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The name Ising has come to stand not only for a specific model, but for an entire universality
class - arguably the most important such class - in the theory of critical phenomena. I review
several examples, both in and out of equilibrium, in which Ising universality appears or is pertinent.
The “Ornstein-Zernike” connection concerns a thermodynamically self-consistent closure of the
eponymous relation, which lies at the basis of the modern theory of liquids, as applied to the Ising
lattice gas. Debye and Hiickel founded the statistical mechanics of ionic solutions, which, despite
the long-range nature of the interaction, now appear to exhibit Ising-like criticality. The model of
Widom and Rowlinson involves only excluded-volume interactions between unlike species, but again
belongs to the Ising universality class. Far-from-equilibrium models of voting behavior, catalysis,
and hysteresis provide further examples of this ubiquitous universality class.

I Introduction

Since the playful title of this review might generate
confusion, let me start by saying that I have no idea
whether or not Ernst Ising actually met any of the other
scientists mentioned. The world lines intersecting here
belong to models and theories, not to persons, real or
imagined! Much as the name Galileo has come to define
a specific kind of relativity, Hamilton a kind of dynam-
ics, and Gauss a distribution, so “Ising” is now indeli-
bly associated with a specific kind of critical behavior, a
“universality class” in the familiar jargon of renormal-
ization group theory. The latter tells us (as is borne out
by experiment, analysis, and simulation), that the fac-
tors determining scaling properties in the neighborhood
of the critical point are few, and pertain to very gen-
eral properties of the system, such as its dimensionality
and that of the order parameter, range and symmetry
of interactions. For historical reasons, the class defined
by a scalar order parameter, ¢, short-range interactions,
isotropy, and symmetry under inversion (¢ — —¢ in the
absence of an external field), is commonly known as the
Ising universality class. While we should expect many
systems to fall in this class, most of the present article
is devoted to examples whose membership is surprising
or controversial.

My first example, self-consistent Ornstein-Zernike
theory (Sec. II), is not a bona-fide member of the Ising
class, but is, in a sense, making an impressive effort to
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be one! Criticality in electrolyte solutions, discussed in
Sec. III, remains controversial, though recent theoreti-
cal and experimental studies support Ising-like behav-
ior. We will see that the simplest lattice version of the
well-known primitive model may exhibit a line of Ising-
like critical points. We are used to thinking of the Ising
model as possessing two relevant variables (or scaling
fields), the temperature and the external magnetic field.
The Widom-Rowlinson model (Sec. IV) (in its lattice-
gas version) illustrates the possibility of Ising criticality
in a system with no temperature to speak of. Having
dispensed with temperature, we proceed in Sec. V to
the more radical step of eliminating the Hamiltonian
(and thermodynamics) altogether, in several far-from-
equilibrium stochastic processes. The guiding principle
of symmetry again permits one to understand the ap-
pearence of Ising criticality in these systems. A brief
summary is provided in Sec. VI.

ITI Self-Consistent Ornstein-
Zernike Theory for the Ising
Model

Ornstein-Zernike theory [1] represents an important,
early chapter in the theory of critical phenomena, and is
still widely used to interpret data from scattering exper-
iments. The Ornstein-Zernike relation (OZR), more-
over, serves as the starting point for modern theories of
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liquids [2]. This relation introduces the direct correla-
tion function c(r) [4] in terms of the total correlation
function h(r) = g(r) — 1, where g(r) is the radial dis-
tribution function:

h(r) = c(r) + p/dr'c(r)h(|r -r')). (1)

Here p is the number-density. Of course one must now
supply a closure, i.e., a second relation between ¢(r),
the intermolecular potential w(r), and (in certain cases)
h(r) itself. This, in general, can be done only in a
heuristic manner, as for example in the mean-spherical
approximation, ¢(r) = —w(r)/kgT, or the more so-
phisticated Percus-Yevick or hypernetted chain closures
[2, 3]. Surprisingly, these simple closures lead in many
cases to good predictions for h(r), and for thermody-
namic properties, via one of the standard, exact rela-
tions (the so-called virial, compressibility, and energy
routes) involving h(r). This is remarkable, since nei-
ther the OZR nor the closure include any thermody-
namic input. The OZ formalism and the resulting ‘in-
tegral equations’ for h(r) are couched purely in terms
of correlations, without reference to a free energy.

