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Recent observations indicate that the expansion of the Universe is accelerating. This suggests
the existence of some kind of exotic matter with negative pressure. The simplest possibility is a
cosmological constant but there are alternatives, as for instance an evolving scalar �eld. In this
paper we explore constraints from lensing statistics and high-z type Ia Supernovae on some of these
alternatives.

I Introduction

\I am a detective in search of a criminal { the cosmical
constant. I know he exists, but I do not know his

appearance; for instance I do not know if he is a little
man or a tall man. Naturally the �rst move of my chief
(de Sitter) was to order a search for footprints, or what

look like footprints : : :

: : : I think I have now about enough evidence to justify

an arrest."

Arthur Eddington in \The Expanding Universe".

Recent observations of type Ia supernovae (SneIa)

suggest that the expansion of the Universe is accelerat-

ing [1, 3]. In fact what it is observed is that high-z SneIa

{ that after corrections are almost perfect standard can-

dles { are fainter than would be expected in a Universe

where the expansion is slowing down or remain con-

stant. Although there are still some possible sources of

systematic e�ects (source evolution and dust are those

that concern most), the current accepted explanation

is that they appear fainter because in a Universe that

is speeding up distances are larger. To get a qualitative

understanding of why accelerated expansion leads to

larger distances consider a nearby source with measured

redshift z. Forget for a while peculiar velocities and

think on redshift as a simple Doppler e�ect. In this ap-

proximation, for nearby sources the measured redshift

can be thought as giving us the velocity of the pho-

ton source at the time it was emitted (z = ve=c). Now

consider the velocity-distance law [4]: v(t) = H(t)d(t),

where v is the value of the source velocity and d its

proper distance at the same time t . Let us consider t

the present time. So, if in the past the photon source

had Hubble 
ow velocity ve and the rate of the Uni-

verse expansion is speeding up, the present value of the

source velocity is larger now than it would be in case the

Universe expands with, for instance, constant velocity.

So, assuming the same value for the Hubble parameter

today, it follows from the velocity-distance law, that a

larger velocity implies a larger distance. It follows from

Friedman equation (�a=a = �(4�G=3)(�+ 3p)) that ac-

celerated expansion may be achieved if the Universe has

a dominant component with an e�ective negative pres-

sure. Dark energy, dynamical-� (dynamical vacuum

energy) or quintessence are di�erent names that have

been used to denote this component. A cosmological

constant is its simplest form.

Recent studies incorporating new CMB data [5, 6]

con�rm previous analysis suggesting a large value for

the total density parameter (
total > 0:4) and favor

a nearly 
at Universe. Further, a di�erent set of ob-

servations [7] now unambiguously indicate low values

(
m0 = 0:3 � 0:1) for the matter density parameter

(
m0). In combination these two results are in line

with the conventional interpretation of the SneIa re-

sults and all together strongly support 
at cosmolo-

gies with 
m0 � 0:3 and a dark energy component

with 
X � 0:7. These models are also theoretically

appealing since a smooth component on small scales

(20{30 h�1Mpc) reconcile in
ation with the low values

for 
m0[8].

Since the beginnings of modern cosmology, the cos-

mological constant (�) re-appears from time to time.

Historically, Einstein [9] himself was the �rst one to in-

clude a cosmological constant in the general relativity

�eld equations in order to make them compatible with

a static universe. Lemâ�tre [10] also made use of � to
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show how the age of the Universe could be greater than

the inverse value of the Hubble parameter accepted at

that time. The cosmological term was also kept dif-

ferent from zero by Eddington [11], who preferred the

cosmological expansion starting from an Einstein static

universe. Petrosian, Salpeter and Szekeres [12] intro-

duced this term to account for an apparently observed

preponderance of sources with redshift z ' 2, and Gunn

and Tinsley [13] invoked it in 1975 to explain a seem-

ingly accelerated expansion of the universe. For a re-

view on the early history of the cosmological constant

see North [14]. Several aspects of non null � cosmolo-

gies such as the age problem, classi�cation of models,

classical tests, observational constraints on � , struc-

ture formation and gravitational lenses were discussed

by several authors. For a review and/or an extensive

list of references see [20].

