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We study a discrete model of the irreversible autocatalytic reaction A + B — 2A in one dimen-

sion. Looking at the dynamics of propagation, we find that in the low-concentration limit the

average velocity of propagation approaches v = 8/2, where § is the concentration, and, in the high

concentration limit, we find the velocity approaches v =1 —¢

I Introduction

In this paper we study a discrete model of the irre-
versible autocatalytic reaction A + B — 2A in one di-
mension. We analyze the velocity of reaction propaga-
tion as a function of the total concentration, #. This re-
action is a simple example of a chemical reaction model,
but we can also think of it as a representation of the
spread of an infection. The A particles are infected,
and we allow them to diffuse, 1.e. perform a random
walk, and when a ‘sick’ particle encounters a ‘healthy’
one (a B particle) then the B is instantly infected. We
assume that the A’s and the B’s see each other only
by infection. Otherwise they are independent random
walkers which do not interact. The quantity of interest
is the speed of the spread of the infection. If we start
with one A on the extreme left of the system, we are
asking for the time dependence of the location of the
rightmost A.

Models of this type have evoked a good deal of in-
terest [1-4] because of several unexpected, fascinating
features of the process. As we will see, in the limit of
small # the front propogation is dominated by fluctu-
ation effects. What attracted particular attention [1]
was the realization that, as a result, continuum model-
ing breaks down completely for this reaction.

Specifically, we expect that the mean concentra-
tion of A particles would be described by the Fisher-
Kolmogorov equation [5], as we can see by writing a
conventional reaction-diffusion equation:

Oia = DOgza-+ kab

Digpa+ ka(f — a) (1)

Here k is a rate constant, D the diffusion constant,
and we have used the fact that a + & = 6. The
last equation becomes the Fisher-Kolmogorov equation
Gt = gy + u(l — u) after changing variables. Now

—6/2

from the standard theory [6], the velocity of the front

approaches v. = 2v/kD# independent of initial condi-
tions.

However, simulations [1] showed that the front ve-
locity was linear in @ for small 6, and thus very much
smaller than expected. This is understandable from
the work of Brunet and Derrida [2] who pointed out
that discreteness has an anomalously large effect on
systems which obey the Fisher-Kolmogorov equation
in the continuum limit. In references [2, 3] models were
introduced which interpolated between the results of
[1] and the Fisher-Kolmogorov equation via a very slow
crossover. The models involved a very large density of
particles with a small reaction rate. They found that
the velocity depression was given by v ~ v, — K/ In*(6)
where K is a constant.

A question remains, however: What is the mecha-
nism for the small velocity for # — 0 in the original
A+ B — 2A process? In a trivial model of indepen-
dent random walkers, it is startling that there is any
interesting dynamics. The total density at any point
is clearly given by a Poisson distribution. It turns out
however, that the front is not a typical point, and this
is the key to the unexpected behavior.

We find that the small velocity is a giant fluctuation
effect which goes qualitatively as follows. Suppose we
assume that the velocity is a monotonically increasing
function of 8, and, for small # recall that there are large
fluctuations in the local density. The front will move
quickly through high density regions, and get stuck in
the low density ones. Thus, on average, the motion
will be dominated by configurations where the front is
behind a gap in the distribution of B’s. The front mo-
tion will be random, and not advance, as long as the
rightmost A cannot convert a B. Our simulations and
analysis in the next section support this picture.

Also in the spirit of studying the model in its own
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right we consider the case of large 8 for a parallel up-
dating version of the process. Clearly the velocity must
approach one lattice constant per unit time since there
will always be a conversion at each step. However, the
nature of this approach turns out to be tricky, and we
are able to give only a partial analysis.

IT Model and simulation results

Consider a 1-D lattice of length L [7] populated with
random walkers randomly distributed with concentra-
tion #. The leftmost particle is of type A, and all of
the other particles are of type B. The particles make
random steps with parallel updating, i.e., all the parti-
cles move simultaneously. Any number of particles are
allowed to occupy a site. If a B particle encounters or
passes an A particle, it becomes an A particle. The
rightmost A particle defines the propagation front, and
we are interested in the velocity of this front.