The absence of thermodynamic input becomes ev-
ident when one compares the predictions from differ-
ent routes. Thus the Percus-Yevick closure yields two
different equations of state for the hard-sphere fluid,
depending on whether the link to thermodynamics is
made using the virial or the compressibility route. Such
inconsistencies suggest a new strategy for closing the
OZR, in which we use a thermodynamic relation, ex-
pressing equality of (for example) the pressure evalu-
ated via different routes, to find a second relation be-
tween h, ¢, and w. Such an approach was proposed
over twenty years ago by Hgye and Stell [5], but de-
tailed numerical implimentations have appeared only
in the last few years. The first such application was,
naturally, to the three-dimensional Ising model, which
we outline here. (For details the interested reader may
consult Refs. [6] and [7].)

We consider the Ising lattice gas with indepen-
dent variables p (number of particles per site) and
B = 1/kgT. The interparticle potential w(r) is zero
for r > 1, -1 for r = 1 (an attractive nearest-neighbor
interaction) and infinite for = 0. The latter implies
the ‘core-condition’ h(0) = —1, expressing the simple
fact that two particles may not occupy the same site.
On a lattice the virial route, which involves the spa-
tial derivative of the potential, does not exist. Con-
sistency between the two remaining routes, energy and
compressibility, is embodied in the relation

0*(pu) _ 0°(Bp)
2%~ pap’ (2)

where u is the internal energy per particle and p is the
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pressure. The energy relation is

w=—Sap(l+ ) €

where h; denotes the total correlation function at the
nearest-neighbor separation, and ¢ is the coordination
number. The inverse compressibility is related to ¢ via
9(Bp)
——— =1-pc(0 4
5 =1 pil0) @
where ¢ denotes the Fourier transform. The direct cor-
relation function is, in effect, defined by the OZR, which
reads, on lattice,

hi = ci+chi7jhj , (5)
Jec
(the sum is over the sites of lattice £). This relation,
or, more specifically, its Fourier representation,
1+’0h_1—p5 , (6)
enables us to find h given c¢. Since we already have
h(0) = —1, the above relations, incorporating thermo-
dynamic consistency, suffice for determining one free
parameter, as a function of p and 3. At this stage
we introduce the unique approximation of our theory,
which is to set ¢(r) = 0 for r > 1, i.e., beyond the range
of the interaction. This defines what we call the self-
consistent Ornstein-Zernike approzimation or SCOZA.
After some manipulations we obtain a nonlinear par-
tial differential equation for ¢(1) = ¢1(8, p) (¢(0) is ef-
fectively fixed by the core condition). Integrating this
PDE numerically eventually yields h(r) and all thermo-
dynamic properties of the lattice gas.

The results compare remarkably well against the
best numerical (series expansion) estimates for the lat-
tice gas [6, 7]. We find the critical temperature from
the condition of a diverging compressibility at p = 1/2
(below T, infinite compressibility signals the spinodal);
the coexistence curve is constructed in the usual man-
ner. Especially impressive are the predictions for crit-
ical parameters, (Ref.[6]); SCOZA reproduces the best
series estimates to within 0.2%.

Can SCOZA predict critical exponents? Its ther-
modynamic predictions are so accurate that effective
exponents (i.e., derivatives of the compressibility, or-
der parameter, etc., with respect to temperature) are
in reasonable agreement with Ising model values near,
but not asymptotically close to, the critical point. We
really should not expect SCOZA to reproduce Ising crit-
ical exponents: ¢(r) is not zero for r > 1 in the Ising
model. In particular, it develops a power-law tail at
the critical point. The actual critical behavior of the
SCOZA-lattice gas is unusual [7]: for T' > T the expo-
nents are those of the spherical model: v = 2, § = 5,
and a = —1 (the specific heat does not diverge at T.),
as compared with v ~ 1.24, § ~ 4.8, and a ~ 0.1 for



Brazilian Journal of Physics, vol. 30, no. 4, December, 2000 713

the three-dimensional Ising model. Below T., SCOZA
yields a new set of exponents: ' = 7/5, ' = 7/20
and o/ = —1/10, considerably better than mean-field
or spherical model values.

Clearly the way to improve SCOZA is to relax the
truncation of ¢(r). But even with its current limita-
tions, SCOZA represents the first theory to yield glob-
ally accurate thermodynamic and structural properties
for a fluid model. It has been applied with success to
off-lattice fluids [11], and fluids in a disordered matrix
[12], and promisses to become an important tool in the
study of liquids.