In the past the cosmological constant has been intro-

duced several times to reconciliate theory with observa-

tions. When better data became available or improved

interpretation showed it was not needed, � has always

been discarded. However, now it is possible that this

situation will change and that the \genie" will remain,

perhaps for ever, out of the bottle [19]. According to

quantum �eld theory, the vacuum state has zero-point


uctuations to whose energy the gravitational �eld is

sensitive. As is well known, Lorentz invariance implies

that the vacuum contribution to the energy-momentum

tensor must be of the form ��g�� , where g�� is the met-

ric tensor. Therefore, quantum �eld theory predicts a

cosmological term that added to the bare cosmological

constant gives rise to an e�ective cosmological term.

The problem then lies in the maximum value that ob-

servations indicate to this term,

��
<
�

3mpl
2H2

0

8�
;

or

�
<
� 10�56cm�2:

The above upper limit is 50 to 120 orders of magnitude

below the estimate given by quantum �eld theory. The

di�culty in explaining the smallness of the e�ective �

is known as the \cosmological constant problem". One

of the original motivations for introducing the idea of a

dynamical �-term was to alleviate this problem. There

are also observational motivations. For instance, in

these models the COBE normalized amplitude of the

mass power spectrum is in general lower than in the

conventional constant-� model, in accordance with ob-

servations [24]. Further, the distance to an object with

redshift z is smaller than the distance to the same ob-

ject in a constant-� model (assuming the same value

of 
m0). So, constraints coming from lensing statistics

are weaker in these models [15, 18].

The dynamical-� models present in the literature

can schematically be divided in three types: scalar �eld

[31, 23, 24, 26, 25], x-
uid [29, 30, 18] and decaying-�

laws [28, 17, 16]. A phenomenological decaying-� law

model in which � decreases as � / a�m [here a is the

scale factor of the Friedman-Robertson-Walker (FRW)

metric and m is a constant (0 � m < 3)] was suggested

in Refs.[17, 16]. It was observed that the Einstein equa-

tions for these models are the same if instead of a �-

term, it would be considered (beside matter and radia-

tion) a x-
uid with equation of state, px =
�
m
3
� 1
�
�x.

In spite of the similarity at the level of Einstein equa-

tions, these two phenomenological models are di�erent.

For instance, in the case of a decaying �-term, matter is

created as a result of the decaying vacuum, while in the

exotic 
uid description the x-component is conserved.

In this paper we shall deal with two cosmologi-

cal tests: gravitational lensing statistics and the SneIa

magnitude redshift test. As mentioned before the

strongest observational support for an accelerated uni-

verse comes from SneIa. This test can be considered

the main motivation for introducing some kind of ex-

otic matter with negative pressure. On the other hand,

most lensing statistics analysis give lower values for �

and we �nd interesting to compare the predictions of

these two important tests. Here we �rst consider the

special case where the exotic component is a x-
uid

with constant equation of state and that is smooth on

scales smaller than horizon. We also report constraints

from gravitational lensing statistics and high-z SneIa

on two representative scalar �eld potentials that give

rise to e�ective decaying � models: PNGB potentials

(V (�) = M4 (1 + cos (�=f))) and inverse power-law po-

tentials (V (�) = M4+����). There are di�erent moti-

vations for introducing these two potentials. The best

motivation for the PNGB potential comes from particle

physics while the inverse power-law potentials have the

property of \tracking" that allow the �eld to start with

a wide set of initial conditions [32].

Let us consider �rst the motivations for introducing

the PNGB potential[21, 23, 25]. In order to act approx-

imately like a cosmological constant at recent epochs

with 
� � 1, the potential energy density should be

of order the critical density, M4 � 3H2
0m

2
Pl=8�, or

M ' 3 � 10�3h1=2 eV. As ususal we set V = 0 at

the minimum of the potential by the assumption that

the fundamental vacuum energy of the Universe is zero,

for reasons not yet understood. Further, since observa-

tions indicate an accelerated expansion, at present time

the �eld kinetic energy must be relatively small com-

pared to its potential energy. This implies that the



372 Brazilian Journal of Physics, vol. 30, no. 2, June, 2000

motion of the �eld is still (nearly) overdamped, that is,p
jV 00(�0)j

<
� 3H0 = 5�10�33h eV. The two conditions

above imply that f � mPl ' 1019 GeV. Further, the

PNGB mass is m� �M2=f ' 10�32h eV. In quantum

�eld theory, such ultra-low-mass scalars are not generi-

cally natural: radiative corrections generate large mass

renormalizations at each order of perturbation theory.

