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We show that ambiguities and symmetry violations arising in one loop calculations can always be
avoided provided the regularization scheme employed satis�es three consistency conditions. Our
calculations are e�ected by assuming only implicitly the presence of a regulator in the integrand.We
demonstrate in this way that there is a set of three relations involving divergent integrals of the same
degree of divergence which are the source of both ambiguities and symmetry violations in Quantum
Electrodynamics. Moreover we give analytical expressions for the �nite parts of amplitudes o� the
mass shell systematized in terms of a set of special functions. Ward identities require hightly nom
trivial relations involving those functions which we also derive.

I Introduction

Nowadays, the most consistent quantum �eld theory

in the description of physical observables is Quantum

Electrodynamics (QED). An essential step for the suc-

cess of that theory was, undoubtedly, �nding a consis-

tent interpretation of the in�nites that appear in the

calculation of perturbative amplitudes. The procedure

that allows for the elimination of those in�nites in favor

of a new de�nition of parameters is known as Renor-

malization Theory . Topics Renormalisation and Sym-

metries are deeply related. The symmetry relationships

in QED have origin directly in the lagrangean and auto-

matically associate several physical processes.The orig-

inal content of symmetries should be re
ected in the

calculated amplitudes with Feynman rules in each or-

der of the perturbative expansion. The symmetry rela-

tionships among Green's functions of a theory are Ward

identities. In theories with non trivial symmetries the

renormalizability critically depends on the cancellation

of divergences among di�erent sections of the theory as

dictated by Ward identities. Traditionally the treat-

ment of divergences in Quantum Field Theory is made

through the adoption of a regularization scheme so that

they can be manipulated and calculated. In the liter-

ature countless techniques of regularization exist. The

application of those techniques in renormalizable the-

ories had a relative success, since they can be used as

intermediate and are totally removable steps from the

�nal results. The method that has proven more consis-

tent in all situations in which it applies is Dimensional

Regularization[4][6]. It has however problems when the


5 Dirac matrix is involved. That technique is diÆcult

to be implemented in the case of unrenormalizable the-

ories , once the regularization parameter, that cannot

be removed, is the space-time dimension and therefore

of diÆcult physical interpretation. On the other hand,

other techniques, as the Pauli-Villars regularization[6]

that proposes a parameter of reasonable interpretation

as a cut parameter in the momentum, has other un-

desirable problems: unitarity violation and ambigui-

ties associated to the choice of the internal momenta

of the \loops ". A fundamental point that all the cur-

rent techniques of regularization have in common is the

modi�cations on the integrand of the mathematical ex-

pressions dictated by the Feynman rules for the several

processes. Recently a method has been proposed where

regularization is only implicit [1]. One never needs to

evaluate divergent objects. The proposed technique

separates the divergent from the physical (external mo-

mentum dependent) parts of the amplitude. Consis-

tency is achieved by means of three relations between

divergent integrals of same degree of divergence as will

be shown here in the context of QED. In the present

work we use arbitrary momentum label in the essential

one loops amplitudes of QED and investigate the con-

ditions under which the results are unambiguous and

symmetry preserving. That set of consistency condi-
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tions is automatically satis�ed for the Dimensional Reg-

ularization. Then we can say that any regularization

which satis�es those three consistency conditions auto-

matically will be a consistent prescription. Concluding

we show that a regularization scheme exists in four di-

mensions that possesses all the virtues of Dimensional

Regularization where it is applied, without, however,

presenting its restrictions with respect to the 
5 ma-

trix. In [3] it is shown that there exists at least two

possible regularizations.

The present work is organized as follows: in sec-

tion II we brie
y give an account of the method we will

use. All the explicit Ward identity calculations in the

section III are performed using the implicit regulariza-

tion scheme and some functions that we de�ne in the

Appendix. In section IV we will verify then that the

set of consistency conditions are satis�ed for the Di-

mensional Regularization and the one parameter Pauli-

Villars Regularization will always violate them.

II The Method: Implicit Regu-

larization Scheme

The implicit regularization scheme can be presented in

the form of its essential calculational steps:

- After taking the trace of Dirac matrices, we iden-

tify all of the divergent integrals.

- Manipulate each one of those integrals, just at the

level of the integrand, until dependence on the external

momenta is strictly contained in �nite integrals. This

can be accomplished by a Taylor expansion arond the

external momentum pi = 0 .

