
152 Brazilian Journal of Physics, vol. 30, no. 1, Mar�co, 2000

Short-Time Behavior and Universality

in Irreversible Models
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We discuss the issue of universality in nonequilibrium phase transitions. We present an introduc-
tion to the approach of statistical mechanics that is grounded in the construction and analysis of
stochastic lattice models. The concept of irreversibility is studied through the analysis of the con-
dition of detailed balance. The role of symmetry and irreversibility on the critical behavior of the
nonequilibrium models is examined. We focus on short-time universal behavior of reversible and
irreversible models.

I Introduction

Irreversible systems have been treated, mainly, by two
distinct statistical mechanical approaches. One of them
is grounded on the Zubarev nonequilibrium statistical
operator [1, 2]. It generalizes the Gibbs ensembles by
taking into account memory e�ects. The method has
been shown to be very appropriate to study the thermo-
dynamical properties of highly excited plasma in semi-
conductors [2, 3]. The other approach, used extensively
in the last years, is based on the construction and anal-
ysis of lattice gas models [4-7] that evolve in time ac-
cording to stochastic irreversible dynamics, that is dy-
namics that lacks detailed balance. This approach is
suitable to study critical phenomena in nonequilibrium
systems. Also, it is used to mimic biological problems
and chemical reactions. This is the kind of approach
that we consider here.

An important aspect in the study of irreversible as
well as reversible systems is the role of symmetry. Dis-
tinct systems with the same symmetry are expected to
have similar critical behavior. In reversible systems,
the symmetry is to be found in the Hamiltonian. In ir-
reversible systems, on the other hand, the symmetry is
to be found in the dynamics that de�nes the model. It
is important to note that there are models, such as the
contact process [8], which has an absorbing state, that
are intrinsically irreversible and do not have symmetries
that can be compared to reversible models de�ned by
a Hamiltonian. With respect to the critical behavior,
there are at least two kinds of irreversible stochastic
models: those for which there exists a reversible model
with similar critical behavior and those lacking a re-

versible analog.

We present here a discussion about classes of mod-
els that include irreversible and reversible models with
the same symmetries. We focus our attention on the
following statement: models with the same symmetries

and de�ned on the same lattice, reversible or not, are

in the same universality class [4, 9, 10]. Numerical cal-
culations of the critical exponent on several models give
support to this proposition [11-19].

We also study the short-time universality of re-
versible and irreversible stochastic lattice models. It
was established by Janssen, Schaub and Schmittmann
[20], using renormalization group analysis, that there
is a universal behavior in the �rst time steps (after a
microscopic time) of the evolution of the system. This
behavior has been veri�ed numerically by several stud-
ies on the kinetic Ising model and the kinetic Potts
model [21-28]. The two models evolve in time accord-
ing to a dynamics such that in the stationary state the
condition of detailed balance is obeyed. That is, they
are microscopic reversible models. In addition to these
models, short-time universality has also been observed
in models without microscopic reversibility [10,29-32].
For example, Ref. [31] considered a probabilistic cellu-
lar automaton de�ned on a square lattice and evolving
in time according to an irreversible dynamics with up-
down symmetry. It was found numerically that both
the static and short-time dynamical critical exponents
are the same as that of the Ising model de�ned in the
same lattice.

The models that we examine are presented in Sec-
tion II. There is also a discussion about the role of sym-
metry and of irreversibility in the study of nonequi-
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librium phase transitions. In Section III we give a
brief introduction to short-time analysis and short-time
universality, and report some numerical results on re-
versible and irreversible models. In Section IV we
present a summary of our results.

II Models

We treat systems that undergo continuous phase tran-
sitions and suppose that the systems are described by
models with stochastic dynamics that are either proba-
bilistic cellular automata, or are governed by a master
equation. The models are de�ned on regular lattices;
for each site i there is a local variable �i, so that the
microscopic state of the system is denoted by � = f�ig.

The evolution in time of a probabilistic cellular au-
tomaton is governed by the equation

P`+1(�) =
X

�0

W (�; �0)P`(�
0); (1)

where W (�; �0) is the transition probability from �0 !
�, given by

W (�; �0) =
Y

i

w(�i; �
0); (2)

and P`(�) is the probability of state � at time step `.
Stochastic models with continuous-time evolution

are governed by a master equation

d

dt
P (�; t) =

X

�0

fW (�; �0)P (�0; t)�W (�0; �)P (�; t)g;

(3)
where now W (�; �0) is the transition rate from �0 to �
and P (�; t) is the probability of state � at time t. These
models are usually called stochastic lattice gas models.

