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We propose an improvement of a Monte Carlo method designed to treat the Ising model in a �eld
[C. Lieu and J. Florencio, J. Low Temp. Phys. 89, 565 (1992)]. The method involves the counting
of bonds linking neighboring like-spins and yields the degeneracy of the system's energy states,
hence the partition function. There is no acceptance-rejection procedure and all the randomly
generated con�gurations are kept. The sampling depends on geometry only, so results of a given
run can be used for all temperatures and energy parameters. In order to understand the virtues
and inadequacies of the method, we obtained exact results for small lattices. We �nd that a Monte
Carlo run must be followed by a Gaussian �t in order to account properly for the rare events not
recorded in the sampling. Finally, we also established bounds for the location of the peak for the
specifc heat of the Ising model in a magnetic �eld in two dimensions for several values of the �eld
in the thermodynamic limit.

The thermodynamics of the Ising model in one and

two dimensions has been known for quite some time
[1, 2]. In 1D, there is no long-range order except at

zero temperature. On the other hand, in 2D the model

shows a transiton from a paramagnetic to a ferromag-

netic state as the temperature is lowered through Tc,
the critical temperature [3]. The model can help the

understanding of many phenomena observed in some

magnetic systems. In addition, it constitutes the start-

ing point for many other systems found in nature.

Monte Carlo computer simulation has been used in

the last few decades to study the model in dimensions

D > 2 [4]. In spite of the inherent limitations of the

lattices sizes used in computer simulations, results can

often be extended to the thermodynamic limit. Most
Monte Carlo simulations are based on the Metropolis

algorithm, which employs a rejection-acceptance pro-

cedure to enforce detailed balance [5]. Despite its suc-

cesses, those simulations face some diÆculties. For in-
stance, near the transition temperature it takes a long

computer time to equilibrate the system due to critical

slowing down. Another point to consider is that distinct

runs are needed to obtain the temperature dependence

of a given thermodynamic quantity. The determina-
tion of the location of narrow peaks of thermodynamic

quantities is not very accurate, which is the case in the

vicinity of the phase transition. Even though several

methods have been proposed to deal with these prob-
lems, we present in this work an improvement of the

Monte Carlo method of Lieu and Florencio [6] which

does not involve the rejection-acceptance feature of the

Metropolis method, and that might prove useful in the
study of the Ising model.

The Monte Carlo method considered here involves

random sampling of spin con�gurations, with all them

taken into account. The method allows for an estima-
tion of the degeneracies of the energy states, leading

directly to the partition function and the ensuing ther-

modynamic functions. Its main advantage is that the

sampling depends on geometry only. A single run is

valid for all the energy parameters J and B, as well as
the temperature T . The method yields analytical ex-

pressions, so there is no diÆculty in dealing with nar-

row peaks. The con�gurations are generated indepen-

dently, thus critical slowing down is not a factor. We
shall present here results for the 2D Ising model in an

external �eld. However the method can be used to deal

with higher dimensional lattices.

Consider the Ising model in a magnetic �eld on a

square lattice of N = L� L sites,

H = �J
X

i;j

(�i;j�i;j+1 + �i;j�i+;j)�B
X

i;j

�i;j (1)

with periodic boundary conditions �i+L;j+L = �i;j ,
where �i;j can take one of the two values, 1 (up-spin) or

�1 (down-spin), B is the external magnetic �eld and J

(FM or AFM) is the coupling parameter between neigh-

boring spins.
Consider a state of the system which has p up-spins

(and N � p down-spins). Suppose the up-spins form
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m nearest neighbor pairs (bonds) between themselves.

The energy of such state is then E0+p�1+m�2, where

E0 = N(B�2J) is the energy of the state where all the

spins are pointing down, �1 = 8J � 2B is the energy
needed to 
ip one down-spin originally surrounded by

neighboring down-spins, and �2 = �4J is the correc-

tion in case there exists a single up-spin located at a

site neighboring the 
ipped spin. Hence, the partition
fuction can be expressed as

Z = e��(�2NJ+NB)
NX

p=0

2pX

m=0

Cm
p x

m�p; (2)

where � = e���1 and x = e���2 . The quantity Cm
p

gives the number of states containing p up-spins form-
ing m bonds. The determination of Cm

p , the only un-

known in the partition function, is a very diÆcult com-

binatorics problem. The knowledge of Cm
p for any lat-

tice size completely solves the thermodynamics of the

2D Ising model in a �eld.
The core of the method is to determine an average

of these coeÆcients Cm
p by means of sampling. The a

priori probability of picking up any given state with p

up-spins is (Np )
�1, regardless the energy of that state.

Therefore the determination of Cm
p is purely geometric.

Since each con�guration has the same probability to

occur and they are statistically independent, the vari-

ance of Cm
p decreases as (NpMC)�1, where NpMC is

the number of elements in the sample of states with p
up-spins.

