the case of m = 2 with (69), the Bethe

ansatz method determines the location of the pole of

G(p; � ; 2; z).

As shown in Section IV, to discuss wetting tran-

sitions we have to know not only the location of the

pole but also the singular point of G1(p; � ; 2; z). When

m = 2, the trajectories of the two FW which con-

tribute to G1(p; � ; 2; z) are represented by lines of the

ten-vertex model with (a0; ar; a`; b0; br; b`; cr; c`; c
0
r; c

0
`)

= (1; 0; 0; 0; 0; 0; 1; 1; 1; 1). If two lines run sepa-

rately, they seem to be the trajectories of two in-

dependent random walkers, who step either to the

right or left at random, but if two lines meet at a

vertex, they are pair-annihilated. We expect that

Z10v
t (1; 0; 0; 0; 0; 0; 1; 1; 1; 1; 2) � 22t=t with an expo-

nent  (the number of trajectories 22t is reduced by

a factor 1=t due to pair-annihilation) [4]. It follows

that G1(p; � ; 2; z) =
P
t z
tp2tZ10v

t �Pt((2p)
2z)t=t �

(1 � (2p)2z) �1. Then the singular point G1(p; � ; 2; z)

can be determined as z1(p) = 1=(2p)2. Using the result

(82) of the Bethe ansatz, we have

1

�max(p)
� z1(p) = � 9

4p2(p� 2)2

�
2

3
� p

�2

' �36

28

�
2

3
� p

�2

(84)

for 0 < 2=3� p � 1. If we put � = p in (57) and (59),

we obtain the same result as (84) from them. This

means that (84) determines pcw = 2=3 and  = 2=3

(i.e. � = 0) in the case (69).

In the present paper we have shown two ways to

solve the two FW model (m = 2): by a combinatorial

method in Section IV.B and by the Bethe ansatz via

mapping to a vertex model here. As far as we know,
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there are no exact results form � 3. As far as we know,

there are no exact results form � 3. As we can imagine

when we look at Fig.4, the Bi's phases will have com-

plex structures inside them if m is large, and we expect

a rich physics of wetting transitions in FW models with

m � 3.
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