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In this article we review several models with many absorbing con�gurations. In all these models
attention will be focused on the in
uence of the initial state on the dynamic evolution. The rela-
tion of systems with many absorbing con�gurations to those displaying avalanches (self-organized
criticality) is also investigated. Some new results are presented both for systems with and without
parity conservation. Recently derived scaling relations are tested.

I Introduction

The study of nonequilibrium models exhibiting phase

transitions from an active to an absorbing phase has

been a topic of intense research in the last years [1-

11] since Broadbent and Hammersley [12] introduced

directed percolation (DP) [13-15]. Later studies have

connected this to other �elds, and the topic has be-

come familiar in many processes encountered in nature.

Among them we refer to models of epidemics [19-21],

catalytic kinetics [22], surface growth [23], and self-

organized criticality [24]. Most of these models were

found to belong to the universality class of DP, sup-

porting the conjecture of Jenssen [25] and Grassberger

[26] that all systems exhibiting a continuous transition

into a unique absorbing state, without any other sym-

metry or conservation law, belong to the DP universal-

ity class. This conjecture was later extended by Grin-

stein et al. [27] to systems with multiple components.

Exceptions to this universality class were introduced

by Grassberger [28,29]; they correspond to models with

doubly degenerated absorbing states and modulo 2 par-

ity conservation.

More recently Jensen [30] introduced a model (the

pair contact process - PCP) that is the prototype of

a model with a number of absorbing con�gurations

growing with the system size, which goes to in�nity

in the thermodynamic limit. Other models with in-

�nitely many absorbing states (IMAS) were introduced

since then, and have proved to have a more complex

dynamics than the ones with only a single absorbing

state. Apart from this, all them of show - in agree-

ment with the previous conjecture - a DP-like behavior

in what concerns the static critical behavior. However,

the critical exponents that govern the spreading from an

initial seed (the closest con�guration to the absorbing

one) show non-universal behavior. The critical expo-

nents describing time dependence depend on the initial

con�guration of the system. Only for the "natural" con-

�guration (the one obtained from the evolution of the

system) are DP values recovered. An attempt to justify

this behavior on solid grounds was made by Mu~noz et

al. [31] using a continuous �eld theory. Other features

of IMAS models were discovered recently by Lipowski

[32], who observed that a model inspiried by \biological

evolution" in (2+1)-dimensions has the critical behav-

ior of (1+1)-dimensional DP (an e�ect similar to the

dimensional reduction encountered in random systems

[33]).

Another topic of intense research in our days is self-

organized criticality (SOC). Recently some attempts

to connect SOC with absorbing-state phase transitions

were made [34, 35]. SOC was introduced by Bak, Tang

and Weisenfeld (BTW) [36], who proposed a model for

the self-organization of a sandpile. The pile obtained by

adding single grains self-organizes to the critical angle,

where in�nitely large avalanches (by avalanche we un-

derstand a successive sequence of toppling events) can

occur. This process will reduce again the slope of the

pile, which will evolve through small avalanches until

it again reaches again the critical point. A very good

pedagogical review on this topic is given by Dickman

et al. [37].

One of the models (TTP) we study here has some

similarities with a SOC model introduced by Manna

[38] (namely the rule for evolution of sites with double

occupation) and also with a forest-�re model (FFM)

[39]. Manna's model, like the one of BTW, has a thresh-
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old above which sand topples. This model also presents

avalanches of all sizes, which obey a power-law size dis-

tribution.

Another model to be studied is the parity-

conserving dimer model (PCD), which is known to

belong to a di�erent universality class - the parity-

conserving universality class (PC). The dynamic rules

are such that there is parity conservation in the number

of dimers.

Previous studies by Dickman et al. [34] using scal-

ing analysis yielded new relations between critical ex-

ponents governing avalanches and the ones of critical

phenomena in systems with many absorbing states. In

this paper we use numerical simulations to study such

relationships, and test scaling laws. Also in this case ex-

ponents will be obtained for avalanches and compared

with ones for time-dependent evolution through scaling

laws.