IIT Ising Universality and the
Primitive Model of Elec-
trolytes

The critical behavior of electrolyte solutions remains a
challenging area, both experimentally and theoretically.
Experiments on various ionic solutions have yielded ei-
ther mean-field like critical exponents [13], Ising-like
exponents [14], or a crossover from mean-field to Ising-
like behavior as one nears the critical temperature [15].
In some cases the crossover from mean-field to Ising ex-
ponents occurs at a reduced temperature much smaller
than that typically seen in non-Coulomb liquids.

Theoretical studies have tended to focus on the sim-
ple system introduced by Debye and Hiickel in 1923
[16], commonly known as the restricted primitive model
(RPM). Here the positive and negative ions are repre-
sented by hard spheres of diameter o, containing point
charges +q at their centers. The solvent is not con-
sidered explicitly; its effect is represented solely by
the dielectric constant € that enters the expression for
the electrostatic potential. While clearly a minimal
model for ionic solutions, the RPM already presents
great difficulty to theory and simulation. Debye and
Hiickel’s analysis of the dilute, high-temperature regime
led to the fundamental result that electrostatic in-
teractions are screened on a length scale I'"!, where
['? = 4wpBq?/e. (The effective interaction or potential
of mean force takes on a Yukawa form oc e~ "/ /r.)

What sort of phase diagram should we expect for the
RPM? The hard-sphere part of the potential alone will
lead to a fluid-solid transition. At high temperatures
(T'* = okpTe/q> > 1) we expect packing considera-
tions to dominate, so that the high-density structure is
FCC or HCP. But since these structures are incompati-
ble with antiferromagnetic order (i.e., positive and neg-
ative charges occupying distinct sublattices), we should
expect a structural phase transition to a bipartite lat-
tice (presumably BCC) as we lower the temperature,
at high density.

The opposite corner of the p — T plane, low tem-
perature and density much less than the solid, is where

we find the critical point in simple fluids. Since the
RPM lacks the short-range attraction that drives the
liquid-gas transition, it is not immediately obvious that
it should exhibit such a transition. Nevertheless, Stell,
Wu, and Larsen, using liquid-state theory, reached the
conclusion that the RPM has a liquid-gas coexistence
curve with a critical point [17], but with a critical
density much lower than for a simple argon-like fluid.
Monte Carlo simulations confirm these conclusions, but
only in the last few years have the studies of different
groups converged toward common values for the criti-
cal density and temperature of the RPM [18-20]. Given
the difficulty in simply locating the critical point, it is
not surprising that current simulations shed little light
on its nature.

On the theoretical side, however, there has been
considerable discussion of RPM criticality, pointing to-
ward Ising-like behavior [21-23]. This seems at odds
with conventional wisdom (Ising universality for short-
range, and mean-field behavior for long-range interac-
tions), but may be understood intuitively as follows. At
the low temperatures of interest (note that T & 0.05),
the Coulombic interaction strongly suppresses charge-
density fluctuations on scales larger than o; ions asso-
ciate into pairs and larger aggregates. Thus the effec-
tive interacting units are not individual ions but clus-
ters that are typically neutral (or nearly so), interact-
ing via multipolar forces (presumably quadrupole and
higher) that are of short range and, on average, attrac-
tive (since such fluctuations lower the energy).

Such an intuitive picture finds support in recent ex-
periments showing Ising critical exponents at an ionic-
solution critical point [15]. What is needed, from the
theoretical standpoint, is an argument that takes us
from the RPM to a continuum description of density
fluctuations, dp(r), having the same form (up to irrele-
vant terms) as that for the Ising model, i.e., the usual
¢* field theory. It is clear, on the other hand, that
the RPM needs to be described in terms of a pair of
coupled fields, the mass or number density dp and the
charge density 1. An important first step is the proper
formulation of a mean-field theory [24, 25]. Very re-
cently, Ciach and Stell constructed a Landau-Ginzburg
free energy functional, starting from the mean-field the-
ory of the RPM, in terms of the two fields, dp and .
They find that integrating out the charge density fluc-
tuations leads to an effective field theory for §p hav-
ing the expected ¢* form. (Essentially, an attractive
effective interaction between mass-density fluctuations
is mediated by charge-charge correlations.) Thus the
crucial link between the RPM and Ising-like criticality
appears to be at hand.

