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We report results from an ab initio calculation of low-energy electron scattering by CS2 molecules
using the Schwinger multichannel method with pseudopotentials. We calculated elastic integral,
di�erential and momentum transfer cross sections in an energy range from 5 eV up to 50 eV
and compared our results with available theoretical results and experimental data. Through the
symmetry decomposition of our integral cross section and eigenphase sum analysis, we found cross
section peaks that may be interpreted as broad shape resonances in the cases of the �g, �g, �u,
and �u symmetries. Among these possible resonances, the �g, �u, and �u are being reported for
the �rst time.

I Introduction

Studies on electron-collision with CS2 have received lit-

tle attention in the past years. We can quote the the-

oretical work of Lynch et al. [1], the measurements of

total cross section by Szmytkowski [2], the measure-

ments of elastic cross sections by Sohn et al. [3] and

the more recent works by Raj and Tomar [4] and Lee

et al.[5]. Lynch et al. used the continuum multiple-

scattering model and studied elastic e�-CS2 scattering

from 0 eV up to 100 eV. They were able to �nd some

shape resonances, especially the low-energy �u shape-

resonance around 1.85 eV. The measurements of Sohn

et al. covered the energy range from 0.3 eV up to 5 eV.

Szmytkowski measured total cross sections covering the

energy range from 0.4 eV up to 80 eV and Raj and

Tomar applied the independent atom model to calcu-

late cross section for energies above 100 eV. Lee et al.

used the Schwinger variational iterative method com-

bined with the distorted wave method to study e�-CS2
scattering. They calculated elastic and total (elastic

plus inelastic) cross sections for energies up to 100 eV

and also calculated di�erential cross sections at selected

energies.

In this work we present results of our calcula-

tions on elastic e�-CS2 collision, obtained with the

Schwinger multichannel method with pseudopotentials

(SMCPP) [6] at the �xed-nuclei static-exchange ap-

proximation. We have considered energies ranging from

5 eV up to 50 eV, thus avoiding the very low-energy

range, where polarization e�ects are known to be im-

portant in the description of the scattering process.

The SMCPP method has been applied with success

in the calculation of elastic and inelastic cross sections

for electron scattering by several molecular systems [7].

The symmetry decomposition of the integral cross sec-

tion according to the irreducible representations of the

molecular point group (D1h) and the eigenphase sums

were also investigated in order to study the resonant be-

havior of the partial cross sections for some particular

symmetries of CS2.

In the next sections we present the theoretical for-

mulation of our method, our computational procedures

and our results and discussions. We end this work with

a brief summary.
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II Theoretical Formulation

Here we will give a brief description of the SMC [8, 9]

and SMCPP [6] methods. The SMC method is a mul-

tichannel extension of the Schwinger variational princi-

ple. Actually, it is a variational approximation for the

scattering amplitude, where the scattering wave func-

tion is expanded in a basis of (N+1)-particle Slater de-

terminants

j	~ki =
X
m

a�m(
~k)j�mi; (1)

and the coe�cients a�m(
~k) of this expansion are varia-

tionally determined. The resulting expression for the

scattering amplitude in the body frame is

[f~ki;~kf ] = �
1

2�

X
m;n

hS~kf jV j�mi(d�1)mnh�njV jS~kii; (2)

where

dmn = h�mjA(+)j�ni (3)

and

c

A(+) =
Ĥ

N + 1
�
(ĤP + PĤ)

2
+
(V P + PV )

2
� V G

(+)
P V: (4)

d

In the above equations jS~kii, solution of the unper-
turbed HamiltonianH0, is the product of a target state
and a plane wave, V is the interaction potential between
the incident electron and the target, j�mi is an (N+1)-
electron Slater determinant used in the expansion of
the trial scattering wave function, Ĥ = E � H is the
total energy of the collision minus the full Hamiltonian
of the system, with H = H0 + V . P is a projection
operator onto the open-channel space de�ned in terms
of target eigenfunctions j�li:

P =

openX
l

j�lih�lj; (5)

and G(+)
P is the free-particle Green's function projected

on the P -space.
In this paper, we study elastic scattering at the

static-exchange approximation, and the operator P is
composed only by the ground state of the target j�1i

P = j�1ih�1j (6)

and the con�guration space j�mi is

fj�mig = fAj�1ij'mig; (7)

where j'ii is a 1-particle function represented by one
molecular orbital.