To incorporate ultra-light scalars into particle physics,

their small masses should be at least `technically' nat-

ural, that is, protected by symmetries, such that when

the small masses are set to zero, they cannot be gener-

ated in any order of perturbation theory, owing to the

restrictive symmetry.

From the viewpoint of quantum �eld theory, pseudo-

Nambu-Goldstone bosons (PNGBs) are the simplest

way to have naturally ultra{low mass, spin{0 particles.

PNGB models are characterized by two mass scales, a

spontaneous symmetry breaking scale f (at which the

e�ective Lagrangian still retains the symmetry) and

an explicit breaking scale M (at which the e�ective

Lagrangian contains the explicit symmetry breaking

term). Thus, the two dynamical conditions on f andM

above essentially �x these two mass scales. Note that

M � 10�3 eV is close to the neutrino mass scale for

the MSW solution to the solar neutrino problem, and

f � mPl ' 1019 GeV, the Planck scale. Since these

scales have a plausible origin in particle physics mod-

els, we may have an explanation for the `coincidence'

that the vacuum energy is dynamically important at

the present epoch [23, 21, 22]. Moreover, the small

mass m� is technically natural.

Next consider the inverse power-law case. The

best motivation for introducing this potential is the

existence of attractor (tracking) solutions such that

if �� � �B , the following relationship is satis�ed:

�TR� � a3(
B�

TR
� )�B with 
TR� = 
B �=(2 + �) < 
B

[27, 15, 32]. Here a is the scale factor of the FRW met-

ric and 
B stands for the adiabatic index of the back-

ground (
B = 4=3 during the radiation dominated era

and 
B = 1 during the matter dominated era (MDE)).

So, if the �eld is on track its energy density decreases

slower than the background energy density and the �eld

eventually will begin to dominate the dynamics of the

expansion. If the �eld is on track during the MDE,

its e�ective adiabatic index will be less than unity and

the �eld e�ective pressure will be negative. This condi-

tion by itself does not guaranty accelerated expansion.

It is necessary that the �eld dominates the dynamics

and that the total e�ective adiabatic index be smaller

than 2/3. However, for inverse power-law potentials

at late times 
� ! 1, such that when the growing


� starts to become non negligible, 
� deviates from

the above tracking value decreasing toward the value


� ! 0. So, even if � > 4 such that initially 
TR� > 2=3

in the MDE, as the �eld dominates and 
� decreases,

the Universe will enter in a phase of accelerated ex-

pansion. If 
m0 and � are su�ciently low this will

happen before the present time. For inverse power-law

potentials the two conditions 
�0 � 1 and the pre-

ponderance of the �eld potential energy over its kinetic

energy (
p
jV 00(�0)j

<
� 3H0) imply M � 10

27��12
�+4 eV

and �0 � mPl . Since �0 � mPl quantum gravitational

corrections corrections to the potential are important

and could invalidate this picture [33].

In the very early Universe, in order to success-

fully achieve tracking the �eld energy density must be

smaller than the radiation energy density. If in addition

it is smaller than the initial value of the tracking energy

density it will remain frozen until they have compara-

ble magnitude and then the �eld starts to follow the

tracking solution. Otherwise, if it is larger than the

initial value of the tracking energy density, it will en-

ter in a phase of kinetic energy domination (
� � 2),

�� decreases fast (�� / a�6) overshooting the tracker

solution. After that, as in the previous case, the �eld

frozen and again when the tracking energy density and

�� have comparablemagnitude the �eld begins to follow

the tracking solution. Whatever is the case there is al-

ways a phase before tracking in which the �eld is frozen.

So, an important point is the value of the �eld energy

density when it freezes. For instance, is it smaller or

larger than �eq , the energy density at radiation and

nonrelativistic matter equality? Did the �eld had time

to completely achieve tracking or not? In fact the con-

straints imposed by cosmological tests on the parameter

space depend on this condition.

We report constraints from lensing statistics and

high-z Sne for the inverse power-law potential starting

from two di�erent set of initial conditions. In the �rst

one we assume that the �eld is frozen by the matter{

radiation equality epoch. This is the approach we fol-

lowed in Ref. [25]. In this case depending on the value

of � and 
m0, it may happen that the �eld does not

have time to reach the tracking solution. In general,

if 
m0 is large we observe that 
� is still growing by

the present time, away from its initial value 
� = 0.