In light of the great difficulty of RPM simulations,
it seems useful to study a lattice restricted primitive
model (LRPM) [26, 27], since lattice simulations offer
substantial economies in the computation time required
for evaluating the potential. (Overlap checks are triv-
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ial using a site-occupancy matrix, while the Coulomb
potential - with the contributions from the infinite pe-
riodic array of cells suitably accounted for - may be
stored in a lookup table.) Dickman and Stell [26] con-
sidered a lattice gas of particles interacting via site ex-
clusion (multiple occupancy forbidden) and a Coulomb
interaction wu(r;;) = s;8;/r;j, where rj; = |r; —r;| is the
distance separating the particles (located at lattice sites
r; and r;), and s; = +1 or —1 is the charge of particle i.
(Exactly half the particles are positively charged, half
negative. They are restricted to a simple cubic lattice
with periodic boundaries.)

At full occupancy, the LRPM may be viewed as an
antiferromagnetic Ising model with long-range interac-
tions. One naturally expects a critical or Néel point
separating a high-temperature phase from a phase ex-
hibiting antiferromagnetic order. (The Ising analogy
facilitates formulation of a mean-field theory for the
LRPM.) Indeed, it was proven some time ago that the
LRPM on the simple cubic lattice exhibits long-range
order at sufficiently low temperatures and high fugaci-
ties [28]. In simulations, we find that this point marks
one terminus of a line of critical points in the p — T
plane (see Fig. 1). The other end of the critical line
is a tricritical point, which intersects the coexistence
curve between a low-density disordered phase and the
ordered phase. The Monte Carlo simulations used a
relatively small lattice (162 sites), sufficient to map out
the phase diagram by studying the order parameter,
specific heat, and correlation functions, but too small
to yield information on critical behavior [26].
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Figure 1. Best estimates for the location of the critical line
and coexistence curve in the lattice RPM (simple cubic lat-
tice).

Thus the simplest version of the LRPM shows
a phase diagram that is rather different than the
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continuous-space RPM, exhibiting a critical line and
tricritical point rather than a simple critical point. One
reason for this difference is that the simple cubic lat-
tice facilitates antiferromagnetic order. It may be that
on a lattice that frustrates such order (the FCC struc-
ture, for example), the critical line will disappear, and
the tricritical point become a critical point. On the
other hand, Panagiotopoulos and Kumar found exactly
this, on the simple cubic lattice, when the hard-core
exclusion range is > 3 times the lattice spacing [27]. A
suitably modified version of the LRPM may therefore
be useful for studying ionic criticality. The phase dia-
gram appears to be highly sensitive to changes in lattice
structure or short-range interactions, as was also noted
by Ciach and Stell [25].

Even if the critical line of the simple-cubic LRPM
is not exactly what we had in mind for understanding
the off-lattice RPM, its nature, and that of the asso-
ciated tricritical point, are of interest, and potentially
relevant to other systems with Coulombic interactions.
Given the symmetry of the system, the Ising universal-
ity class again seems the natural candidate. The (very
limited) simulation data seem to indicate 8 < 0.326,
(the 3-d Ising value), which should in any case rule out
a mean-field type transition. Clearly larger-scale sim-
ulations and finite-size scaling analysis are in order; a
low-temperature expansion for the fully occupied case
might also prove useful. We close this section with the
observation that Ising criticality is compatible with a
long-range bare interaction, provided the effective inter-
actions between critical fluctuations are of short range.

IV Ising Without Temperature:
The Widom-Rowlinson
Model

In this section we again consider a model imported to
the lattice from its original continuous-space formula-
tion. The Widom-Rowlinson (WR) hard-sphere mix-
ture is perhaps the simplest binary fluid model show-
ing a continuous unmixing transition, and has been the
subject of considerable study regarding its thermal and
interfacial properties [29, 30], as has the Gaussian f-
function version of the model introduced somewhat ear-
lier by Helfand and Stillinger [31]. Despite this interest,
however, definitive results on the location and nature of
the WR critical point are lacking. As a first step in this
direction, Dickman and Stell performed extensive simu-
lations of the lattice-gas analog of the WR hard-sphere
mixture the Widom-Rowlinson lattice model (WRL)
[32].