Hereafter, we will consider only two models (TTP

and PCD) to illustrate the relationship between sys-

tems with IMAS and SOC. Other models exist in the

literature with the same characteristics [30] [40], how-

ever we chose these two because they are more familiar

to the author.

II The models

As mentioned before, we will present studies of two one-

dimensional models with multiple absorbing con�gura-

tions, and obeying di�erent kinds of conservation laws

(with parity conservation (PC) and without (DP)). The

former consists in a model of dimers whose dynamic

rules will be de�ned below (PCD) [41]. The latter is

the so-called threshold transfer process (TTP) [42], in

which each site of the lattice can be either vacant, or

singly or doubly occupied (�i = 0; 1; 2, respectively).

At each time step, a site i is chosen at random. In the

absence of active (doubly occupied) sites the dynamics

is indeed trivial: if �i(t) = 0 (1), then �i(t + 1) = 1(0)

with probability p (1�p). The system relaxes exponen-

tially to a steady state where a fraction p of sites have

�i = 1 and the others are vacant. If �i(t) = 2, then

�i(t + 1) = 0; �i�1(t + 1) = �i�1(t) + 1; �i+1(t + 1) =

�i+1(t) + 1 if �i+1(t) and �i�1(t) are both < 2 and

�i(t + 1) = 1 if only one of the nearest neighbours of

site i (j = i � 1 or i + 1) has �j(t) < 2, in which case

�j(t + 1) = �j(t) + 1. As can be easily seen, the num-

ber of active sites either decreases or remains the same

in all processes other than (1; 2; 1) ! (2; 0; 2); the fre-

quency of this process depends on the concentration of

'1'-s, which is controlled by the parameter p. Any con-

�guration consisting of only '0'-s or '1'-s is absorbing

in what concerns the active sites. Thus in a chain of

length N, there are 2N absorbing con�gurations. The

absorbing states in this model are 
uctuating - in this

subsector of phase space, ergodicity is not broken. Thus

we identify the density of doubly-occupied sites, �2, as

the order parameter of the threshold transfer process.

Under the correspondence: 2! burning tree, 1! live

tree, and 0 ! ashes, the process (1; 2; 1) ! (2; 0; 2)

describes a burning tree setting its neighbours on �re.

But the TTP permits doubly occupied sites to arise

only via transfer; there is no \lightning" process, as in

the FFM. Despite certain common aspects, our model

is therefore very di�erent from the FFM.

The other model to be considered here was intro-

duced by Marques et al. [41] and is the �rst to combine

parity conservation (PC) with in�nitely many absorb-

ing states. The original idea of this model was to clarify

whether, as in the TTP, PCP and other models without

PC conservation, dynamic critical exponents will also

depend on the initial state. This model resembles the

PCP introduced by Jensen [30] but with the number of

dimers conserved modulo 2. The dynamic evolution of

this model involves creation and annihilation processes,

which are attempted with probabilities p and 1� p re-

spectively. If one chooses to annihilate, then a dimer

(represented by � = �) is selected at random and one

looks for an adjacent dimer. If the pair of dimers is

surrounded by empty sites (�), then the two dimers are

annihilated and the respective sites become empty:

� � �� = � = � � �� �! � � � � � � � � � � �

otherwise, annihilation is e�ected by simply vacating

the site that is shared by the two dimers, leaving the

other sites unchanged:

� � �� = � = � = �� �! � � � � � � �� = ��.

In this way, the number of dimers is conserved mod-

ulo 2. In case of a creation attempt, if the nearest-

and next-nearest-neighbor sites of a selected dimer are,

respectively, vacant and occupied, a pair of dimers is

produced by simply occupying that vacant site:

�� = � � � � � � �� �! �� = � = � = � � ��

Another possibility requires three vacant sites adjacent

to a dimer, in which case a pair of dimers is created

(with probability �) by �lling the nearest- and next-

nearest neighbour sites and leaving the third vacant

site unchanged:

�� = � � � � � � ��
�
�! �� = � = � = � � ��.