- The �nite integrals should be integrated di-

rectly without restrictions - The unambiguous diver-

gent parts, now independent of the external momenta,

are reduced to the basic forms:

Iquad(m
2) =

Z
�

d4k

(2�)4
1

[k2 �m2]
(1)

Ilog(m
2) =

Z
�

d4k

(2�)4
1

[k2 �m2]2
(2)

III Ward identities in QED

The application of the of Feynman rules for QED al-

lows us to construc the corresponding amplitudes to

the pertinent physical processes. That takes us to the

immediate identi�cation of the diagrams for which the

power counting reveals the possibility of divergences.

The content of symmetry of the theory establishes rela-

tionships among the diagrams, that should be satis�ed

for any method used in the manipulations and calcula-

tions.

We will use an arbitrary label for the internal mo-

menta of the loops and calculate the amplitudes show-

ing that, in the present case, ambiguities as symmetry

violations are related to the same set of divergent inte-

grals.

A. The tad-pole diagram

The Feynman rules give

T V
� = e

Z
�

d4k

(2�)
4
Tr

�

�

1

[( 6 k + � 6 q)�m]

�
(3)

Where we use the notations: a:b � a�b
� , 6 a � 
�a

�

and
R
�
means implicit regularization.

In agreement with the method explained in section

II the �rst step gives

T V
� = 4e (I� + �q�I) (4)

where

I� =

Z
�

d4k

(2�)
4

k�
[(6 k + � 6 q)2 �m2]

(5)

and

I =

Z
�

d4k

(2�)4
1

[(6 k + � 6 q)2 �m2]
(6)

The �rst integral has cubic divergence and the second

quadratic divergence.We will use the quadratically di-

vergent integral to show how the method works.

In the second step we used the identity equivalent

to a Taylor expansion arond �q to qet

c

1

[(6 k + � 6 q)2 �m2]
= f

1

[k2 �m2]
�

(�2q2 + 2�q:k)

[k2 �m2]2
+

+
(�2q2 + 2�q:k)2

[k2 �m2]3
�

(�2q2 + 2�q:k)3

[k2 �m2]3[( 6 k + � 6 q)2 �m2]
g (7)

eliminating the terms that don't contribute to the integral we have :

I =

Z
�

d4k

(2�)4
1

[k2 �m2]
+
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+

�Z
�

d4k

(2�)4
(��2q2)

[k2 �m2]2
+ 4�2q�q�

Z
�

d4k

(2�)4
k�k�

[k2 �m2]3

�
+

+

�Z
d4k

(2�)4
�4q4

[k2 �m2]3
�

Z
d4k

(2�)4
(�2q2 + 2�q:k)3

[k2 �m2]3[(6 k + � 6 q)2 �m2]

�
(8)

the last term between parenthesis is �nite. The �nite integrals cancel mutually as be veri�ed explicitly. We can
write then:

I = Iquad(m
2) + 4�2q�q�

Z
�

d4k

(2�)4
k�k�

[k2 �m2]3
� �2q2Ilog(m

2) (9)

In a similar way we will have

I� = �2�q�

Z
�

d4k

(2�)
4

k�k�

(k2 �m2)2

+4�3q�q�q�

(Z
�

d4k

(2�)4
g��k�k�

(k2 �m2)3
�

Z
�

d4k

(2�)4
2k�k�k�k�

(k2 �m2)4

)
(10)

The amplitude can be written as:

T�
V = 4ef�q�Iquad(m

2)� �q�

Z
�

d4k

(2�)
4

2k�k�

(k2 �m2)2

+�3q2q� [

Z
�

d4k

(2�)4
4k�k�

(k2 �m2)3
� g��Ilog(m

2)]

+4�3q�q�q�[

Z
�

d4k

(2�)
4

g��k�k�

(k2 �m2)3
�

Z
�

d4k

(2�)
4

2k�k�k�k�

(k2 �m2)4
]g (11)

d

Notice the presence of the ambiguity related by the
label of the internal momentum (dependence on � ).The
fermionic amplitude of a point should vanish identi-
cally because it possesses an odd number of vectorial
indexes (coupled with an odd number of external pho-
tons). That is dictated by the Furry theorem [9]. On
the other hand, the conservation of the vectorial cur-
rent (gauge invariance) demands that the contraction
with the momentum of the external photon is also zero
giving rise to the following Ward identity:

q�T� = 0 (12)