In the original WR model, AB pairs interact via a
hard-sphere potential whilst AA and BB pairs are non-
interacting [29]. The WRL model is a two-component
lattice gas in which sites may be at most singly oc-
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cupied, and in which nearest-neighbor A-B pairs are
forbidden. Like the WR model, this is evidently an
athermal model (all allowed configurations are of the
same energy), and is characterized solely by the densi-
ties of the two species or by the corresponding chemical
potentials p and pp. (pa = up = p. of course, at the
critical point.)

Despite the absence of a temperature or energy
scale, the WRL model has a close affinity to the Ising
model. To see this, note that the WRL may be viewed
as an extreme member of a family of binary alloy mod-
els with nearest-neighbor interactions that are repulsive
between unlike species (interaction energies eap > 0,
eaa = egp = 0). The Ising model may be transcribed
into such a model by identifying up and down spins
with A and B particles, respectively, yielding a “close-
packed” alloy that unmixes at the Ising critical tem-
perature. Allowing a small fraction of vacant sites re-
sults in a dilute binary alloy (DBA) with a somewhat
depressed critical temperature; continuing the dilution
process, one arrives at a model with 7. = 0. This zero-
temperature terminus of the DBA critical line is pre-
cisely the WRL critical point. The coexistence surface
of the binary alloy model in the p 4, pp, T solid is shown
schematically in Fig. 2. One is then led to ask whether
the entire critical line shares a common behavior, or
whether its character changes at some point. Although
the former is clearly favored on the basis of universal-
ity, a careful examination of this question nevertheless
appears worthwhile.

BINARY ALLOY COEXISTENCE SURFACE

T

ISING

WIDOM-ROWLINSON

Figure 2. Schematic coexistence surface of the binary alloy
model. The Ising model coexistence curve is the intersection
of the coexistence surface with the plane pa + pp = 1. The
WRL coexistence curve is the intersection with the plane
T=0.

As shown in Fig. 2, the Ising coexistence curve is
the intersection of the critical surface with the plane

p=pa+pp =1 For p <1 we can cross the critical
line in the temperature or the density direction, main-
taining all the while h = pa—pp = 0 (u; is the chemical
potential of species 7). Thus, while in the WRL there is
no temperature per se, 4 = 4 + pp is a temperature-
like variable, so that along the symmetry line h = 0,
and in the vicinity of the critical point p., the sus-
ceptibility should scale as x ~ (u — u.)~7, the order
parameter, p4 — pg ~ (u — pe)?, (for g > p.), and so
on [31]. (Note that if the chemical potentials are taken
as independent variables, no “Fisher renormalization”
of critical exponents is expected, as it would be if we
worked with fixed densities [33].)

Ref. [32] reports Monte Carlo simulations of the
WRL in the grand canonical ensemble, using lattices
of up to 160? sites in two dimensions and 643 sites in
three dimensions. The algorithm employs three kinds
of moves: “flips” (change of the state, A, B, or vacant,
at a single site), “exchanges” (between any pair of sites
in the system), and flips (A = B) of entire clusters
(note that this is always possible in the WRL since a
cluster of occupied sites is always surrounded by a bor-
der of vacant sites). The results for the reduced fourth
cumulant, order parameter, and susceptibility are all
consistent with Ising-like behavior [32].

Following the WRL study, a series analysis of a
closely related continuum model, with Gaussian Mayer
f-functions, (i.e., the model introduced in Ref. [31]),
was reported by Lai and Fisher [34]. This study again
provides good evidence for consistency with the Ising
universality class at the critical point marking phase
separation. More recently, the generalization of the
WRL to g states, with infinite repulsion between unlike
nearest-neighbor pairs has been found to exhibit criti-
cal behavior consistent with the g-state Potts model, as
would be expected from symmetry considerations [35].

The appearance of Ising-like criticality in athermal
models in fact goes back to studies of lattice gases with
nearest-neighbor exclusion (NNE), done in the mid-
1960’s [36-38]. In this case there is only a single species
of particle, and the only interaction is a hard-core repul-
sion assigning infinite energy to pairs of particles with
separations < 1, in units of the lattice spacing. On a
bipartite lattice in two or more dimensions, there is a
critical density above which the particles begin to oc-
cupy one of the two sublattices preferentially, signalling
a continuous transition to a state with antiferromag-
netic order. (The NNE lattice gas is in fact closely
related to the zero-temperature line of the Ising an-
tiferromagnet.) Gaunt and Fisher analyzed series ex-
pansions for the NNE lattice gas on various two- and
three-dimensional lattices, and found § ~ 1/8, suggest-
ing, once again, Ising universality [36, 37]. It would
be worthwhile applying modern series and simulation
methods to the NNE models, to obtain more precise
results on their critical behavior.