Otherwise, if 
m0 is su�ciently low, 
� will reach a

maximum value (not necessarily its tracking value) in

the past and , by the present time, will be decreasing

to the �nal attractor value 
� = 0. In our second ap-

proach we assume that the �eld starts tracking very

early in the Universe evolution.1 When �� becomes

1In fact this is true only if � is not very close to zero. The case � = 0 is equivalent to a cosmological constant and the �eld remains
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non-negligible, 
� starts to decrease to its �nal attrac-

tor value 
� = 0. Recently constraints from high-z Sne

on power-law potentials with the �eld rolling with this

set of initial conditions were obtained by Podariu and

Ratra[34]. We complement their analysis including the

lensing constraints as well.

This paper is based on Refs.[23, 25, 18, 46] and is

organized as follows. In Sec.II we present our statis-

tical lensing approach. The methods used to obtain

constraints from SneIa observations is brie
y described

in Sec.III. In Sec.IV our main results are presented and

in Sec.V conclusions are stressed out.

II Lensing statistics

In this section we outline our statistical lensing ap-

proach. It is based on Refs:[39, 40] and is described

with some more detail in [18]. We start de�ning the

following likelihood function, [39]

Llens =

NUY
i=1

(1� p
0

i)

NLY
j=1

p
0

j

NLY
k=1

p
0

ck: (1)

Here NL is the number of quasars that have multiple

image, NU is the number of quasars that don't have,

p
0

i � 1 is the probability that quasar i is lensed and

p
0

ck is the con�guration probability, that we shall con-

sider as the probability that quasar k is lensed with the

observed image separation. To perform the statistical

analysis we use data from the HST Snapshot survey

(498 high luminous quasars (HLQ), the Crampton sur-

vey (43 HLQ), the Yee survey (37 HLQ), the ESO/Liege

survey (61 HLQ), The HST GO observations (17 HLQ),

the CFA survey (102 HLQ) , and the NOT survey (104

HLQ) [35]. We considered a total of 862 (z > 1) high

luminous optical quasars plus 5 lenses.

The di�erential probability, d� , that a line of sight

intersects a galaxy at redshift zL in the interval dzL
from a population with number density nG is,

d� = c nG�a
2
cr dt ; (2)

where acr is the maximumdistance of the lens from the

optical axes for which multiple images are possible. It

is a function of the angular diameter distance between

observer and lens, lens and source, observer and source

and it also depends on the lens model.

In our approach we use a singular isothermal sphere

(SIS) as the lens model, we neglect lensing by spiral

galaxies, assume conserved comoving number density

of early tipe galaxies, ne = n0(1 + z)3 and a Schechter

form for the galaxy population,

n0 =

Z 1

0

n�

�
L

L�

��
exp

�
�

L

L�

�
dL

L�
; (3)

with n� = 0:61 h310�2Mpc�3 and � = �1:0. We as-

sume that the luminosity satis�es the Faber-Jackson

relation [37], L=L� = (�jj=��jj)

 , with 
 = 4 and take

��jj = 225 Km/s.

The total optical depth (� ), obtained by integrating

d� along the line of sight from 0 to zS , can be expressed

analytically,

� (zS) =
F

30

�
dA(0; zS)(1 + zS )

�3
(cH�1

0 )�3; (4)

where F = 16�3ne(cH
�1
0 )3(��jj=c)

4�(1 + � + 4=
) '

0:026 measures the e�ectiveness of the lens in produc-

ing multiple images [36].

It is important to include two corrections to the op-

tical depth: magni�cation bias and selection function

due to �nite resolution and dynamic range [39].

Since lensing increase the apparent brightness of

a quasar and since there are more faint quasars than

bright ones, there will be over representation of lensed

quasars in a 
ux limited sample. The bias factor is

given by [38, 39, 40]

B(m; z) = M2
0 B(m; z;M0;M2) ; (5)

where

B(m; z;M1;M2) =

2

�
dNq

dm

��1 Z M2

M1

dM

M3

dNq

dm
(m + 2:5 logM; z):

(6)

Since we are modeling the lens by a SIS pro�le,M0 = 2,

and we use M2 = 104 in the numerical computation.