The conditions

g��Iquad(m
2) =

Z
�

d4k

(2�)
4

2k�k�
(k2 �m2)2

(13)

Z
�

d4k

(2�)4
4k�k�

(k2 �m2)3
= g��Ilog(m

2) (14)

Z
�

d4k

(2�)
4

g��k�k�
(k2 �m2)3

=

Z
�

d4k

(2�)
4

2k�k�k�k�
(k2 �m2)4

(15)

are necessary and suÆcient for obtaining an unambigu-
ous result. Notice that, by Dimensional Regulariza-
tion, the amplitude vanishes too. In the 2!-dimensional
space we can make a shift in (4) and therefore the am-
plitude vanishes. In Dimensional Regularization the
consistency conditions (13), (14) and (15) are also sat-
is�ed. Therefore as becames clear in this example one
of the reasons behind the consistency of Dimensional
Regularization is this. Now let us proceed to investi-
gate whether the same set of conditions appear in other
processes

B. The photon self-energy

The Feynman rules give

c

iT V V
�� = (�e2)

Z
�

d4k

(2�)
4
Tr

�

�

1

[6 k + � 6 q �m]

�

1

[6 k + (� � 1) 6 q �m]

�
(16)

We can write it as
T V V
�� = T�� + g��T

pp (17)
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where

T pp =

Z
�

d4k

(2�)
4
Tr

�

5

1

[6 k+ 6 p�m]

5

1

[6 k+ 6 p0 �m]

�
(18)

and

T�� = 4

Z
�

d4k

(2�)4
(k� + p�)(k� + p0�) + (k� + p�)(k� + p0�)

[(k + p)2 �m2][(k + p0)2 �m2]
(19)

In the last step we made the substitution p = �q and p0 = (�� 1)q.

Treating the amplitude in the same way as before and using the consistency conditions (14) and (15) to avoid
ambiguities(dependence on �) we can write the amplitude as

iT V V
�� = (�e2)f

4

3
[q2g�� � q�q� ]

�
Ilog(m

2) +
�i

(4�)2
[
1

3
+

2m2 + q2

q2
Z0

�
m2;m2; q2

�
]

�

+

Z
�

d4k

(2�)
4

2k�k�
(k2 �m2)2

� g��Iquad(m
2)g (20)

d

The �nite functions are all listed in the Appendix .
The amplitude should satisfy to the Ward identity

as demanded by the gauge invariance.With this expres-
sion we can see that the consistency conditions (13) is
also need in order to satisfy the Ward identities

q�T V V
�� (q) = q�T V V

�� (q) = 0; (21)

C. The electron self-energy and the ver-
tex correction

For the electron self-energy the Feynman rules give

� i�( 6 p) = 2e2 [(6 q0 � 2m)I � 
�I
� ] (22)

where we use q = �p and q0 = (1� �)p

(I; I�) =

Z
d4k

(2�)
4

(1; k�)

[(k + q)2 � �2][(q0 + k)2 �m2]

(23)
We work with � as the photon mass to avoid infra-
red divergence and take � = 0 in the result.Treating
the amplitude again as before (using the consistency
conditions (14) to avoid ambiguities) we can write the
amplitude as

c

�i�(6 p) = e2(6 p� 4m)Ilog(m
2) +

+2e2
�i

(4�)2
�
(6 p� 2m)Z0

�
�2;m2; p2

�
� 6 pZ1

�
�2;m2; p2

��
(24)

Here, as before all the �nite contributions are listed in the Appendix .