Figure 1. Mean number of particles for sites about the front
from a simulation with an average of 0.2 particles/site (in
the rest frame of the front).

As we pointed out above, the particles follow a
simple random walk and thus are Poisson distributed.
However, taking into account particle types and follow-
ing the front, the distribution of particles at the front or
near the front is not so distributed. Fig. (1) shows the
average density of particles from simulation for various
sites around the front for # = 0.2. Ignoring the fit for
the moment, the density (conditioned on there being a
front at ¢ = 0), is depleted to the right of the front.
At higher concentrations, Fig. (2) shows the probabil-
ity distribution of particles at various sites around the
front in a simulation with average concentration 8 = 2;

Fig. (3) is for § = 4, and Fig. (4) for 6§ = 8.
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Figure 2. Probability density of site 1 about the front from
a simulation with an average of 2 particles/site (in the rest
frame of the front).
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Figure 3. Probability density of site 1 about the front from
a simulation with an average of 4 particles/site.

Our simulations were performed in two different
ways. For concentrations below 6 = 0.5, 200 walkers
were simulated and lengths were adjusted accordingly,
L = 200/6. Enough time steps were performed for each
walker to walk on average halfway across the sample,
T = L/6. To avoid initial transients calculations were
also made with the first 40/6? time steps censored. For
concentrations above § = 0.5, a 500-site lattice was sim-
ulated with 500 6 walkers for 400 time steps, and the
first 100 time steps were censored.
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Figure 4. Probability density of site 1 about the front from
a simulation with an average of 8 particles/site.

An earlier study [1] analyzed the velocity in an ap-
proximate fashion, using the Smoluchowski approach.
In this method, centered in the rest frame of the front,
B particles diffuse toward the front. The number den-
sity n follows the one-dimensional diffusion equation in
the frame moving with velocity v,

i vn’ =n”, (2)
where the diffusion constant D = 1. Assuming station-
arity, the time derivative vanishes, and the boundary
conditions n(£oc) = 6, n'(+oc) = 0 and n(0%) = 0
lead to:

n(e) = 6 ife<0

= (I—exp™®¥)f ifz>0. (3)
We will see later that v o< # so that, as  — 07, n is
order 6%. As shown by Fig. 1, this distribution agrees
well with simulation. However, the analysis gives no
way to find v.

I1.1 Small 9

In the low-concentration limit, § < 1, consider a
region containing the front particle and the “second”
particle, i.e., that nearest the front. (In case of more
than one particle at ¢ = 0 we arbitrarily declare one to
be the front, and the other the second particle.) The
size of the region will be ~ 1/§. Define a coordinate
system in the rest frame of the front particle, whose
position is defined to be at ¢ = 0. The number den-
sity of the second particle at site ¢ at time ¢ is n;(¢).
Note that since the front particle is treated separately
and not included in n;, the latter approaches the prob-
ability distribution for the second particle in the limit

8 — 0.
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The location of the second particle is the key to cal-
culating the velocity. In fact, the only nonzero contri-
butions to the average velocity occur when the second
particle is one behind the front (¢ = —1) or on the front
(i = 0). For all other positions, the front particle un-
dergoes an unbiased random walk, and the front does
not move on average. When ¢ = —1, with proper re-
naming of particles, the front will move forward one
step with probability 1/2, stay the same with probabil-
ity 1/4 and move back one with probability 1/4. Thus,
given i = —1, the average velocity is 1/2 — 1/4 = 1/4.
When ¢ = 0, the front will move forward one with prob-
ability 3/4 and move back one with probability 1/4, so
the average velocity of the front is