We use the following expression for the quasar lu-

minosity function [40]

dNq

dm
/
�
10�a(m�m) + 10�b(m�m)

��1
; (7)

where

m =

8<
:

m0 + (z + 1) for z < 1;
m0 for 1 < z < 3;
m0 � 0:7(z � 3) for z > 3;

(8)

and we assume a = 1:07, b = 0:27 and m0 = 18:92. The

magni�cation corrected probabilities are

pi = � (zi)B(mi; zi) : (9)

Finally we have to consider the selection function

due to �nite resolution and dynamic range. It can be

always frozen.
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shown that the selection function corrected probabili-

ties are: [39]

p
0

i(m; z) = pi

R
d�pc(�)B(m; z;Mf (�);M2)

B(m; z;M0;M2)
; (10)

and

p
0

ci = pci(�)

�
pi

p
0

i

�
B(m; z;Mf (�);M2)

B(m; z;M0;M2)
; (11)

where

pc(�) =
F

� (zS)

Z zS

0

(1 + zL)
3

�

�
dA(0; zL)dA(zL; zS)

cH0
�1dA(0; zS)

�2
8�

�
�?jj
c

�2

�

�
�

1

cH�1
0

cdt

dzL

�

=2

�(�+ 1 + 4


)

�

0
B@ dA(0; zS)

dA(zL; zS)

�

8�
�
�?
jj

c

�2
1
CA



2
(�+1+ 4



)

� exp

2
664�

0
B@ dA(0; zS)

dA(zL; zS)

�

8�
�
�?
jj

c

�2
1
CA




2

3
7751�dzL;

(12)

Mf (�) = M0
1 + f

f � 1
; f > 1 ; (13)

and

f = f(�) = 100:4�m(�): (14)

To simplify computation we use two selection functions

[39], one for the HST observations and another one for

all the ground based surveys. Using more accurate se-

lection functions for each ground based observations

separately have little statistical e�ect.

Recently Falco et al. [41] observed that statisti-

cal lensing analysis based on optical and radio observa-

tions can be reconciled if the existence of dust in E/SO

galaxies is considered. In our computation we assume

a mean extinction of �m =0:5 mag as suggested by

their estimates. Current statistical analysis using both

HLQ and radio sources tight the constraints on a cos-

mological constant. Although this combined analysis

for dynamical-� models is still in progress we can have

an idea of what should be expected if, for instance, we

reduce extinction in our analysis to �m =0:3 mag. In

this case the new 2� contours, shift by approximately

1� from the previous one, that is, the new 2� contours

will be located slightly before the 1� contours of the

�gures in Sec.4.

By expressing Llens as a function of the parameters

m and 
m0 we obtained the maximum of the likelihood

function (Lmax
lens ) and formed the ratio l = Llens=L

max
lens .

It can be shown that with two parameters, the distri-

bution of �2 ln l tends to a �2 distribution with two

degrees of freedom [39].

III High-redshift type Ia Super-
novae [18]

There are two major ongoing programs to systemat-

ically search and study high-z supernovae. Although

the very preliminary results indicated a low value for

the cosmological constant ( 
� < 0:51 at the 95% con-

�dence level) [43], more recent analysis with larger sam-

ple of supernovae, now points to a di�erent direction.

Now the data indicate an accelerated expansion such

that 
� � 0:7, 
m0 � 0:3 and strongly supports a 
at

Universe.[1, 2].

In our analysis we consider data from the High-z

Supernovae Search Team. We use the 27 low-z and 10

high-z SneIa (we include SN97ck) reported in Riess et

al. [1] and consider data with the MLCS [44, 1] method

applied to the supernovae light curves. Following a pro-

cedure similar to that described in Riess et al.[1], for

each model,we determine the cosmological parameters

�̂a through a �2 minimization neglecting the unphys-

ical region 
m0 < 0. To simplify computation we �x

the Hubble parameter to H0 = 65:2 km/s Mpc�1 [1],

but the results are independent of this choice forH0 [1].

We use

�2sne(�̂a) =
37X
i=1

�
�p(zi; �̂a) � �0;i

�2
�2�0;i + �2vi

; (15)

where

�p = 5 logdL + 25; (16)

is the distance modulus predicted by each model, �0 is

the observed (after corrections) distance modulus, ��0
its uncertainty and �v is the dispersion in galaxy red-

shift due to peculiar velocities. Following [1] we use

�vi =
5

ln 10
200km=s

czi
and for high-z SneIa with z not de-

rived from emission lines in the host galaxy, we add

2500 km/s in quadrature to 200 km/s (see Table 1 in

[1]).