With the choice of Cartesian Gaussian functions to
represent the molecular and scattering orbitals, all the
matrix elements arising in Eq. (2) can be computed an-

alytically, except those from h�mjV G
(+)
P V j�ni (VGV),

that are evaluated by numerical quadrature [9].
The numerical calculation of the matrix elements

from VGV represents the most expensive step in the

SMC code and demands almost the entire computa-
tional time of the scattering calculation. These matrix
elements are reduced to a sum of primitive two-electron
integrals involving a plane wave and three Cartesian
Gaussian functions

h��jV j
~ki =

Z Z
d~r1d~r2�(~r1)�(~r1)

1

r12

(~r2)e

i~k:~r2 ;

(8)
and must be evaluated for all possible combinations of
�, � and 
 and for several directions and moduli of ~k.
We must also evaluate one-electron integrals of the type

h�jV PP j~ki =

Z
d~r�(~r)V PP ei

~k:~r: (9)

In the above equation, V PP is the nonlocal pseudopo-
tential operator given by:

V̂ PP (r) = V̂core(r) + V̂ion(r); (10)

with

V̂core(r) = �
Zv

r

"
2X

i=1

ccorei erf
h
(�core

i )
1=2

r
i#

; (11)

and

V̂ion(r) =
1X

n=0

3X
j=1

2X
l=0

Anjlr
2ne��jlr

2

+lX
m=�l

jlmihlmj; (12)

where Zv is the valence charge of the atom and in this
application it is equal to 4 for C, and 6 for S. The coef-
�cients ccorei , Anjl, and the decay constants �core

i and
�jl are tabulated in Ref. [10].
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Even for small molecules composed by light atoms,
a large number of the two-electron integrals must be
evaluated. This limits the size of molecules in scat-
tering calculations. In the SMCPP method we need
shorter basis set to describe the target and scattering
and consequently the number of two electron integrals is
smaller than in the all-electron case. The one-electron
integrals of Eq. (9) are more complex than those involv-
ing the nuclei, but they can be calculated analytically
and their number is also reduced due to the smaller
basis set. The reduction in the number of these inte-
grals allows the study of molecules that are larger and
heavier than those reachable by all-electron techniques.

III Computational Procedures

The ground state of the molecule, 1�g , is described
by a single-con�guration wave function j�1i (Hartree-
Fock level) at the experimental geometry with r(C-
S)=1.5526�A [11]. The 1s core electrons of carbon and
the 1s; 2s, and 2p core electrons of sulfur were replaced
by the pseudopotentials of Ref. [10]. The basis func-
tions used in the description of the target ground state
j�1i and in the description of the scattering orbitals j'ii
used in Eq.( 7) are given in Table 1, and were obtained
as described in Ref. [12]. We have not included in our
calculations the symmetrical combination of d functions
(
��
x2 + y2 + z2

�
exp(��r2)

�
), which is in fact a s-type

function, in order to avoid the linear dependency in the
basis set that could be responsible for spurious struc-
tures in the cross sections [13].