v(t) = ln_l(t) + lno(t). (4)
4 2

From random walk dynamics, the motion of the sec-
ond particle obeys a few simple rules:
o If the particle is at i = 0 at time ¢, n_o(t + 1) = 1/2
and ng(t 4+ 1) =1/2.
o If the particleis at ¢ = —1 at time ¢, n_1(t+1) = 3/4
and n_s(t+ 1) = 1/4.
e Otherwise, if the particle i1s at ¢ < —1 or ¢ > 0,
nipa(t+1) = 1/4, n;(t+1) = 1/2 and n;_»(t+1) = 1/4.
(Note that in these expressions the position of the sec-
ond particle is defined with respect to the front at at
time t + 1.)

For a stationary distribution, n;(t) = n;(t+1) = ny,
so the rules lead to relationships between the densities:
(a) For positions away from the front, ¢ < —2 or i > 2,

ni = (ni—2 + nit2)/2. (5)

(b) For positions around the front

n_s = n_4/2+4+ng
noy = n_z+m
ng = (noa+n2)/2
ny = ns/2
ny = ng/2 (6)

Equation (5) implies a linear behavior for the proba-
bilities away from the front. We need to impose bound-
ary conditions far from the front, because we have made
the approximation of only one nonfront particle, which
is only valid in the region 1/6 around the front. We do
this by matching to the continuum solution of Eq. (3).
For (3) to order @, the density is simply ¢ behind the
front and 0 in front of the front. Thus, to first order in
concentration @, the solution to the equations above 1s:

6 ifi<0
ni=1{ 0/2 ifi=0 . (7)
0 ifi>0

Thus v = /2. Our simulation results, shown in Table
1, confirm this prediction.



160

C. Warren, E. Somfai, and L.M. Sander

| 6 || v/0 | Std(v/8) | Foiatistic | Reps | Censored steps(40/0?) |
0.0025 || 0.53558 | 0.01669 | 0.95042 | 20 6400000
0.01 0.50292 | 0.00739 | 1.0756 100 400000
0.05 0.50785 | 0.00184 | 0.9542 1600 | 16000
0.1 0.50493 | 0.00184 | 0.999900 | 1600 | 4000
0.2 0.49152 | 0.00182 | 1.028745 | 1600 | 1000

Table 1. Simulation results for the velocity of front propagation for low concentrations.

Note that including the front particle, to first order,
the stable total number density distribution is N; = @
for i< 0, N;=1+6/2for i=0,and N; =0 for i > 0.
That 1s we have average concentration to the left of the
front and a depleted zone to the right, in agreement
with simulations.

Note the bipartite nature of (5) -(6). We can con-
sider a simpler “even-lattice” model in which only the
even sites are populated and still get the same average
velocity. This avoids the complicating factor of a site
-1 particle passing the front particle and becoming the
new front particle. For the even sites,

n; = (ni—2+ni42)/2, i< =2 or i>2
n_s = n_a/2+4+ng

ng = (noa+n2)/2

ny = ng/2 (8)

Maintaining the same overall density 6 would mean
doubling the concentration at all of the sites. Look-
ing at the form of (4) and taking into account differing
number densities, we get equal contributions to the ve-
locity from site 0 and site -1, and thus the same low
velocity limit, v = 8/2. However, this simplified “even-
lattice” model does not approach the same limit as that
of the “full-lattice” model in high concentration.

I1.2 Large 4
|

<77,Z> = P+<fz + bi+2|+> + P0<fi—1

where f; 1s the number of particles that move forward
from site k, by is the number of particles that move
backward from site k, ny = by + fi, {-|+) means that
the average is conditioned on the front moving forward,

In the full-lattice model, for any concentration the
probability of the front moving backward one site is

(o) (o) 1
P_= Z Z Wp(no,n—l), (9)

nop=1n_;=0

moving forward one is

oQ

1
P, = E 1—— 1
" no=1 ( 2“0) p(nO) ( 0)
and being stationary is

S S (R PRV

nop=1ln_1=0

where p(n;) is the probability of site ¢ having n; parti-
cles.