In the cases with � < 1, growth is less e�ective if

there are vacant sites (rather than isolated particles)

in the environment of the dimers, whereas in the case

� = 1 growth is not a�ected by the concentration of

isolated particles in the environment. In the present
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work, we consider � = 1=2. We should also point out

that this model presents another conservation law, in

addition to parity conservation. De�ne sublattices A

and B, and let NAB (NBA) be the total number of

dimers with their left particle on the A (B) sub-lattice.

Then N = NAB � NBA is conserved, since dimers are

created and annihilated in pairs on adjacent pairs of

sites. This implies that con�gurations with di�erent

values of N are not connected by the dynamics used.

With these rules, di�usion is only present indirectly.

Also, the annihilation of isolated dimers is possible only

through successive processes of creation and annihila-

tion, which slows down the dynamical processes leading

to absorbing con�gurations. One can of course enlarge

the parameter space to include di�usion or longer range

processes and consider a dynamics that mixes sectors in

the phase space with di�erent values of N . In the ab-

sence of such processes, creation of dimers is inhibited

in con�gurations where a pair of vacant sites is sur-

rounded by occupied sites. Initial con�gurations were

chosen such that this situation does not occur in the dy-

namical process; this means a restriction to the N = 0

sector.

III Summary of previous results

In this section we present brie
y results from [41] and

[42]. In these two models with in�nitely many absorb-

ing con�gurations, it was shown that the static expo-

nents belong to the corresponding universality class,

that is, PC for PCD, and DP for TTP. In what concerns

the spreading exponents, it was observed in both mod-

els that they depend on the initial con�guration. To

account for this a new hyperscaling relation was pro-

posed [42]. This consists in a generalisation of the one

proposed by Grassberger and de la Torre [43], and as-

sumes that the ultimate survival probability behaves

like P1 � ��0 .

A. Mean-�eld theory

The mean-�eld theory for the TTP model can be

easily obtained. De�ning by �i the densities for the

three kinds of site occupation, we arrive at

d

dt
�i =

X
k

R(k) �
(k)
i P (k) (1)

where R(k), �(k)
i and P (k) are respectively the rate for

the process k, the change in the number of particles of

type i, and the probability of the con�guration required

for process k.

Process R(k) �0 �1 �2 P (k)

1! 0 1� p 1 �1 0 �1
0! 1 p �1 1 0 �0

121! 202 1 1 �2 1 �2�
2
1

020! 101 1 �1 2 �1 �2�
2
0

221! 212 1 0 1 �1 �1�
2
2

021! 102 1 0 0 0 �0�1�2
220! 211 1 �1 2 �1 �0�

2
2

222! 222 1 0 0 0 �32

TABLE I. Rules for the TTP model, and the

respective rate processes[44].

Using the results of Table I, the dynamic equations

for the densities appear in the form:

c

d�0
dt

= �p �0 + (1� p) �1 � �20�2 + �21�2 � 2 �0�
2
2

d�1
dt

= p �0 � (1� p) �1 + 2 �20�2 � 2 �21�2 + 4 �0�
2
2 (2)

d

where �2 = 1��0��1. This analysis leads to a pc = 1=2

and � = 1. It allows us to get information about the

transition, however it is quantitatively wrong. In Fig.

1 we show the phase diagram in the mean-�eld approx-

imation and from numerical simulations.

