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We study the long time behavior of a one-species reaction-di�usion process kA ! `A where k

particles coalesce into ` particles. The asymptotic time behavior of the density of particles is
derived by mapping the reaction-di�usion process into the problem of the reunion of k random
walkers bounded to move in a limited region.

I Introduction

The study of reaction-di�usion processes has been the

subject of much interest in the last two decades [1-40].

In a reaction-di�usion system the reactants are trans-

ported by di�usion. These systems have two charac-

teristic time scales: the reaction time and the di�usion

time. When the reaction time is much larger than the

di�usion time the process is called reaction-limited. In

this case most of the time the reactants are performing

di�usion so that the whole process is limited by reac-

tion. The kinetics is dominated by di�usion which im-

plies that it is well described by the laws of mass-action

or mean-�eld equations.

When the di�usion time is much larger than the

reaction time the process is called di�usion-limited. In

this case the reactions take place in a very short time so

that the whole process is limited by di�usion. For low

dimensions, the process is dominated by 
uctuations

and the kinetics is no longer described by mean-�eld

equations.

Here we are interested in the limiting case of

di�usion-limited processes in which the reactions take

place instantaneously. Moreover, we will consider only

the case of one-species annihilation and coalescence pro-

cesses. More speci�cally, one considers a one-species

process in which particles react only when a certain

number k of them meet, kA ! `A, with ` < k. The

extinction of particles by reaction may be total (` = 0,

annihilation) or partial (` 6= 0, coalescence). In any

case, the density of particles �(t) vanishes in the long-

time limit. Such systems have been studied for the

case of bimolecular reactions (k = 2) in one dimension

[5,10,13,16-22,30,32,34-36] as well as in general dimen-

sion [3,8,11,12,14,23,25,28]. Some works concentrated

on the case of multimolecular reactions in one dimen-

sion [24,26,27,29,33] as well as in general dimension

[7,31].

The classical rate equation, or mean-�eld equation,

for the density of particles is given by

d�

dt
= �a�k (1)

where a a positive constant. From this equation it fol-

lows that the density of particles decreases asymptoti-

cally according to the power law

� � t�1=(k�1) (2)

This mean-�eld behavior is valid for dimensions d

greater than a critical dimension dc given by

dc =
2

k � 1
(3)

For d < dc it is conjectured that

� � t�d=2 (4)

For d = dc the mean-�eld result is expected to have

logarithm corrections.

The results (3) and (4) have been conjectured by

means of scaling arguments [7,8], exact results in one

dimension [5,10,13,15-17,19,20,21,27], renormalization

group calculations [12,23,25,28,31], and probabilistic

approaches [3,16,17]. The main purpose of the present

article is to derive the results (2), (3) and (4) by map-

ping the reaction-di�usion process, in its late stages,

into the problem of �nding the time it takes for a group

of random walkers, con�ned in a limited space, to meet.
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II Model and mean-�eld

solution

In this section we consider a mean-�eld approach to

the di�usion-limited annihilation of particles in a lat-

tice. We will see that, although the approach does not

provide us with equation (1), it gives other rate equa-

tions from which one derives the expected asymptotic

time behavior of the density given by equation (2).

Consider a d-dimensional hypercubic lattice in

which particles di�use over the sites. To each site one

associates a variable �i that takes the values 0, 1, 2, ...,

k � 1 according whether the site is empty, occupied by

just one particle, two particles, ..., k � 1 particles. At

each time step, a pair of nearest-neighbor sites is cho-

sen at random and their state changes according to the

following rules:

a) di�usion

(�i; �j)! (�i�1; �j+1) �i 6= 0 �j 6= k�1 (5)

(�i; �j)! (�i+1; �j�1) �j 6= 0 �i 6= k�1 (6)

b) extinction of particles

(�i; k � 1)! (�i � 1; `) �i 6= 0 (7)

(k � 1; �j)! (`; �j � 1) �j 6= 0 (8)

When a site is occupied by k particles, k � ` of them

disappear instantaneously and the site becomes occu-

pied by just ` particles. In the following we will set up

and solve the mean-�eld equations. For convenience we

will consider only the annihilation case, ` = 0.