With  stationarity, p(ni(t),...,nc(t)) =
p(ny,...,np), we can use the dynamics of the model to
obtain similar relations between the site averages and
other site moments. In the rest frame of the front, if
the front moves forward, site ¢ at time ¢ 1s “fed” by
sites ¢ and ¢ 4+ 2 at time t — 1. If the front is stationary,
site 7 1s fed by sites ¢ — 1 and ¢ + 1. If the front moves
backward, site ¢ is fed by ¢ and ¢ — 2. The average at
site ¢ is

+ bi41]0) + P_(fi + bi_2|—), (12)

{-|0) means the average is conditioned on the front re-
maining stationary and (-|—) means the average is con-
ditioned on the front moving backward.

For example, for site i = 0,

(no) = Py(fo + ba|+) + Po(f-1 + b1[0) + P_(fo +b_2|-). (13)
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Note that around the front, specifically for ¢ €
{-2,—-1,0,1,2}, the movement of the front reveals in-
formation about the number particles at site i.

Now consider 8 to be large. Assume for the mo-
ment that the distribution at all sites, including ¢ = 0,
1s Poisson with mean #;, as seen in the simulations. Al-
though this must be true far from the front, it is not
clear why it is true nearby. It introduces a discrepancy

60 0 [0 () 91
bo=(l—e" )2t e T (l—e 7))

2 2

With the assumption 8; = 8, this equation collapses to a relation that approaches self-consistency to order %96 z,
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of order e=? because at site i = 0 there is a probability
e~? that there will be no particles at site i = 0. This
cannot be true because ¢ = 0 is defined as the site of
the rightmost A particle.

Neglecting this inconsistency for the moment, for
large @, one may use equation (13) to derive a recursion
relation:

0 _totior By +0_»
?-I-e 5 +e (T)

_ 4
[ —

(14)

8

A similar relation may be derived for the variance of the number of particles at site 7,

(ng) = (n0)® = Pr((fo + b2)?|+) + Po{(f=1 + b1)*[0) + P—((fo + b2)*|=) = (fo + b2)*.

With the Poisson assumption of mean and variance
f#, this relation simplifies to an expression that is self-
consistent to leading order %926_%.

Using the Poisson approximation, the velocity is

(16)

vp:P+—P_:1—e_€/2—e_€.

0 ‘ 5 10 15 20

Figure 5. Mean front velocity as a function of particle con-
centration.

However we can handle p(ng = 0) in a different way
by using a conditioned or truncated Poisson distribu-
tion, pr [8]. Specifically, p(ng = 0) = e~% is truncated
from the distribution and distributed to the other prob-
abilities,

0 ifk=20

pr(no = k) = { (1—e ) "tpp(k) ifk#£0 (17

(15)

where pp(k) is the ordinary Poisson distribution. Then
the velocity is

vp=1— e 12,

(18)

The recursion relation discrepancy for the mean is 1den-
tical to that of the Poisson distribution since everything
is simply divided by 1 —e~? and the leading order of
the variance is again identical, %926_%. Fig. (5) shows
that this agrees with the data better than Eq. (16). We
have no explanation for this.

III Summary

We have seen that the behavior of v at low concentra-
tion can be traced to the depletion zone to the right of
the front. Near the front the distribution of particles
is very different from the Poisson distribution, and the
motion of the front is dominated by the depletion. For
large 6 the velocity is approximated by 1 —e~%/2 and
the distribution is quite close to the truncated Poisson.

In the low concentration limit, to order 4, the veloc-
ity is simply v = 6/2 in the truncated Poisson model,
which also is correct. However, the truncated Poisson
model does not satisfy the recursion relations to order
f and 1t lacks the depletion zone ahead of the front. As
shown in Fig. (5), the truncated Poisson approach gives
a reasonable approximation for v for any concentration,
but this should be regarded as only a convenient inter-
polation.
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