Table 1. Cartesian Gaussian functions for carbon and
sulfur

C S
Type Exponent Exponent
s 12.494080 7.382257
s 2.470291 2.063167
s 0.614027 0.878009
s 0.184029 0.245161
s 0.036799 0.061630
s 0.013682 0.015560
p 5.228869 7.203417
p 1.592058 3.134723
p 0.568612 0.529380
p 0.210326 0.154155
p 0.072250 0.035523
d 0.831084 1.689035
d 0.229204 0.476317
d 0.075095 0.151558

a Cartesian Gaussian functions are de�ned by

�lmn = Nlmn(x� ax)l(y � ay)m(z � az)n exp(��j~r � ~aj2)

IV Results and Discussion

Fig. 1 shows the comparison between our integral cross
section, the calculated cross section of Lynch et al. [1]
and Lee et al. [5], and the measured total cross section
of Szmytkowski [2]. We also show the data at 5 eV of
Sohn et al. [3]. There is very good agreement between
our results and the results of Lynch et al. for energies
above 15 eV. Both calculations agree with the result of
Sohn et al. at 5 eV, and also follow the shape of the
total experimental cross section data of Szmytkowski.
For energies between 5 eV and 15 eV, the agreement be-
tween both these theoretical results is qualitative. The
cross section of Lee et al. is above our cross sections and
the cross section of Lynch et al. for the entire energy
range considered. The structures in our integral cross
section are related to structures in the partial cross sec-
tions for particular symmetries, as discussed below.

Figure 1. Integral cross section for CS2. Solid line, our
pseudopotential results; dashed line, theoretical results of
Ref. [1]; thin solid line with circles, theoretical results of
Ref. [5]; plus sign, experimental elastic datum of Ref. [3];
stars, experimental total cross section of Ref. [2]. The ar-
rows indicate the structures positions and the symmetries
they appear are also shown.

In Fig. 2 we show the symmetry decomposition of

our integral cross section according to the irreducible

representations of the D1h point group. Although not

shown, our partial cross sections are in good agreement

with those of Ref. [1]. It is clear in this �gure that the

structures in our integral cross section are related to

the structures that appear in the symmetries �g , �u,

�g, and �u, at 7 eV, 6.5 eV, 13.5 eV, and 23 eV, re-

spectively, as indicated by the arrows in Fig. 1. The

�u structure produces a very smooth undulation in our
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integral cross section due to the signi�cant background

from other symmetries at this energy.

Figure 2. Symmetry decomposition of the integral cross
section.

Figure 3. Eigenphase sum for the �g, �u, �g, �u and �u

symmetries. The arrows indicate the peaks position of the
partial cross sections of Fig. 2. The peaks for the �g and
�u symmetries are located at the same energy.

In order to study possible resonant behavior in our

partial cross sections we have also calculated the eigen-

phase sum for each one of the symmetries. Our results

are shown in Fig. 3 for possible resonant symmetries

(those with bumps in Fig. 2). For each symmetry, we

mark with an arrow the energy at the peak and it is

always close to the maximum slope of the eigenphase.

Therefore, this �gure indicates that the structures re-

ferred to in the previous paragraph for the symmetries

�g, �g, and �u may be, in fact, broad shape reso-

nances. In the case of �u, the structure located at

12.5 eV, is very broad and cannot be seen in the integral

cross section due to its very lowmagnitude. Lynch et al.

also reported the �g resonance, placed at 7.9 eV. The

�g, �u, and �u resonances are being identi�ed in this

work for the �rst time. In the case of �u, there is a spu-

rious and very sharp resonance around 8.0 eV which is

resposible for the slope discontinuity of the eigenphase

sum in Fig. 3. We are not interpreting that discontinu-

ity as a real resonance because the phase change is too

small.

Figure 4. Di�erential cross sections for CS2. Lines, our
pseudopotential results; thin solid line with circles, theoret-
ical results of Ref. [5]; plus signs, experimental elastic data
of Ref. [3].