Let us de�ne Pn(t) as the probability that a given

site has n particles at time t. According to the rules

above we �nd the following time evolution for this prob-

ability

c

d

dt
P0 = �f

k�1X
m=1

Pk�1;m +
k�1X
m=0

P1;m �
k�1X
m=1

P0;mg (9)

and
d

dt
Pn = �f

k�1X
m=1

Pn�1;m +
k�1X
m=0

Pn+1;m �
k�1X
m=1

Pn;m �
k�1X
m=0

Pn;mg (10)

for 0 < n � k � 1, with the condition Pk;m = 0, where Pnm(t) is the probability that a nearest neighbor pair of

sites have n and m particles at time t, and � is a constant. These equations can be written in the form

d

�dt
P0 = (Pk�1 � Pk�1;0) + P1 � (P0 � P00) (11)

and
d

�dt
Pn = (Pn�1 � Pn�1;0) + Pn+1 � (Pn � Pn;0)� Pn (12)

for 0 < n � k � 1, with the condition Pk;m = 0.

d

These equations are exact but cannot be solved by

themselves since we need the time evolution equation

for the two body correlation Pnm. To solve them we use

a truncation scheme which consists in using the approx-

imation Pn;m = PnPm on the right had site of (11) and

(12). The equations then become closed in the variables

Pn
d

�dt
P0 = (Pk�1� P0)(1 � P0) + P1 (13)

and

d

�dt
Pn = (Pn�1 � Pn)(1 � P0) + Pn+1 � Pn (14)

for 0 < n � k � 1, with the condition Pk = 0. These

equations can be solved in the long time regime with

the solution

Pn = (�t)�n=(k�1) (15)

for n = 1; 2; :::; k� 1. In expression (15), only the dom-

inant term is presented. Terms of order smaller than

the dominant are neglected.

The density of particles � is given by

� =
k�1X
n=1

nPn (16)

and has the asymptotic behavior

� = (�t)�1=(k�1) (17)

as expected.
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III The reunion of bounded

walkers

It is convenient to de�ne two useful quantities. The

�rst is the average time interval between two consecu-

tive reactions, denoted by � . Since just after a reaction

the number of particles is reduced by an amount k� `,

it follows that � is related to the decreasing rate of the

density � by

�
d

dt
� = (k � `)

1

�
(18)

The other quantity, denoted by L, is related to the mean

distance between particles, or more precisely, it is the

size of a hypercubic cell containing k particles, on the

average. If the lattice is partitioned into hypercubic

cells of linear size L with k particles each, on the aver-

age, it follows that L is related to the density of particles

� by

� = k
1

Ld
(19)

If a relation between � and L is found then this re-

lation together with equations (18) and (19) will allow

us to obtain the density � as a function of time.

The relation between � and L can be obtained as fol-

lows. Consider a typical hypercubic cell of linear size L

in the d-dimensional space where the particles, or ran-

dom walkers, are di�using according to the rules (5),

(6), (7), and (8). This typical cell will have k walkers

which are assumed to be bounded to move inside this

cell. An estimate of the quantity � will be the time

it will take for these k walkers to meet, starting, for

instance, far away from each other.

Consider k random walkers con�ned on a region of

linear size L of a d-dimensional lattice. The walkers

perform independent Brownian motion and eventually

meet. Assuming translational invariance it su�ces to

consider the movement of the walkers relative to one of

the walkers which we place at the origin. The problem

then becomes equivalent to �nding the time �� it takes

for the other k � 1 walkers to meet at the origin. The

relation between � and �� is � = ��Ld.

Since the walkers move independently of each other

the kinetics can be reduced to just one random walker

di�using in a hypercubic space of dimension D =

d(k � 1) which we may think as the direct product of

k � 1 subspaces of dimension d. The projection of the

solitary walker trajectory over each of the subspaces

gives the trajectory of each of the k � 1 walkers. The

problem is then reduced to �nding the time it takes for

this solitary walker to reach the origin.

