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Ground-state and thermodynamic properties of the spin-1/2 two-dimensional easy-plane XXZmodel
are investigated by both a Green's-function approach and by Lanczos diagonalization on lattices
with up to 36 sites. We calculate the spatial and temperature dependences of various spin corre-
lation functions, as well as the wave-vector dependence of the spin susceptibility for all anisotropy
parameters �. In the easy{plane ferromagnetic region (�1 < � < 0), the longitudinal correlators
of spins at distance r change sign at a �nite temperature T0(�; r). This transition, observed in the
2D case for the �rst time, can be interpreted as a quantum to classical crossover.

I Introduction

The magnetic properties of low-dimensional quantum
spin systems with spin anisotropy, such as the quasi-
one-dimensional (1D) cuprates [1] and the quasi-2D
high-Tc parent compounds [2], are of growing interest.
The S = 1=2 XXZ model

H =
J

2

X

hi;ji

(S+i S
�
j +�Szi S

z
j ) (1)

(hi; ji denote nearest-neighbor (NN) sites; throughout
we set J = 1) usually serves as the generic model for
those systems.

Recently, in the ferromagnetic (FM) region (�1 <
� < 0) of the 1D model a quantum-classical crossover
in the longitudinal spin correlators was found by means
of exact diagonalization (ED) [3] and a Green's-function
theory [4]. For the XXZ model on a square lattice,
an analytical approach to the spin susceptibility tak-
ing into account magnetic short-range order (SRO) at
arbitrary temperatures does not yet exist.

In this contribution the spin correlations in the easy-
plane region �1 < � < 1 of the 2D XXZ model are
examined by both a Green's-function theory outlined
in the Appendix and by exact �nite-cluster diagonal-
izations of the model (1) on lattices with up to 36 spins
using periodic boundary conditions. We mainly focus
on the characteristics of a possible quantum to classi-
cal crossover in the FM regime. Moreover, for the �rst
time, the complete wave-vector, temperature and � de-
pendences of the static transverse and longitudinal spin

susceptibilities are calculated.

II Ground-state properties

In Fig. 1 our results for the magnetization m(�) are
compared with available quantum Monte Carlo (QMC)
data [5], where the ED/QMC data for the ground-
state energy per site "(�) (inset) is taken as input
for the Green's-function approach (Czz

10 = 1
2
@"=@�,

C+�
10 = "=2��Czz

10 ).

Figure 1. Magnetization m and ground-state energy " of
the 2D easy-plane XXZ model.

As can be seen from Fig. 2, the short-ranged correla-
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tions calculated analytically are in excellent agreement
with our ED data. Let us stress that the �nite-size de-
pendence of the ED data is almost negligible by going
from a 32- to a 36-site lattice. At � = 1 the rotational
symmetry C+�

r = 2Czz
r is visible. At the quantum

critical point � = �1 we have C+�

r; ~H
= 2Czz

r = 1=6

(cf. Eq. (14)). The non-analytical limiting behavior
lim�!�1+ C

zz
r = 0 results from both the QMC [5] and

ED data (obtained in the subspace with total spin pro-
jection Sz = 0).

The static spin susceptibilities ��q(�) are depicted
in Fig. 3. In the FM region, for suÆciently low � val-
ues, �zzq shows a maximum at q = 0 being a precursor
of the FM instability (in the zz-correlators) at � = �1.
Note that (�+�

Q
)�1 = 0, re
ecting the transverse long-

range order (LRO) at T = 0, by Eq. (13) corresponds to
(�+�

0; ~H
)�1 = 0. In the antiferromagnetic (AFM) region

0 < � < 1 the maximum in �zzq at q = Q is indicative
of the longitudinal AFM LRO at � � 1.

Finally, in Fig. 4 we show the longitudinal spin-wave
spectrum !zzq (cf. Eq. (7)). For q � jqj � 1 we have
!zzq = czzs q, where the spin-wave velocity czzs increases
with � over the whole easy-plane region. The mini-
mum in !zzq at q = Q in the AFM region corresponds
to the maximum in �zzq (cf. Fig. 3a) and re
ects the
increase of the longitudinal AFM SRO with � (see also
Czz
r (�) in Fig. 2).