The condition of detailed balance is given by

W (�; �0)P (�0) = W (�0; �)P (�); (4)

where P (�) is the stationary probability. If the model
obeys this relation, in the steady state, then it is micro-
scopically reversible, and the stationary states are equi-
librium states. If the dynamics is irreversible the sys-
tem evolves in time and eventually reaches a nonequi-
librium steady state where condition (4) is not obeyed.
These considerations are valid for probabilistic cellu-
lar automata and for stochastic lattice gas models. We
remark that if the system is irreversible, then the sym-
metries are imposed on W (�; �0) and not on the Hamil-
tonian, as is usual for reversible (equilibrium) models.

If the stochastic model evolves in time according to
a dynamics involving only single-spin 
ips, the master
equation is given by

d

dt
P (�; t) =

X

i

fwi(�
i)P (�i; t)�wi(�)P (�; t)g (5)

where �i denotes the state obtained from � by 
ipping
the i-th spin and wi(�) is the rate of 
ipping of the i-th
spin. For the case of the kinetic Ising model and ir-
reversible models with up-down symmetry the 
ipping
rate wi(�) is given by

wi(�) =
1

2
f1� �ifi(�)g (6)

where �i = �1 is an Ising variable and fi(�) is an
odd function of the nearest-neighbor spins of the i-th
spin. Glauber dynamics [33], whose stationary state
gives the static properties of the nearest-neighbor Ising
model de�ned in a regular lattice, is such that

fi(�) = tanh(K ���i+�); (7)

where the summation is over the nearest neighbors of
site i. In addition to the Glauber prescription, there
are other stochastic dynamics used in computer sim-
ulations of the Ising model. One example, very well
known, is the Metropolis prescription [34].

We can also de�ne the majority vote model which
is a very simple example of an irreversible model with
up-down symmetry. In this case we have

fi(�) = (2p� 1)g(���i+�); (8)

where the summation is over the nearest neighbors of
the central site �i. The function g(X) assumes the
value 1 if X is greater than zero, 0 if X is equal to
zero and �1 if X is less than zero. So if a site i is
randomly chosen and the majority of its neighbors are
in state 1 then in the next instant of time the dynami-
cal variable �i will assume the value 1 with probability
p and �1 (contrary to the majority) with probability
q = 1� p. It is straightforward to verify that the 
ip-
ping rate (6) with fi(�) given in (8) possesses up-down
symmetry, that is, it is invariant under the inversion
�i ! ��i for all i. Mean-�eld analysis [35] and re-
sults from Monte Carlo simulations [13] show that the
model presents three phases: paramagnetic, ferromag-
netic and antiferromagnetic. The ferromagnetic state is
stable for values of q less than a critical value qc, where
there is a continuous phase transition. It was also been
veri�ed [13] from Monte Carlo simulations that the ma-
jority vote model de�ned on a square lattice has the
same critical behavior, with respect to the static criti-
cal exponents, as the Ising model de�ned in the same
lattice. It was found that �=� = 0:125 � 0:005 and

=� = 1:73�0:05, which are in good agreement with the
expected results for the Ising model in two dimensions,
namely, �=� = 1=8 = 0:125, and 
=� = 7=4 = 1:75.
This is convincing evidence that models without micro-
scopic reversibility, but possessing up-down symmetry,
are in the same universality class as the Ising model.

It is possible to see explicitly that the majority
vote model, de�ned above, does not obey condition (4).
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Consider a sequence of microscopic states where spins
are 
ipped in consecutive time steps in such a way that
we depart from an initial state and at the end we come
back to this same state. Start, for example, from the
following cluster in a con�guration A

+ +
+ + � +

+ �

Flipping one of the central sites we can have the follow-
ing situation B in the next instant of time

+ +
+ � � +

+ �

In the next instant of time, we can have the con�gura-
tion C;

+ +
+ � + +

+ �

and in the next instant of time, the con�guration D

+ +
+ + + +

+ �

From state D we can return to the initial state A.
For the cyclic sequence A ! B ! C ! D ! A
we obtain a transition rate that equals 1

2
pq2 and for

the reverse transformation A ! D ! C ! B ! A
the transition rate equals 1

2
p2q. These two transition

rates are di�erent, which proves that the model is in-
deed irreversible. The ferromagnetic, antiferromagnetic
and paramagnetic states that occur in the model are
nonequilibrium steady states, and it is not possible to
associate, a priori, a Gibbs distribution for these states.