We will consider next a random walk on a hyper-

cubic lattice of dimension D with periodic boundary

conditions and N = LD distinct lattice points. The

walker starts from a given point x0 6= 0 and at each

time step the walker jumps to one of the 2D nearest

neighbor sites with equal probability. To calculate the

average time to reach the origin we let the origin be an

absorbing point. Let P (x; t) be the probability that the

walker be at site x at time t. Its time evolution obeys

the equation

d

dt
P (x; t) =

X
�

fw(x+ �)P (x+ �; t) � w(x)P (x; t)g

(20)

where w(x) is the rate of jumping to a neighboring site

and the summation is over the 2D nearest neighbor

sites of site x. The rate w(x) = �, a nonzero constant,

for x 6= 0 and w(0) = 0 since the origin is an absorbing

site.

The probability that the walker be at the origin (and

remain forever there) at time t is P (0; t). For a �nite

lattice, in any dimension, P (0; t) ! 1 as t ! 1 since

x = 0 is an absorbing state. In this case, the average

time �� to reach the origin will be �nite and is given by

�� =

Z 1

0

t
d

dt
P (0; t)dt (21)

This formula can be understood observing that the

probability that the walker reach the origin between

t and t+�t is P (t+�t)� P (t) � (dP=dt)�t.

Using the Laplace transform

bP (x; z) = Z 1

0
P (x; t)e�ztdt (22)

equation (20) becomes

c

z bP (x; z)� P (x; 0) =
X
�

fw(x+ �) bP (x+ �; z)� w(x) bP (x; z)g (23)

d
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where P (x; 0) = �(x; x0) since at time t = 0 the walker

is at position x = x0.

We de�ne next the Fourier transform of bP (x; z)
given by eP (q; z) =X

x

bP (x; z)eiq�x (24)

where the summation is over the sites of the hypercubic

lattice, and q is a vector belonging to the �rst Brillouin

zone. From equation (23) it follows that

eP (q; z) = eiq�x0

z + �(q)
+

�(q)

z + �(q)
bP (0; z) (25)

where

�(q) = 2�
DX
i=1

(1� cos qi) (26)

Summing the right and left hand sides of equation (25)

over q and taking into account that

bP (x; z) = 1

N

X
q

eP (q; z)eiq�x (27)

where the summation in q is over the �rst Brillouin

zone, we get bP (0; z) = G(x0; z)

zG(0; z)
(28)

where

G(x; z) =
1

N

X
q

eiq�x

z + �(q)
(29)

is the lattice Green function.

From the Laplace transform bP (0; z) we can obtain

the probability P (0; t) and from it the average time

��. However, it is possible to calculate �� directly frombP (0; z). Indeed, from (21) it follows that

�� = lim
z!0

f�
d

dz
[z bP (0; z)]g (30)

For small values of z, the Green function (29) behaves

as

G(x; z) =
1

Nz
f1 + z

X
q(6=0)

eiq�x

�(q)
g (31)

as long as N is �nite. Owing to equation (28), we get

�nally the following result for the �rst-passage time [41]

�� =
X
q(6=0)

1� eiq�x0

�(q)
(32)

This equation allows us to calculate the �� for large

values of L in any dimension D. We need � for the

case in which x0 is proportional to L. We will set

x0 = (L=2; L=2; :::; L=2). The asymptotic results, valid

for large values of L, are

�� =
�

2
L2 D < 2 (33)

�� =
2

�
L2 lnL D = 2 (34)

�� = CDL
D D > 2 (35)

where the constant CD is given by

CD =
1

(2�)D

Z
1

�(q)
dDq (36)

ForD � 2, the dominant contribution comes from small

q.

Using these results with D = d(k�1) and equations

(18) and (19), and recalling that � = ��Ld, we obtain

the following asymptotic behavior for the density

� � t1=(k�1) d >
2

k � 1
(37)

� � (
ln t

t
)d=2 d =

1

k � 1
(38)

� � t�d=2 d <
2

k � 1
(39)

IV Conclusion

We have studied the long time behavior of a one-species

reaction-di�usion process in a hypercubic lattice where

a speci�ed number of particles coalesce into a smaller

number of particles. The asymptotic behavior of the

density of particle was obtained by mapping the pro-

cess into the problem of the reunion of random walkers

that are con�ned to move in a limited region.
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