In the vertex correction case we don't have ambiguities because the amplitude is logarithmically divergent and
we can make a shift and eliminate �. The Feynman rules give

�i��(p; p0) = e3f�4
�I�� + (2
�
� 6 p+ 2 6 p0
�
� � 8mg��)I�

+[4m(p� + p�0)� 2m2
� � 2 6 p0
� 6 p]I + 2
�I 0g (25)

here

(I; I� ; I��) =

Z
d4k

(2�)
4

(1; k� ; k��)

(k2 � �2)[(p� k)2 �m2][(p0 � k)2 �m2]
(26)

I 0 =

Z
d4k

(2�)
4

1

[(p� k)2 �m2][(p0 � k)2 �m2]
(27)
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The explicit calculation of the amplitude leads to the result

�i��(p; p0) = (e)3

(

� [g��Ilog(m

2)�

Z
�

d4k

(2�)
4

4k�k�

(k2 �m2)3
] + 
�Ilog(m

2)

)

+
i

(4�)2
(e)3f2
��

�
�2;m2; p; p0

�
� 2
�Z0

�
m2;m2; (p� p0)2

�
+[4m(p� + p�0)� 2m2
� � 2 6 p0
� 6 p]�00

�
�2;m2; p; p0

�
+[2 6 p
� 6 p+ 2 6 p0
� 6 p]�01

�
�2;m2; p; p0

�
+[2 6 p0
� 6 p+ 2 6 p0
� 6 p0]�10

�
�2;m2; p; p0

�
�8m[p��01

�
�2;m2; p; p0

�
+ p�0�10

�
�2;m2; p; p0

�
]

�4[p� 6 p�02
�
�2;m2; p; p0

�
+ p�0 6 p0�20

�
�2;m2; p; p0

�
+(p� 6 p0 + p�0 6 p)�11

�
�2;m2; p; p0

�
]g (28)

d

The electron self-energy is related to the vertex cor-
rection by the Ward identity

q���(p; p
0) = e (�(p)��(p0)) (29)

When we make the contraction of the expression (28)
with the photon momentum we can see that: the only
way to automatically satisfy this Ward identity is if the
consistency conditions (14) are satis�ed. The �nite part
of the expression also satis�es the Ward identity. this
can be shown explicitly and far from being obvious. As
shown in the Appendix we need hightly nontrivial rela-
tions ammong the functions �s and functions Zs . These
relations among the �nite parts of the amplitudes are

very important in other models too. We therefore list
them all in the Appendix..

IV Conclusion

By Dimensional Regularization the consistency condi-
tions (13), (14) and (15) are satis�ed. Those three con-
ditions are just necessary to obtain results unambiguous
and symmetry preserving results in the calculation of
divergent amplitudes in QED. We can say that the suc-
cess of Dimensional Regularization in QED is due to
fact that it satis�es those consistency conditions auto-
matically. We have

c

Z
d2!k

(2�)2!
1

[k2 �m2]2
=

i

(4�)!
�(2� !)

(�m2)2�!
(30)

and Z
d2!k

(2�)2!
k�k�

[k2 �m2]3
=

i

(4�)!
�
�(2� !)

�(3)!

1

(�m2)2�!
(31)

we have Z
d2!k

(2�)2!
k�k�

[k2 �m2]2
=

i

(4�)!
�
�(1� !)

�(2)!

g��
(�m2)1�!

(32)

and Z
d2!k

(2�)2!
1

[k2 �m2]
=

i

(4�)!
�
�(1� !)

�(1)

1

(�m2)1�!
(33)

The last consistency condition can be written asZ
�

d4k

(2�)4
k�k�k�k�
[k2 �m2]4

=
g����
24

Ilog(m
2) (34)

where g���� = g��g�� + g��g�� + g��g�� . Then we have

Z
d2!k

(2�)2!
k�k�k�k�
[k2 �m2]4

=
i

(4�)!
�
�(2� !)

�(4)2!

g����
(�m2)2�!

(35)
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The one parameter Pauli-Villars Regularization will violate them:
�rst we have Z

d4k

(2�)4
(m2 � �2)

[k2 �m2]2[k2 � �2]
=

i

(4�)2
�
(�2 �m2)

�2
Y0(m

2;�2; 0) (36)

and Z
d4k

(2�)4
k�k�(m2 � �2)

[k2 �m2]3[k2 � �2]
=

i

(4�)2
�
(�2 �m2)

4�2
g�� [Y0(m

2;�2; 0)� Y1(m
2;�2; 0)] (37)

By the second condition we haveZ
d4k

(2�)4
k�k�(m

2 � �2)2

[k2 �m2]2[k2 � �2]2
=

i

(4�)2
�
(m2 � �2)2

�m2
g��Y1(m

2;�2; 0) (38)

and Z
d4k

(2�)4
(m2 � �2)2

[k2 �m2][k2 � �2]2
=

i

(4�)2
�
(m2 � �2)2

�m2
Y0(m

2;�2; 0) (39)