In Fig. 4a we compare our di�erential cross section

(DCS) with the measured DCS of Sohn et al. and cal-

culated DCS by Lee et al. at 5 eV. There is very good

agreement between our results and the results of Sohn

et al.. Although the DCS of Lee et al. presents the

same shape than ours, it is greater in magnitude than

ours at all scattering angles. In Figs. 4b, 4c, and 4d

we show our calculated DCS at 7.5, 10, 12.5, 15, 20,

25, 30, 40 and 50 eV and calculated DCS of Lee et al.

at 10, 20, and 50 eV. At 10 and 20 eV we found good

agreement in shape with the DCS of Lee et al.. For en-

ergies above 10 eV, our the DCS present two minima,

indicating a d-wave behavior.
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Finally, Fig. 5 shows our momentum transfer cross

section. There is no available results for comparison.

In Table 2 we present our results for di�erential, inte-

gral, and momentum transfer cross sections at selected

energies.

Figure 5. Momentum transfer cross section.

V Summary

We presented results for elastic scattering of low-energy
electrons by CS2 molecules. Our results agree very well
with the available theoretical and experimental results.
Through the symmetry decomposition of the integral
cross section and eigenphase sum analysis we tenta-
tively assign the cross section peaks to broad shape
resonances for the �g, �g , �u, and �u symmetries,
at 7 eV, 13.5 eV, 23 eV, and 12.5 eV respectively. In
this work, we have identi�ed these resonances for the
�rst time, except for the �g one, reported by Lynch et

al. [1] at 7.9 eV.
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Table 2. Tabulated cross sections for CS2 at selected energies. The cross sections are in 10�16 cm2 and the

scattering angles are in degrees.

angle 5eV 7.5eV 10eV 12.5eV 15eV 20eV 25eV 30eV 40eV 50eV
0.0 12.58 25.78 34.01 44.99 47.26 46.42 45.22 39.55 34.03 28.17
10.0 11.88 23.31 30.02 38.52 39.81 37.75 35.62 30.49 24.90 20.00
20.0 10.08 17.38 20.76 24.28 23.93 20.71 18.04 14.75 10.95 8.51
30.0 7.82 11.05 11.57 11.80 10.92 8.91 7.60 6.34 5.07 4.07
40.0 5.70 6.53 5.75 5.40 4.99 4.48 4.19 3.57 2.77 1.91
50.0 4.07 4.16 3.17 3.14 3.08 2.65 2.20 1.62 1.02 0.71
60.0 3.01 3.12 2.22 2.10 1.98 1.28 0.82 0.59 0.47 0.43
70.0 2.43 2.58 1.80 1.39 1.19 0.79 0.63 0.60 0.47 0.34
80.0 2.13 2.11 1.52 1.19 1.06 1.02 0.91 0.79 0.63 0.55
90.0 1.90 1.64 1.32 1.33 1.30 1.26 1.09 0.97 0.86 0.81
100.0 1.63 1.22 1.18 1.43 1.40 1.21 1.13 1.12 0.96 0.93
110.0 1.33 0.97 1.14 1.34 1.24 1.00 1.04 1.07 0.90 0.85
120.0 1.11 0.96 1.26 1.24 0.99 0.79 0.84 0.85 0.76 0.61
130.0 1.09 1.27 1.56 1.27 0.86 0.71 0.66 0.62 0.57 0.40
140.0 1.31 1.89 2.01 1.47 0.94 0.76 0.60 0.48 0.42 0.40
150.0 1.76 2.70 2.59 1.88 1.26 0.91 0.64 0.48 0.47 0.62
160.0 2.28 3.54 3.24 2.52 1.81 1.13 0.77 0.66 0.88 1.02
170.0 2.71 4.16 3.80 3.20 2.41 1.38 0.92 0.95 1.47 1.44
180.0 2.87 4.39 4.03 3.51 2.69 1.50 1.00 1.09 1.75 1.63

ics 36.12 44.53 43.98 45.12 42.08 35.92 31.75 27.13 21.92 17.98
mtcs 23.25 25.92 24.50 21.93 18.18 14.49 12.56 11.35 10.10 9.13
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