It is perhaps worth observing that in all of the mod-
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els mentioned in the present section (and, indeed, in
the hard-sphere fluid), phase separation is driven ex-
clusively by entropy mazimization. Thus we have the
apparently paradoxical conclusion that for large val-
ues of the chemical potential, the ordered phase has
an entropy greater than or equal to that of the disor-
dered phase. This shows that the naive identification
of entropy with ‘disorder’ is not always appropriate; in-
terpreting increased entropy as greater freedom seems
more apt.

V Ising Without Equilibrium:
Voters, Catalysis, and Hys-
teresis

The present section concerns far-from-equilibrium mod-
els, defined by a Markovian dynamics rather than a
Hamiltonian. Since the transition rates do not satisfy
detailed balance with respect to any reasonable energy
function (i.e., bounded below, and with a finite number
of many-body terms), these models have no thermo-
dynamic interpretation. Such systems are nevertheless
widely studied using the tools of statistical physics, as
models of, for example, populations, traffic, catalysis,
and “self-organized” criticality [40]. Many of these sys-
tems exhibit transitions between a fluctuation-free ab-
sorbing state (admitting no escape) and an active phase
[41, 42, 43]. Models possessing an absorbing state, and,
associated with this, a non-negative order-parameter
density, do not exhibit Ising symmetry. Instead, they
fall generically in the universality class of directed per-
colation, which plays a role analogous to the Ising class
for absorbing-state phase transitions [39, 44].

The models to be discussed in this section do,
however, observe Ising symmetry, and belong to the
Ising universality class. The fact that the Ising class
cuts across the equilibrium/nonequilibrium boundary
serves to illustrate that phase transitions in far-from-
equilibrium systems are just as worthy of the name as
their equilibrium counterparts, and do not, as is some-
times asserted, represent merely an “analogy” to “real”
(i.e., equilibrium) phase transitions. Of course, one’s
outlook will depend on whether one adopts a thermo-
dynamic or a mathematical definition of a phase tran-
sition. My point is that experience with percolation,
nonequilibrium models, and deterministic as well as
stochastic cellular automata make it natural to regard,
quite generally, any singular dependence of the prop-
erties of a system of many interacting units upon its
control parameters as a phase transition. From this
vantage, critical phenomena represent a particular class
of singularities (attended, for example, by a diverging
correlation length and relaxation time), with equilib-
rium critical points representing a particular, and not
especially privileged, subset thereof.
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VI The Majority-Vote Model

The prototypical example of a nonequilibrium stochas-
tic process with local interactions, isotropy, and up-
down symmetry is the majority-vote model [44]. At
each site of a lattice there is a “spin” variable o; = £1.
A Markov process is defined as follows. At each step,
a site i is chosen at random, and o; — o}, which is
taken to be equal to the majority of its nearest neigh-
bors (i.e., sgn[}_;,,;0;]) with probability p, and to
the minority with probability ¢ = 1 — p. (If there is
no majority o; flips with probability 1/2.) Although
the transition rates do not satisfy detailed balance, it
is not hard to see that the parameter g plays a role
analogous temperature in the equilibrium kinetic Ising
model. (The dynamics of the majority vote model is
akin to Glauber dynamics; there are no conserved quan-
tities.) For ¢ = 0, “voters” have no independence of
opinion whatever, and slavishly follow the local major-
ity. This ¢ = 0 limit defines the voter model, which has
two absorbing states, all +1 or all -1, just as in the Ising
model at 7' = 0. (The voter model belongs to a univer-
sality class different than Ising, the so-called compact
directed percolation class [45, 46].) For ¢ > 0 but small,
the stationary state exhibits spontaneous “magnetiza-
tion”: m = (0;) = Lmyg, with mo > 0. Above a critical
g value (g, ~ 0.075 for the square lattice [47]), the sta-
tionary state is disordered (m = 0). (No ordered state
is found in one dimension, just as for the equilibrium
Ising model.)