Finally we haveZ
d4k

(2�)4
k�k�k�k�(m

2 � �2)

[k2 �m2]4[k2 � �2]
=

i

(4�)2
g����

(m2 � �2)

�4�2
[Y0(m

2;�2; 0)� 2Y1(m
2;�2; 0) + Y2(m

2;�2; 0)] (40)

d

The regularization methods can introduce terms in
the calculated amplitudes which are devoid of physi-
cal meaning. Those terms many times are absorbed
by a renormalization process but many times can yield
results which are allien to the original theory. We con-
clude by stating that in the context of QED we found
which are the conditions to be satis�ed by ANY regu-
larization prescription to yield unambiguous and sym-
metry preserving results. The same three conditions

appear in other contexts such as the linear sigma model
[10]. The advantage of the present prescription is that
no explicit use of a regulator also is necessary. Also
it applies as well to theories involving 
5 Dirac matrix
which are important in low energy hadron physics.

APPENDIX A: Used Functions

We express the results of the amplitudes in terms of
functions that we will de�ne as:

c

Zk
�
�21; �

2
2; p

2
�

=

Z 1

0

dz ln

"
p2z (1� z) + z

�
�21 � �22

�
� �21

(��22)

#
zk (41)

Yk
�
�21; �

2
2; p

2
�

=

Z 1

0

dz
zk(1� z)(��22)

[p2z (1� z) + z (�21 � �22)� �21]
(42)

�nm
�
�21; �

2
2; p; q

�
=

Z 1

0

dz

Z 1�z

0

dy
znym

Q(y; z)
(43)

�
�
�21; �

2
2; p; q

�
=

Z 1

0

dz

Z 1�z

0

dy ln

�
Q(y; z)

(��22)

�
; (44)

where
Q(y; z) = p2y (1� y) + q2z (1� z)� 2p � qyz + z

�
�21 � �22

�
+ y

�
�21 � �22

�
� �21: (45)

Functions �s and Zs are related by expressions as

�10
�
�21; �

2
2; p; q

�
=

�
p2q2

p2q2 � (p:q)2

�
f

�
p:q

2p2q2
�

1

2q2

�
Z0

�
�22; �

2
2; (p� q)2

�
�

p:q

2p2q2
Z0

�
�22; �

2
2; p

2
�
+

1

2q2
Z0

�
�22; �

2
2; q

2
�

+
q2 � p:q

2q2
�00

�
�21; �

2
2; p; q

�
g (46)
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and it has the following property

q2�10 + p:q�01 = 1=2fZ0

�
�21; �

2
2; p

2
�
� Z0

�
�22; �

2
2; (p� q)2

�
+(q2 + �21 � �22)�

00g

p2�01 + p:q�10 = 1=2fZ0

�
�21; �

2
2; q

2
�
� Z0

�
�22; �

2
2; (p� q)2

�
+(p2 + �21 � �22)�

00g

q2�20 + p:q�11 = 1=2fZ0

�
�22; �

2
2; (p� q)2

�
=2� Z1

�
�22; �

2
2; (p� q)2

�
+3=2(q2 + �21 � �22)�

10 + 1=2(p2 + �21 � �22)�
01

�(1=2 + �21�
00)g

p2�02 + p:q�11 = 1=2fZ1

�
�22; �

2
2; (p� q)2

�
� Z0

�
�22; �

2
2; (p� q)2

�
=2

+1=2(q2 + �21 � �22)�
10 + 3=2(p2 + �21 � �22)�

01

�(1=2 + �21�
00)g

q2�11 + p:q�02 = 1=2fZ1

�
�22; �

2
2; (p� q)2

�
� Z0

�
�22; �

2
2; (p� q)2

�
+Z1

�
�21; �

2
2; p

2
�
+ (q2 + �21 � �22)�

01g

p2�11 + p:q�20 = 1=2fZ1

�
�21; �

2
2; q

2
�
� Z1

�
�22; �

2
2; (p� q)2

�
+(p2 + �21 � �22)�

10g

� = Z0

�
�22; �

2
2; (p� q)2

�
=2� (1=2 + �21�

00)

+1=2(q2 + �21 � �22)�
10 + 1=2(p2 + �21 � �22)�

01

d
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