If we perform the same kind of calculation for the
Glauber dynamics, with fi(�) given by equation (7), it
is easy to see that the transition rates for any cyclic
transformation and the reverse transformation are the
same. In particular, for the sequences A ! B ! C !
D ! A and A ! D ! C ! B ! A, both transition

rates equal
�
1

2

�4
(1 + tanh 2K)2(1 + tanh 4K). Actu-

ally, it is straightforward to prove detailed balance (4)
for the Glauber prescription.

Other examples of reversible and irreversible mod-
els with the same symmetries are the kinetic three-state
Potts model and a probabilistic cellular automatonwith
C3v symmetry [10]. In the case of the automaton, we
consider a regular square lattice with N sites. To each
site is associated a variable �i that takes the values 1; 2;
and 3. The transition probability depends only on the
values of the four nearest neighbor sites of the central
site i. The dynamics follows rules that are similar to the
ones of the majority vote model. If there is majority of
neighbors in one of the three states then the central site

changes to the majority state with probability p and to
one of the other two states with probability (1�p)=2. If
there is no majority, then the central site assumes one
of the three possible states with probability 1=3. It is
straightforward to check that the transition probability
so de�ned is invariant under the symmetry operations
of the group C3v. That is, the rotation symmetry opera-
tions 1! 2! 3! 1 and 1! 3! 2! 1 and the spec-
ular operations 1 ! 2, 2 ! 3, and 1 ! 3 leave the
transition rate invariant. Numerical simulations show
that the system exhibits a continuous phase transition
with the ordered state occurring at high values of p.
As p is decreased the transition takes place at a critical
value pc and the system becomes disordered for p < pc.
Using �nite-size scaling the critical exponents were es-
timated as �=� = 0:134� 0:005 and 
=� = 1:74� 0:02
[10]. These values are in fair agreement with the re-
sults for the three state Potts model in two dimensions,
namely, �=� = 2=15 = 0:133:::, 
=� = 26=15 = 1:733:::.

III Short-time universal be-

havior

Consider a model de�ned on a lattice and evolving in
time according to a given stochastic dynamics, for ex-
ample, a kinetic Ising model with Glauber dynamics.
We prepare the system in an random initial con�gura-
tion and observe what happens when we let the sys-
tem evolve in time, by means of a Monte Carlo sim-
ulation. The main idea of the short-time universality
theory is that if the system is placed at the critical
temperature and we analyze its behavior in the very
beginning of the simulation it is also possible to �nd
universality. For example the magnetization increases
in time according to a power law with a new dynamic
critical exponent �. This universal regime sets in after
a microscopic time. Although the mechanism respon-
sible, at the microscopic level, for the initial increase
of the magnetization is not yet very well understood,
Janssen, Schaub and Schmittman [20] determined the
scaling relations governing short-time behavior. Their
statements are based on renormalization group analy-
sis. The short-time scaling theory predicts the following
critical behavior

M (t) � t� (9)

and
M2(t) � t� (10)

for the magnetizationM (t) and for the second moment
of the magnetization M2(t), where � = (d � 2�=�)=z
with d the lattice dimension and z the dynamic critical
exponent. The static critical exponents � and � are
related to the magnetization and correlation length.

The exponent � has been evaluated numerically by
several authors for the kinetic Ising model and for the
kinetic Potts model. Di�erent initial conditions and
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di�erent reversible dynamics for the Ising model in two
dimensions lead to the same universal result � = 0:19
[22] [23, 26, 30].