Thus the phase diagram of the majority-vote model
is qualitatively the same as for the standard Ising
model. Confirmation that the critical behavior is also
of the Ising kind comes from Monte Carlo simulations
reported by de Oliveira [47], which showed (for the two-
dimensional case), that the exponents v, v and [ are
the same as those of the Ising model. Many nonequilib-
rium models have now been shown to exhibit Ising-like
critical behavior, indicating that this universality class
is equally robust, in or out of equilibrium. Examples in-
clude a family of generalized majority-vote models [48],
an anisotropic majority-vote model [49], a two-state im-
munological model [50], and various two-temperature
Ising models [51]. In the latter example, a spin sys-
tem evolves via two dynamical processes, for example,
single-spin flips and nearest-neighbor exchanges, each
having its own temperature (see Ch. 8 of Ref. [43]
for a review). Ising-like short-time critical behavior has
also been established for certain nonequilibrium models
with up-down symmetry [52].

The principle underlying universality of critical be-
havior in these examples appears, once again, to be
symmetry. While detailed renormalization group analy-
ses are lacking, Grinstein et al. have argued that models
obeying up-down symmetry and exhibiting a continu-
ous phase transition, be they in equilibrium or not, will
have a coarse-grained descrption of the same form as for
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a standard kinetic Ising model [53]. We can see this as
follows: if such a description exists, then in a Langevin-
like equation for the order parameter density m(r,t),
only odd powers of m may appear (up-down symme-
try). Gradient terms are ruled out by isotropy, so the
lowest-order derivative term will be V2m. Generically,
the transition to an ordered state will be controlled by
the coefficient a of the term o< m. (In mean-field theory
this coefficient vanishes at the critical point, but in a
full analysis the nonlinear terms will renormalize a. to
a nonzero value.) That is, the order-parameter density
will obey (in the nonconserving case) a time-dependent
Landau-Ginzburg equation of the form

% = V?®m —am — bm® + n(r,t) , (7
where we have dropped higher-order terms (o< m®, etc.)
since they are irrelevant to critical behavior. The noise
term n(r,t) is zero-mean, and Gaussian, with autocor-
relation (n(r,t)n(r',t') = [§¢(r—r')6(t—¢'). In equilib-
rium I is of course proportional to temperature. Out
of equilibrium no such relation exists, but the theory
again predicts an Ising-like transition; the deviation
from equilibrium is found to be irrelevant, near the up-
per critical dimension [53]. The principle that systems
with the same symmetries share a common critical be-
havior, whether in or out of equilibrium, has recently
been extended to models with Potts-like symmetries
[54, 55].

We have seen that a variety of nonequilibrium per-
turbations preserve the character of the transition in
spin systems or lattice gases. It is worth noting that
biasing the hopping rates to favor movement along a
particular axis (e.g., in a lattice gas with attractive
interactions and a Kawasaki-type exchange dynamics)
breaks an essential symmetry of the Ising model by in-
troducing a preferred direction. Such “driven diffusive
systems”, as they have come to be called, exhibit criti-
cal behavior outside the Ising class. The precise nature
of the transition remains controversial; for reviews see
Refs. [43] and [56].

VII Catalysis Models

Another large class of nonequilibrium lattice models
arises in the study of heterogeneous catalysis, typically
on a metallic surface. One of the first such models to
be studied in detail was introduced by Ziff, Gulari and
Barshad (ZGB), to describe the reaction CO + 1/2 O,
— CO on a platinum surface [57]. These models typ-
ically exhibit transitions to an absorbing state, which
(when continuous) fall in the directed percolation class
[58]; they are reviewed in chapter 5 of Ref. [43].

The ZGB model exhibits two phase transitions, one
continuous, the other discontinuous. Under a suitable
perturbation, however, the latter can become a critical

point, which appears to belong to the Ising class. In
the ZGB model, the catalytic surface is represented by
a two dimensional lattice. The transition rates involve
a single parameter, Y: the probability that a molecule
arriving at the surface is CO. This molecule needs only a
single vacant site to adsorb, as indicated by experimen-
tal studies; Oy requires a pair of vacant sites. After each
adsorption event, the surface is immediately cleared of
any CO-O nearest-neighbor (NN) pairs, making the re-
action rate for CO- formation, in effect, infinite. The
adsorption and reaction events comprising the dynam-
ics go as follows. First choose the adsorbing species
— CO with probability Y, Oy with probability 1 — Y
— and a lattice site x (or, in the case of Oz, a NN
pair, (x,y)), at random. If x is occupied (for Oo, if x
and/or y are occupied), the adsorption attempt fails. If
the newly-adsorbed molecule is CO, determine the set
O(x) of NNs of x harboring an O atom. If this set is
empty, the newly-arrived CO remains at x; otherwise
it reacts, vacating x and one of the sites in O(x), (cho-
sen at random if O(x) contains more than one site).
If the newly-adsorbed molecule is O, construct C(x),
the set of neighbors of x harboring CO, and similarly
C(y). The O atom at x remains (reacts) if C(x) is empty
(nonempty), and similarly for the atom at y.