Figure 2. Transverse and longitudinal spin correlation func-
tions C�

r at T = 0. Symbols denote ED results obtained for
a 6�6 lattice.

Figure 3. Wave-vector dependence of the longitudinal (a)
and transverse (b) static susceptibilities ��q at T = 0.

III Finite-temperature results

The temperature dependence of the short-ranged lon-
gitudinal spin correlations is displayed in Fig. 5. Again
the analytical results agree remarkably well with the
ED data. In the FM region, for the �rst time in the
2D model, we observe the so-called \sign-changing" ef-
fect which was found numerically [3] in the 1D model
and later on reproduced by our Green's-function cal-
culations [4]. That is, at �xed separation r and with
increasing temperature or at �xed temperature and
with increasing r, Czz

r changes sign from negative
to positive values. The temperatures T0(�; r) where
Czz
r (T0(�; r);�) = 0 are given in Table I. As in the 1D

case, T0 at �xed � decreases with increasing r. How-
ever, compared to the 1D case [4], our analytical results
are in much better agreement with the ED data.

The sign change of Czz
r may be interpreted as a

quantum to classical crossover [3] because with increas-
ing temperature the system behaves more classically,
i.e., it becomes dominated by the potential energy (neg-
ative � term of the Hamiltonian favoring the parallel
alignment of two spins). In the AFM region we obtain
the expected alternating signs of Czz

r corresponding to
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the longitudinal AFM SRO.
In Fig. 6 various susceptibilities ��q at q = 0;Q are

plotted as functions of T and compared with numerical
data. For � = 0:5 the longitudinal and transverse uni-
form susceptibilities are in reasonable agreement with
the QMC results [5] and our ED data (the up- and
downturn at lower temperatures is a �nite-size e�ect).
The increase of ��0(T ), the maximum near the exchange
energy (J = 1), and the crossover to the Curie-Weiss
law are due to the decrease of AFM SRO with increas-
ing temperature. On the other hand, the staggered
susceptibility �zz

Q
is enhanced as compared with �zz0 by

the longitudinal AFM SRO. In the FM region (Fig. 6 b,
� = �0:5) the maximum in �zz0 , where the analytical
and numerical results yield nearly the same position,
may be explained as a combined SRO and sign changing
e�ect as discussed for the 1D model in Ref. [4]. Con-
trary to the AFM region, �zz

Q
is suppressed as compared

with �zz0 which is caused by the FM correlations above
T0.

Figure 4. Temperature dependence of the NN (a) and next
NN (b) longitudinal spin correlation functions Czz

r . Sym-
bols denote ED results obtained for a 4�4 lattice.

The temperature dependence of �+�0 = �+�
Q; ~H

may

be explained again as a SRO e�ect.

Figure 5. Longitudinal and transverse static spin suscepti-
bilities ��q as functions of temperature T for the 2D AFM

(a) and FM (b) easy-plane XXZ models.

Figure 6. Longitudinal spin-wave dispersion !zz

q along the
major symmetry directions of the 2D Brillouin zone.

Here, the transverse FM SRO results in a spin sti�-
ness against the orientation of the transverse spin com-
ponents along a staggered �eld perpendicular to the
z-direction, so that �+�

Q; ~H
is suppressed at low temper-

atures and exhibits a maximum.
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Table 1: Temperature T0(�; r) of the sign change in the
longitudinal correlation functions Czz

r (T ; �). The cor-
responding results obtained from ED of a 4�4 lattice
are given in parenthesis.

� T0(�; r)

r = (1; 0) r = (1; 1) r = (2; 0)

-0.1 2.98 [2.540] 1.76 1.76 [1.520]

-0.3 0.96 [0.931] 0.74 0.72 [0.713]

-0.5 0.66 [0.605] 0.52 [0.527] 0.50 [0.476]

-0.7 0.46 [0.391] 0.36 [0.303] 0.34 [0.301]

-0.9 <0.2 [0.125] <0.2 [0.106] <0.2 [0.106]

IV Summary

To summarize, we presented a Green's-function the-
ory of magnetic LRO and SRO in the 2D easy-plane
XXZ model which allows the complete calculation of
all static magnetic properties in excellent agreement
with numerical diagonalization data. In particular,
in the FM region we found a quantum to classical
crossover in the longitudinal spin correlations. We con-
clude that our approach is promising for application
to other anisotropic spin models, such as the quasi-2D
XXZ model for the parent compounds of high-Tc super-
conductors.