Based on these equations it is possible to write down

a �eld-theory (or set of Langevin equations), for the

density of particles (�1) and of active sites (�2) based on

symmetry principles. This type of analysis was intro-

duced by Mu~noz et al. [31, 45] for models with IMAS,

c

@�1(x; t)

@t
= r1�1 + c1r

2
x�1 � u1�

2
2 �w1�1�2 + �

1=2
1 �1

@�2(x; t)

@t
= r2�2 + c2r

2
x�2 � u2�

2
2 �w2�1�2 + �

1=2
2 �2
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where the coe�cients ci, ri ui and wi are all constants

depending on the microscopic parameter of the system,

p, and �i are Gaussian white noise variables, obeying,

h�i(x; t)�j(x; t)i = Di;j�2(x; t)�(x � x0)�(t � t0). This

analysis has yet to reproduce the nonuniversal spread-

ing exponents observed in models with INAS. This set

of equations can be reduced to a single equation (for

�2) with an exponential non-Markovian term,

@�2
@t

= D r2�2 � r1�2 � u2�
2
2 + �2

� w2r1�2(x; t)

Z t

0

dt0�2(x; t
0)e

�w1

R
t

t0
ds�2(x;s)

with a long-memory e�ect [31]. The last term on the

right side is irrelevant to the stationary properties of

the active phase, because it goes exponentially to zero

if the density of active sites is non-null. This equation

is di�erent from the equation that describes Reggion

�eld theory [48, 49, 50]. A numerical analysis was later

made by Lop�ez et al. [51]. Numerical integration shows

the nonuniversal dynamic critical exponents observed

previously for the PCP and other models with INAS.

Figure 1. Density versus p for the TTP model. Left: mean-
�eld theory; right: Monte Carlo simulations. The labels on
top of curves (0, 1, 2) mean the densities of vacant, particles
and pairs respectively.

B. Steady-state simulations

To perform these simulations we started with a fully

occupied lattice in the case of PCD, and with equal

fractions of the three states in the case of TTP. The

concentrations are averaged over a long period of time,

once the steady state has been reached. As noted above,

the order parameter for the TTP is the density of 2's

(�2); it obeys

�2 = jp� pTTPc j� (3)

The critical value is pTTPc = 0:6894�0:0003. The expo-

nent � was measured previously for this model [42], and

is in very good agreement with the DP universality class

(d = 1+ 1). In simulations we found � = 0:279� 0:005

[42].

The order parameter for the PCD is the concentra-

tion of dimers; it too vanishes algebraically as p ap-

proaches the critical probability pc:

� � jpPCDc � pj� (4)

where � is the order parameter exponent (pPCDc =

0:2995�0:0005). Simulations yield � = 0:285, in agree-

ment with the value for the PC universality class in

1 + 1� d.

As usual, the steady-state concentration is obtained

for several values of p near pc, and di�erent values of

system size, up to a maximum value of L = 2000. The

maximum duration was chosen according the value of

p; studies near pc require long durations, because of

slowing-down e�ects. We used 104 < t < 106. The

simulations were carried out for about 1000 indepen-

dent trials which had not yet entered the absorbing

state. From a log-log plot of density against p � pc,

the slope of the data gives the estimate � = 0:98(5),

a value which agrees with the results of [52], and is

slightly above the values obtained by other authors for

(1 + 1) � d models in the PC universality class. De-

termining the critical point by steady-state simulations

requires an accurate measurement of the order param-

eter near criticality, which becomes rather di�cult due

to the critical slowing-down. We have complemented

this study with a �nite-size scaling analysis based on

the ansatz that the order parameter depends on sys-

tem size L through the ratio of L and the correlation

length �? � ���? , (� = jp� pcj):

�(p; L) � L��=�?f(�L1=�? ) (5)

(with f(x) / x� for x ! 1, so that (1) is recovered

when L!1). At the critical point we have,

�(pc; L) / L��=�? (6)

and from a log-log plot of �(pc; L) as a function of L;

a linear dependence is obtained, with slope �=�? =

0:54(4), in good agreement with the values 0:48 and

0:50, as obtained in [53] and [54].

The ultimate survival probability exponent �0 was

determined from similar studies, using p values slightly

away from the critical point. The numerical procedure

will be explained in the next section.

C. Time-dependent simulations

Time-dependent simulations [43] have become an ef-

fective tool to explore dynamical critical exponents of

systems at nonequilibrium phase transitions.