IV Results [18,46]

\The genie has been let out of the bottle, and it is no

longer easy to force it back in"[19]

The cosmological constant and the theory of

elementary particles
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Ya. B. Zeldovich

We �rst consider the x-
uid model. In Fig.1 we

present contours of constant likelihood 95.4% (2�) and

68% (1�) arising from the ��2sne analysis together with

those from lensing (dashed lines). For SneIa the peak

of the likelihood is located at m ' 1:1 and 
m0 = 0. If

we �xm = 0 we get 
m0 = 0:25�0:08 (1�). For lensing

the maximum of the likelihood occurs for m ' 2:4 and


m0 = 0. The same approach when applied to constant

� models (since m = 0 we now have only one degree

of freedom) gives: 
�
<
� 0:76 (or 
m0

>
� 0:24) at 2�,

1
>
� 
m0

>
� 0:39 at 1� with a best �t at 
m0 ' 0:61.

From the �gure it is clear that there is a region in the

parameter space (the region inside the triangle with ver-

tices (m ' 0:85,
m0 ' 0:24), (m = 0,
m0 ' 0:32) and

(m = 0,
m0 ' 0:38)) such that all points are inside the

1� (68%) con�dence region of both tests.

0 0.25 0.5 0.75 1 1.25 1.5 1.75

m

0

0.1

0.2

0.3

0.4

Ω  
m

95.4

95.4

68.

68.

68.

95.4

px=[
m

3
-1]ρx

Figure 1. Contours of constant likelihood (95:4% and 68%)
arising from lensing statistics (dashed lines) and type Ia su-
pernovae are shown for the x-
uid model.

In Fig. 2 we display contours (95:4% and 68%) of

the combined (lensing plus SneIa) likelihood. For the

combined �2 analysis we used �2tot = ��2sne � 2 ln l,

with l = Llens=Lmax
lens as de�ned in Sec.2. Although the

peak of the likelihood for each test separately occurs at


m0 = 0, the maximum of the combined likelihood oc-

curs at m = 0 (cosmological constant) and 
m0 ' 0:33.

Note that best �t models of the combined likelihood are

in accelerated expansion (q0 < 0). Models with m = 2

(cosmic strings [29]) and any value of 
m0 are at more

than 99% c.l. away from the peak of the likelihood.

We observe that if, for instance, we take h = 0:65 and


Bh
2 = 0:02, the CMBR �rst acoustic peak (`peak),

models with m and 
m0 inside the 1� allowed region in

Fig 2, will have `peak values between ' 215 and 230, (see

Fig. 4 in Ref.[30]), that are close to the current best val-

ues for `peak obtained from CMBR data. Models with

parameters m and 
m0 in this region are in agreement

with the current CMBR data as well. Constraints from

observations of clusters suggest 
m0 > 0:15 [7]. In Fig.

2 we display this constrain as a dotted line. Models

above this line are preferred.
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Figure 2. Contours of combined likelihood (95:4% and 68%)
arising from lensing statistics and type Ia supernovae are
shown for the x-
uid model.

Now we consider the scalar �eld models. In Fig.3

we show the 95:4% and 68:3% C. L. limits from lens-

ing (short dashed contours) and the SNe Ia data on the

parameters f and M of the PNGB potential. As in

[25], these limits apply to models with the initial con-

dition 4
p
��(ti)
mPl

= 1:5 and d�
dt (ti) = 0, with ti = 10�5t0 ;

for other choices, the bounding contours would shift by

small amounts in the f �M plane. We also plot some

contours of constant 
m0 (dashed) and the curve q0 = 0

(long dashed contour) as a function of the parameters

f and M . The best �t region of the parameter space is

limited by the lensing and SneIa 95:4% C. L. contours

and also by 
m0 > 0:15, that we took as our lower limit

for 
m0. The lensing 2� contour roughly coincides with

the density parameter contour 
m0 � 0:2. The data

clearly favors accelerated expansion (the region above

the q0 = 0 curve) but curiously there is a small region

in the parameter space, close to the protuberance of the

best-�t area (that is allowed at the 2� C.L.), where the

Universe is not in accelerated expansion at the present

time. This area disappears if 
m0 > 0:3. The data
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also favor the region in the parameter space where the

�eld is still nearly frozen, that is, the region between

the almost vertical lines of the 2� lensing and SneIa

contours.
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Figure 3. Contours of constant likelihood (95:4% and 68%)
arising from lensing statistics (short dashed lines) and type
Ia supernovae are shown for the PNGB model.

In Figs.4 and 5 we show the 95:4% and 68:3% C.