At a threshold value of Y, y» (~ 0.5256 on the
square lattice), the ZGB model is said to exhibit
“CO-poisoning.” That is, the stationary state changes
abruptly from an active one (Y < y2), with continuous
production of CO,, to an absorbing state with all sites
occupied by CO. (With all sites blocked, there is no
way for O to adsorb.) The transition is sharply dis-
continuous. Experiments on surface-catalyzed CO +
1/2 Oz — CO reactions do show a discontinuous tran-
sition between states of high and low reactivity as the
partial pressure pco (analogous to Y in the model), is
increased [59]. With increasing temperature, the tran-
sition softens, and at a certain temperature becomes
continuous, about which the reaction rate becomes a
smooth function of pco. This appears to be the result
of thermally-activated, nonreactive desorption of CO.

A similar sequence of alterations is observed if we
include nonreactive desorption of CO at a certain rate,
k, in the ZGB model. With CO desorption there is no
longer a CO-poisoned state, but for small &k the discon-
tinuous transition between low and high CO coverages
persists. Above a critical desorption rate k. ~ 0.0406,
the coverages (and the COs production rate) vary
smoothly with Y [60, 61, 62]. Simulation results in-
dicate that at the critical point of the CO transition,
the critical exponent v = 1, and the reduced fourth
cumulant v ~ 0.61, as would be expected for the two-
dimensional Ising model [62].
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VIII

For our final example we come full circle to the Ising
model, forced out of equilibrium, this time, not through
a bias or conflicting dynamics, but by a time-dependent
external field h(t). Of principal interest is a periodically
varying field, for example, h(t¢) sinusoidal or a square
wave, with

Hysteresis in the Ising Model

anz%(fhmm:o, (8)

where 7T is the period of oscillation. Well below the
critical temperature, and at sufficiently low frequen-
cies, we expect to observe a hysteresis loop in the
magnetization-field plane. As we raise the frequency,
the system will at some point be unable to follow the
rapid variations of the field, and the magnetization m(t)
will remain close to one of its stationary values, i.e.,
+mg or —myg. That is, for high frequencies we expect

1 T
:7—_ o

whereas at low frequencies () should be zero.

For a sinusoidal field, the time-dependent mean-field
equation describing this system predicts a continuous
transition between a dynamically disordered (@ = 0)
and a dynamically ordered () # 0) state at a criti-
cal frequency, which depends on the temperature and
ho = max[h(t)] [63]. The transition was confirmed in
various Monte Carlo simulations, and may be relevant
to experiments on thin magnetic films [64, 65].

Rikvold and coworkers suggested that the transi-
tion between dynamically ordered and disordered states
occurs when the period 7 becomes comparable to
the metastable lifetime 7(ho,T") of the state with the
“wrong” sign of the magnetization (in a static field of
magnitude hg), and presented extensive simulation re-
sults to support this proposal [66]. These authors made
a detailed numerical study of the critical behavior of @
in two dimensions; their results for exponent ratios and
the fourth cumulant are consistent with Ising values.
While the very general symmetry arguments outlined
above again favor such a conclusion, finding a path from
the microscopic dynamics of this nonstationary process
to an equation of the form of Eq. (7) seems a particu-
larly challenging theoretical task.

m(t)dt # 0 (9)

VI Summary

I have reviewed a number of examples in which critical
behavior in the Ising universality class appears, despite
the presence of long-range interactions, lack of a tem-
perature scale, or lack of equilibrium. The Ornstein-
Zernike approach that comes closest to reproducing
Ising-like behavior was also reviewed. A general con-
clusion is that symmetries - of the order parameter and

Ronald Dickman

of the dynamics - are essential to determining critical
behavior; the question of equilibrium is of minimal, if
any, significance. On the other hand, we have seen that
the effective, coarse-grained dynamics can look quite
different from the microscopic interactions. In many
cases there remains a considerable gap between these
two levels of description.
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