Initial Con�guration. Simulations are run for a large

number of trials; for each of them we construct an ini-

tial con�guration with a single active seed (a dimer in
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the case of PCD, or a doubly-occupied site in the case

of TTP), embedded in a sea of inactive sites (vacant

or singly-occupied sites), i.e, (� � � � � � � � � � � =

� � � � � � � � � � � � �) located on the center of the

system (sites L=2 and L=2 + 1 for a lattice of L sites).

We place a given concentration �1 of particles on the

other sites, with the condition (in the case of the PCD)

that there are no nearest-neighbor pairs (i.e., no dimers

other than the central seed). For the PCD model the

maximum initial density is 1=2; for TTP it is 1.

Temporal evolution. We set a maximum time for

the evolution (tMAX ) chosen in such a way that active

sites cannot reach the borders of the system. In this

way there are no �nite size e�ects. Since the number

of active particles during the time evolution is small,

we save CPU time by choosing from a list of the ac-

tive sites and then applying the the process (creation

or annihilation). This procedure entails a variable time

increment, �t = 1=Nact, for each event, where Nact is

the current number of active sites. The quantities usu-

ally investigated are the mean number of active sites

N (t) (dimers in case of PCD and '2'-s in case of TTP

model), averaged over all trials, the survival probability

P (t), and the mean spread or size, R(t), of the surviv-

ing trials. Near the critical point, and for asymptoti-

cally long times these quantities follow power laws of

the form

N (t;�) =

Z
dx �(x; t;�) = t� 
(t��k) (7)

P (t;�) = t�� 	(t��k) (8)

R2(t;�) =
1

N (t;�)

Z
dx r2�(x; t;�) = tz �(t��jj);

(9)

where x is the distance from the seed and the normal-

isation quantity N (t;�) is the mass of the cluster at

time t. The latter expressions de�ne the exponents �,

� and z respectively.

Figure 2. Ilustration of space-time evolution: below and
above pc.

It was observed by Mendes et al. [42] that P1
(ultimate survival probability) as a function of p � pc

for several initial densities is no longer proportional to

the density, but is characterised by a new exponent �0,

P1 / ��0 (� = jp� pcj). From this it follows that the

density is

�(x; t) = P1(�)��: (10)

Using this assumption one can obtain a hyperscaling re-

lation [42], that generalises the one of Grassberger and

de la Torre [43],

�
1 +

�

�0

�
�0 + �0 =

dz0

2
(11)

where the primes denote exponents dependent upon the

initial particle density, �. This relation has been veri-

�ed for a vast variety of models in di�erent universality

classes [41] [42] [31] [51] [46].

We have veri�ed Eq. (11) in simulations of the

parity-conserving dimer reaction and the threshold

transfer process. Using time-dependent simulations (for

t � 5000, and a number of trials of order 107), we deter-

mined the critical point of the TTP as pc = 0:6894(3).

We note in passing that some controversy exists regard-

ing a possible shift of pc as the initial density is varied,

in models with INAS. A recent work by Dickman [55],

using a new technique applied to the pair contact pro-

cess (PCP), claims that pc is not a�ected by the initial

concentration, contrary to what was seen by �Odor et

al. [47]. The exponents �0, �0 and z0 may be deter-

mined from simulations at pc, using an initial con�g-

uration very close to the absorbing state. We studied

various initial densities, including �i = 0:6894, the nat-

ural value. The ultimate survival probability exponent

�0 was determined from similar studies, using p values

slightly above critical. The simulations begin with one

doubly-occupied site at the origin; the remaining sites

are taken as occupied or vacant, independently, with

probabilities �i and 1 � �i, respectively. The dynam-

ics is restricted to the active region, de�ned as follows.

Let 
i be the set of all sites which are doubly-occupied

or have a doubly-occupied neighbour, after the ith step

of the trial. (
0 comprises the origin and its neigh-

bours.) The site to be updated at step i+ 1 is selected

at random from [ij=0 
j . Thus the evolution proceeds

on an expanding set within the \light-cone" emanating

from the origin. Distant sites are not updated until the

active region reaches their neighborhood.