Appendix: Green's-function the-

ory

The spin susceptibilities �+�q (!) = �hhS+q ;S
�
�qii! and

�zzq (!) = �hhSzq;S
z
�qii! , expressed in terms of two-

time retarded commutator Green's functions, are de-
termined by the projection method, developed, for the
XXZ chain, in Ref. [4]. Taking the two-operator basis
(S+q ; i

_S+q)
T and (Szq; i

_Szq)
T we obtain

��q(!) = �
M�
q

!2 � (!�q)
2
; � = +�; zz; (2)

with

M+�
q = �4[C+�

10 (1��
q) + 2Czz
10 (�� 
q)] ;(3)

Mzz
q = �4C+�

10 (1� 
q) ; (4)

C�
nm � C�

r , C+�
r = hS+0 S

�
r i, Czz

r = hSz0S
z
ri, r =

nex + mey, and 
q = (cos qx + cos qy)=2. The spin
correlators are obtained from Eq. (2) as

C�
r =

1

N

X

q

M�
q

2!�q
[1 + 2p(!�q)]e

iqr ; (5)

where p(!�q) = (e
!�

q=T � 1)�1. The spectra !�q, cal-

culated in the approximations � �S+q = (!+�q )2S+q and

� �Szq = (!zzq )2Szq introducing vertex parameters ��i
(i = 1; 2), are given by

(!+�q )2 = [(1 + 2�+�2 (C+�
20 + 2C+�

11 )](1��
q)

+�(1 + 4�+�2 (Czz
20 + 2Czz

11 )](�� 
q)

+2�+�1 [C+�
10 (4�
2q ��� 3
q)

+2Czz
10 (4


2
q � 1� 3�
q)] ; (6)

(!zzq )2 = 2(1� 
q)[1 + 2�zz2 (C+�
20 + 2C+�

11 )

�2��zz1 C+�
10 (1 + 4
q)] : (7)

In the easy-plane region �1 < � < 1, the long-
range order at T = 0 is re
ected in our theory by
!+�
Q

= 0 [Q = (�; �)]. Accordingly, the condensation

part CeiQr is separated from C+�
r (cf. Eq. (5)), and

the magnetization m is calculated as

m2 =
1

N

X

r

C+�
r e�iQr = C : (8)

The parameters ��1(T ) are determined from the sum
rules C+�

00 = 1=2 and Czz
00 = 1=4. To obtain ��2(T )

we adjust C�
10(T = 0) taken from our ED data and

assume, as additional conditions for the calculation of
�zzq (!) and �+�q (!), temperature independent ratios

Rzz =
�zz2 (T )� 1

�zz1 (T )� 1
(9)

and

R+�
> =

�+�2 (T )� 1

�+�1 (T )� 1
for � > 0 ; (10)

R+�
< =

�+�2 (T )� 1

�zz1 (T )� 1
for � < 0 ; (11)

respectively. For the discussion it is useful to perform
the unitary transformation which rotates the spins on
the sublattice B around the z-axis by the angle �, ~Si =

U+SiU with U =
Q

l2B 2Szl . We get ~Sx;yi = eiQriSx;yi ,
~Szi = Szi and

~H =
1

2

X

hi;ji

(�S+i S
�
j +�Szi S

z
j ) : (12)

Due to hAiH = h ~Ai ~H for any operator A, we obtain the
relations

�+�q;H(!) = �+�
k; ~H

(!) ; k = q�Q ; (13)

C+�
r;H = eiQrC+�

r; ~H
; (14)

�zzq;H(!) = �zzq; ~H(!), and Czz
r;H = Czz

r; ~H. As shown in

Ref. [4], the rotational symmetry at � = �1 is pre-
served by our theory.
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