L. limits from lensing (thick dashed contours) and the

SNeIa data on the parameters � and 
m0 of the in-

verse power-law potential. For Fig.4 we assume that

the �eld is frozen around the matter{radiation equality

epoch, while for Fig.5 the �eld starts tracking early in

the Universe evolution. Again we display in the �gures,

as an horizontal straight line, 
m0 = 0:15 that we took

as our lower limit for 
m0. We also plot some con-

tours with the present value of the equation of state

w0 = 
0 � 1 (thin dashed contours) and the curve

q0 = 0 (long dashed contour). The present data ex-

clude � > 5 for the two initial data set we used. We

also have w0
<
� �0:5 that is also roughly what we got

in the x-
uid case, that sometimes is used as an ap-

proximation for the inverse power-law potential. We

also observe that the lensing constraints on the equa-

tion of state are weak, constraining only low values of


m0 and �. Although weak they are consistent with the

SneIa constraints. We can tight the constraints on the

equation of state if we consider a higher value for the


m0 lower bound. For instance, if we take 
m0 = 0:3

as our lower bound (as suggested by large-scale galaxy


ows [45]) we obtain w0
<
� �0:6 (or �

<
� 4) for the �rst

initial data set and w0
<
� �0:67 (or �

<
� 1:8) for the

second one. In both models, a larger lower bound on


m0, pushes the scalar �eld behavior toward that of a

conventional cosmological constant.
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Figure 4. Contours of constant likelihood (95:4% and 68%)
arising from lensing statistics (thick dashed contours) and
type Ia supernovae are shown for the inverse power-law
model. Also shown is the lower bound 
m0 = 0:15 from
clusters and curves of constant present equation of state
w0 = p�0=��0. For the �gure it is assumed that the �eld is
frozen at the matter{radiation equality epoch

So far we have considered only 
at models. For

the sake of completeness we also obtained constraints

on 
m0 and 
� in case we relax the 
atness hypoth-

esis and assume a conventional constant �. In Fig.6

we show the 95:4% and 68% C. L. limits from lens-

ing (short dashed contours) and the SNeIa data on the

parameters 
m0 and 
�. In our lensing analysis we

used �m = 0:6 mag for extinction. The lines q0 = 0

(dashed) and k = 0 (doted) are also displayed in Fig.6.

The long dashed lines are roughly the �2� constraints

from CMB anisotropy [6]. The pink shaded area is the

best �tting region of the parameters. It is quite clear

that current data favors an accelerated expansion (right

of the q0 = 0 line) and a nearly 
at Universe. This re-

gion would be reduced even more if, for instance, we

had considered other constraints on 
m, as those com-

ing from baryon fraction in clusters, clusters abundance

and its evolution [7] or large-scale galaxy 
ows [45].
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Figure 5. Contours of constant likelihood (95:4% and 68%)
arising from lensing statistics (thick dashed contours) and
type Ia supernovae are shown for the inverse power-law
model. Also shown is the lower bound 
m0 = 0:15 from
clusters and curves of constant present equation of state
w0 = p�0=��0 . For the �gure it is assumed that the �eld
starts tracking early in the Universe evolution.
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Figure 6. Contours of constant likelihood (95:4% and 68%)
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type Ia supernovae are shown for open, 
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V Summary

A consensus is beginning to emerge that we live in a

nearly 
at, low-matter-density Universe with 
m0 �

0:3 and a dark energy, negative-pressure component

with 
X � 0:7. The nature of this dark energy com-

ponent is still not well understood; further develop-

ments will require deeper understanding of fundamen-

tal physics as well as improved observational tests to

measure the equation of state at recent epochs, w(t),

and determine if it is distinguishable from that of the

cosmological constant.

In this paper we considered observational con-

straints from lensing statistics and high-z SneIa on cos-

mological models whose matter content is nonrelativis-

tic matter plus a negative-pressure dark energy compo-

nent. We used a lensing approach, where extinction is

considered, and that takes into account magni�cation

bias and the selection function due to �nite resolution

and dynamic range in the con�guration probability. For

the SneIa analysis we considered data from the High-z

Supernovae Search Team, the 27 low-z and 10 high-z

SneIa reported in Ref. [1]. We used data with the

MLCS method applied to the supernovae light curves.

We showed that the two tests are compatible and ob-

served that best �t models are in accelerated expansion

(q0 < 0).
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