In these simulations, starting from a pair of dimers

at the center of the lattice for the PCD and a 2 in the

case of TTP, we measure the survival probability P (t),

the number of active particles (dimers or 2's) N (t) (av-

eraging over all runs), the average spread of the cluster

R2(t), and the probability P(s) to have a cluster of size

(mass) s, all at criticality.
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Spreading exponents are usually obtained from a

local-slope analysis. For instance, from a plot of

ln[P (mt)=P (t)]= lnm vs. t�1, we can get the exponent

�0. However a more recent analysis [55], shows that it is

better to plot against t��DP . This because in previous

studies it was observed that the leading term in,

�(t) � � [1 + a t�� + � � �] (12)

was controled by � = 1, however from the observations

of �Odor el al. [47] the particle density evolves in time

with a power-law decay controlled by an exponent equal

to �DP , thus suggesting a di�erent leading correction

term in �(t).

We have carried out simulations at the critical prob-

ability pc. In a plot of the local slopes versus 1=t,

the critical exponents are given by the intercept of the

curves for pc with the vertical axis, whereas curves for

p > pc (p < pc) veer downward (upward). From this

analysis, we too do not see any shift in the critical value,

pc. Our results are listed in Table II.

One goal of this study is to obtain numerical con�r-

mation of the exponents describing cluster-size distri-

butions at criticality. The typical cluster size s of �nite

clusters scales as volume times density, i.e.,

s � �d?�k�(�) � j�j�1=�
0

; (13)

with

1=�0 = d�? + �k � �0; (14)

where �? and �k are the correlation lengths in the space

and time directions, respectively. From the lifetime sur-

vival distribution, Eq. (8), it is then straightforward to

obtain the probability P(s) to have a cluster of size s,

for clusters starting from a single seed. Using the fact

that the lifetime is set by the parallel correlation length,

t � �k � j�j��k, we see that the typical cluster size and

lifetime are connected by

s � t1=�k�
0

: (15)

Hence we obtain P (s) � P (t � s�k�
0

) � s��
0�0 . Thus,

we eventually obtain the probability P(s) to have a

cluster of exactly size s, P(s) = �dP (s)=ds, with the

result

P(s) � s��s ; (16)

where

�s = 1 +
�0

d�? + �k � �0
=

1 + �0 + 2�0

1 + �0 + �0
: (17)

Proceeding in the same way, we get P(t) =

�dP (t)=dt / t�(1+�
0), and thence,

�t = 1 + �0: (18)

In simulations we measure the probability of having a

cluster of size s in the critical state.

In Marques et al. [41] a slight shift in pc was ob-

served in the time-dependent simulations for the PCD

model, however a more precise analysis seems to suggest

that this dependence may not exist. In a recent paper

[55] a claim based on a more precise method (reweight-

ing method [56]) states that in the case of PCP the

critical parameter is not shifted when considering dif-

ferent initial con�gurations as was observed previously

[47].

In these simulations we started the system in a way

that one sublattice of alternating sites is vacant except

for one central site, and the sites of the other sublat-

tice are occupied with probability �; the two nearest

neighbours of the central site are also occupied, thus

constituting a perturbation of exactly two dimers. The

size of the lattice was chosen such that activity never

hits the boundaries. For di�erent � values, a number

of independent runs, typically 107, were performed, up

to 4000 time steps each, for various values of p.

Results for the �-dependence of �0 and �0 are given in

Table II. Indeed, the exponent z0 does not present a sig-

ni�cant dependence on the parameter �, given the nu-

merical errors. The exponent governing the population

growth in surviving critical trials, �0 + �0, seems not to

depend on the initial particle concentration; we do not

see a systematic change with �. For the PCP, a recent

study [55] suggests that this quantity, and the exponent

z, have a systematic dependence upon �. The clari�-

cation of such results is a topic for further research,

namely through the use of the reweighting method [56].