More recently the short-time behavior of irreversible
stochastic models (without detailed balance), has also
been investigated [29-32]. In this case one studies
irreversible models that are far from the stationary
nonequilibrium state, and observes the behavior of the
order parameter in the �rst steps of a numerical sim-
ulation. The parameters that de�ne the irreversible
dynamics are set right at their critical values. Of
course, it is di�cult to prepare the irreversible sys-
tem with the critical parameters since the parameters
themselves must be also found from numerical simula-
tions. But there are irreversible systems for which the
regime where the magnetization increases as a power
law with exponent � takes place right after the �rst
Monte Carlo steps [29, 30]. The value of � is extracted
easily from a log-log plot of the magnetization versus
time t. Irreversible systems with up-down symmetry
in two dimensions have the same universal exponent �
as the two dimensional kinetic Ising model. For ex-
ample, calculations on the majority vote model and
on the kinetic Ising model with Glauber dynamics give
� = 0:190 � 0:005 and � = 0:191� 0:002, respectively
[30]. So the exponent � for the irreversible model and
for the reversible model are in good agreement. The
same behavior is observed for other irreversible stochas-
tic lattice gas models with up-down symmetry [30].
Other dynamic exponents associated to the short-time
regime, such as the exponent for the second moment
of the magnetization, are also consistent for reversible
and irreversible models with up-down symmetry.

These results were obtained by starting from a num-
ber of initial independent con�gurations. Each initial
con�guration was generated by setting the spin of each
site up or down with equal probability, independently.
Then the system evolves according to the local rules of
the model. The magnetization and its second moment
are measured at each Monte Carlo step. Finally, av-
erages are performed, at each time step, over the set
of independent initial con�gurations. The analysis of
the time evolution of the magnetization and the second
moment of the magnetization, in the early-time regime,
give the universal exponents � and � = (d � 2�=�)=z.
To obtain these exponents from numerical simulations
we use the short-time scaling relations (9) and (10).

Other dynamic exponents as, for example, the expo-
nent z can be evaluated from the short-time analysis.
To do this it is necessary to calculate the fourth mo-
mentM4(t) of the magnetization, fromwhich we get the
time-dependent Binder cumulant U = 1 �M4=(3M2

2 ).
The following scaling relation for the Binder cumulant
at the critical point holds

U (t; L) = �(t=Lz);

where L is the linear size of the lattice. Some works [22]

[29] determine the critical exponent z from this relation,
via a data-collapse analysis for lattices of di�erent size
L: However, these results are not very accurate since
the collapse can present inherent errors.

For the case of the three-state kinetic Potts model
the value of � is estimated as � = 0:08 [26]. Calcula-
tions with the irreversible probabilistic cellular automa-
ton with the same symmetries of the three-state Potts,
de�ned in Section II, give � = 0:09 [10]. To analyze and
compare these values of � we have to take into account
the fact that calculations of the short-time behavior for
probabilistic cellular automata are more intricate than
calculations using models with continuous-time dynam-
ics. Besides, it is known that the short-time behavior
is more di�cult to obtain for models with three states
per site, such as the kinetic three-state Potts model. So
we can say that on a �rst approach, the estimated val-
ues of � are in agreement. More calculations must be
done on both the reversible and the irreversible models,
to obtain more precise values for the dynamical critical
exponents.

IV Summary

We reviewed some aspects of nonequilibrium phase
transitions that have been studied in the last years.
We presented the approach that we use to study crit-
ical behavior in irreversible stochastic models. The
concept of microscopic reversibility was discussed by
taking into account the condition of detailed balance.
We also show that it is possible to check whether a
model is microscopically reversible by calculating the
rate of transition for a closed path in the space of con-
�gurations. With this de�nition in hand we discussed
some aspects concerning universality in nonequilibrium
phase transitions. Our studies indicate that an irre-
versible model, de�ned by a stochastic dynamics, and
a reversible model, de�ned by a Hamiltonian, belong
to the same universality class if they possess the same
symmetries and are de�ned on the same lattice. This
result was proposed �rst by Grinstein and collaborators
[4] for systems with up-down symmetry. We proposed
that irreversible models with C3v symmetry are in the
same universality class as the three-state Potts model.

In contrast to the above mentioned models, there
are nonequilibriummodels with absorbing states, which
do not belong to the universality class of any equilib-
rium model. It is worth saying that the continuous
phase transitions in models with one absorbing state
are related to the directed percolation problem [36].

The universality in nonequilibriumphase transitions
was also viewed in the context of short-time behav-
ior. We brie
y reviewed the main ideas concerning this
new universal regime, and discussed results obtained
for models with up-down symmetry and models with
C3v symmetry. Again, we conclude that the short-time
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universal behavior is the same for models possessing the
same symmetries and de�ned on the same lattice.

Symmetry is, perhaps, the very �rst idea that we
can have to study phenomena that occur in nature. It
is well known that symmetry is the most important fea-
ture in the Landau theory of phase transitions. It also
plays a fundamental role in the classi�cation of critical
behavior into universality classes.
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