We ask the computer to generate a con�guration

with p up-spins distributed randomly on the lattice,

count the number of bonds m formed in such con�gu-
ration, and store the result. The process is repeated a

number of times and, by counting how many con�gu-

rations yielded m bonds, we obtain the con�gurational

average Cm
p . The proper number of states is ensured

by the normalization condition
P

m Cm
p = (Np ). Thus,

the determination of Cm
p is simply geometrical in na-

ture, hence the numerical values of the model parame-
ters and of the temperature are not needed in a Monte

Carlo run.

By exactly analyzing the m-dependence of Cm
p for

several values of p for small lattice sizes, we �nd that it
can be �tted with a Gaussian. As an illustration, Fig.

1 depicts a Gaussian �t (dashed line) to the the exact

values of Cm
p (circles) on a 7�7-lattice in the case where

p = 21. We also �nd that a Gaussian �t becomes better

as the lattice size increases. (It is not so good for very
small lattice sizes, such as 2�2, 3�3, etc.) Given that

the overwhelming majority of the states have values of

m distributed around the Gaussian peak, random sam-

pling will pick up mostly those states. The states in the
Gaussian tails will be undercounted, if not neglected en-

tirely. That poses a problem for the method, since the

contributions from those states and similar states from

Gaussian tails of di�erent p's may go uncounted. In

short, simple random sampling favors counting energy

states from around the peaks of Cm
p , while neglecting

states from its tails. In order to account for those states,

which are unlikely to be chosen by random sampling,

we propose to improve the method by using a Gaussian

�t to the results obtained from random sampling of the
con�gurations. Another point to consider is that some

states located in the tail of the Gaussian �t never occur.

For example, in the case of p = 4 and L = 5 or greater,

con�gurations with m = 5, 6, 7 and 8 never occur, be-

cause we can have at most four bonds with just four
up-spins in a lattice size where L � 5. Since the parti-

tion function, given by Eq. (2), involves a summation

over m up to 2p, we have to exclude such impossible

states. We have found a way to track these con�gu-
rations and it is actually a simple matter to get rid of

them. Hence, after the simulation is done, we perform

a Gaussian �t and normalize Cm
p after the exclusion of

those impossible states (we set Cm
p = 0 for such states).

Figure 1. Exact number of spin con�gurations on a 7 � 7
lattice versus the number the bonds formed by neighboring
up-spins. In the �gure shown, the number of up-spins is
p = 21.

These improvements of the method turn out to pro-
duce a more accurate results. We tested it for the 6�6
and the 8x8 lattices with J = 1 and B = 0. For the
6� 6 lattice, we performed 96 Monte Carlo runs, each
with 100000 samples per value of p. The exact value
for the temperature which maximizes the speci�c heat
is 2:389709. We obtain a value of 2:33 � 0:06 for the
peak temperature. We �nd equally satisfactory results
for the 8 � 8 lattice. Fig. 2 shows our results for the
speci�c heats of those lattice sizes.
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Figure 2. Speci�c heat using our Monte Carlo method for
the 6 � 6 and 8� 8 lattices, where J = 1 and B = 0.

Finally, we determined bounds on the location of
the peaks of the speci�c heat of the model in the pres-
ence of a �eld, in the thermodynamic limit. It is well
known that unlike the case where B = 0, where the
speci�c heat diverges at the critical temperature, there
is no divergence of the speci�c heat when B 6= 0. Nev-
ertheless, the speci�c heat has a peak centered at a
given temperature, which we denote by Tp, the peak
temperature. First, we determine Tp for small lattice
sizes, up to the size N = 6� 6. Fig. 3 shows the peak
temperature as a function of 1=N , the reciprocal of the
lattice size. The cases (J;B) = (1; 0) and (1; 0:5) are
displayed in the �gure. By extrapolation, we can infer
bounds for the location of the peak temperatures in the
thermodynamic limit. The results, for several values of
B are given in Table I. We also �nd that as the �eld
increases the upper and lower bounds approach each
other.

Table I. Bounds for Tp, the location of the speci�c
heat peak, for several values of B.
B lower bound upper bound
0.0 -x- 2.34322
0.1 2.53993 -x-
0.2 2.76417 -x-
0.5 3.08842 3.13671
1.0 3.61675 3.63054
1.5 4.09641 4.10180
2.0 4.55662 4.55920

Figure 3. Temperature at which the speci�c heat is peaked
vs the reciprocal of the system size, for B = 0 and B = 0:5.
The coupling energy J = 1. The dashed lines are just a
guide to the eye.

We need, of course, to test the method on larger

lattices in order to make more precise predictions on

the in
uence of the �eld B on the thermal properties of

the Ising model. The extension of the method to higher

dimensions is straightforward.
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