Figure 3. Log-log plot of the distributions P (s) and P (t)
for the PCD model with an initial concentration of particles
equal to 0.3. The lower data correspond to the time distri-
bution, which was reduced in order to not overlap with the
upper one. The slope was measured considering all the data.
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IV Numerical results for

avalanche spreading

When the system is tuned to its critical value, it devel-
ops avalanches obeying a power-law distribution. We
will characterise the avalanche activity through two
quantities, its spatial and temporal duration distribu-
tions:

P(s) � s��s

P(t) � t��t (19)

We have measured these avalanche distributions in
both models. The simulation results are given in Table
II. Fig. 3 shows (for a particular case, � = 0:3, in the
PCD model) a log-log plot of the distributions of space
and time avalanche duration. The exponents obtained
from the slopes of data points in this particular case
are, �s = 1:193 � 0:010 and �t = 1:256 � 0:010. The
values are in very good agreement with the ones ob-
tained through the scaling laws, and using the values
of the non-universal spreading critical exponents (see
Table II), we get �s = 1:184 and �t = 1:239.

In Fig. 4 we plot the values for �s and �t for di�erent
values of � in the PCD model. The lines correspond to
the exponents obtained from the scaling laws.

From the previous studies we got the pc value for
each model. In order to study avalanches we prepare
the system in the initial state with some density of par-
ticles and p = pc, then through the evolution of a single
perturbation (adding a \critical" particle at the middle
site) we will measure the propagation of this damage
through the system. It will a�ect a certain number of
sites - this is the avalanche size - and also has a certain
lifetime - this is the time duration of the avalanche. In
order to have a good precision in the avalanche expo-
nents it is necessary to use a large number of trials (we
used 2� 107).

Figure 4. Avalanche exponents �s and �t versus initial den-
sity � in the PCD model.

V Conclusion

We reviewed some topics related to models with in-
�nitely many absorbing states (namely, the PCD
and TTP), and have presented some new results for
avalanche spreading. The numerical values obtained
by from Monte Carlo simulations are in good agree-
ment with those obtained from scaling analysis. The
models studied here belong to two di�erent universality
classes (DP and PC). The nonuniversal spreading expo-
nents previously observed in models with INAS, when
the initial con�guration di�ers from the \natural" one,
are also seen in the exponents that characterise both
spatial and temporal distributions of avalanches.

This work was supported in part by PRAXIS XXI
(Project /2/2.1/Fis/299/94) and NATO (Grant CRG-
970332). I would like to thank R. Dickman, S.N. Doro-
govtsev, M. Henkel, H. Herrmann, E.J.S. Lage, M.C.
Marques, G. �Odor and M.A. Santos for many usefull
discussions, and from whom I have learned a lot. I
would like to thank M.A Santos and M.C. Marques for
a critical reading of the manuscript.

Exponents �0 �0 �s �t

DP 0.1597(3) 0.312(2) 1.108 1.159
PC 0.285(2) 0.000(1) 1.222 1.285

�initial Parity Conserving Dimer (PCD)
0.05 0.400(6) -0.106(5) 1.313(10) 1.407(10)
0.10 0.366(6) -0.069(5) 1.278(10) 1.385(10)
0.215 0.291(6) 0.005(5) 1.243(10) 1.318(10)
0.225 0.284(6) 0.014(5) 1.227(10) 1.303(10)
0.30 0.239(6) 0.062(5) 1.193(10) 1.256(10)
0.45 0.156(6) 0.154(5) 1.124(10) 1.169(10)

Threshold Transfer Procces (TTP )
0.75 0.136(1) 0.347(4) 1.093(10) 1.14(2)
0.69 0.161(2) 0.319(3) 1.121(10) 1.17(2)
0.50 0.227(2) 0.246(2) 1.157(10) 1.20(2)
0.10 0.371(4) 0.097(1) 1.254(10) 1.37(2)

TABLE II. �-dependence of the critical exponents �0, �0 for spreading, and of �s and �t, for the extent and duration of
avalanches.
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