720 Brazilian Journal of Physics, vol. 30, no. 4, December, 2000

Quantum to Classical Crossover in the
2D Easy-Plane XXZ Model

H. Fehske, C. Schindelin, A. Weifle, H. Biittner,
Physikalisches Institut, Universitat Bayreuth, D-95440 Bayreuth, Germany

and D. Ihle
Institut fir Theoretische Physik, Universitit Leipzig, D-04109 Leipzig, Germany

Received on 5 August, 2000

Ground-state and thermodynamic properties of the spin-1/2 two-dimensional easy-plane XXZ model
are investigated by both a Green’s-function approach and by Lanczos diagonalization on lattices
with up to 36 sites. We calculate the spatial and temperature dependences of various spin corre-
lation functions, as well as the wave-vector dependence of the spin susceptibility for all anisotropy
parameters A. In the easy—plane ferromagnetic region (—1 < A < 0), the longitudinal correlators
of spins at distance r change sign at a finite temperature To(A,r). This transition, observed in the
2D case for the first time, can be interpreted as a quantum to classical crossover.

I Introduction

The magnetic properties of low-dimensional quantum
spin systems with spin anisotropy, such as the quasi-
one-dimensional (1D) cuprates [1] and the quasi-2D
high-T.. parent compounds [2], are of growing interest.
The S =1/2 XXZ model

J — z z
H= 5Z(sj5j + ASFS3) (1)

(4.4)

((z,7) denote nearest-neighbor (NN) sites; throughout
we set J = 1) usually serves as the generic model for
those systems.

Recently, in the ferromagnetic (FM) region (—1 <
A < 0) of the 1D model a quantum-classical crossover
in the longitudinal spin correlators was found by means
of exact diagonalization (ED) [3] and a Green’s-function
theory [4]. For the XXZ model on a square lattice,
an analytical approach to the spin susceptibility tak-
ing into account magnetic short-range order (SRO) at
arbitrary temperatures does not yet exist.

In this contribution the spin correlations in the easy-
plane region —1 < A < 1 of the 2D XXZ model are
examined by both a Green’s-function theory outlined
in the Appendix and by exact finite-cluster diagonal-
izations of the model (1) on lattices with up to 36 spins
using periodic boundary conditions. We mainly focus
on the characteristics of a possible quantum to classi-
cal crossover in the FM regime. Moreover, for the first
time, the complete wave-vector, temperature and A de-
pendences of the static transverse and longitudinal spin

susceptibilities are calculated.

II Ground-state properties

In Fig. 1 our results for the magnetization m(A) are
compared with available quantum Monte Carlo (QMC)
data [5], where the ED/QMC data for the ground-
state energy per site £(A) (inset) is taken as input
for the Green’s-function approach (Cf§ = 10e¢/0A,
Cly =¢/2 - AC§E).
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Figure 1. Magnetization m and ground-state energy e of
the 2D easy-plane XXZ model.

As can be seen from Fig. 2, the short-ranged correla-
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tions calculated analytically are in excellent agreement
with our ED data. Let us stress that the finite-size de-
pendence of the ED data is almost negligible by going
from a 32- to a 36-site lattice. At A =1 the rotational
symmetry Cf~ = 2C§ is visible. At the quantum
critical point A = —1 we have C;';z = 20F =1/6
(cf. Eq. (14)). The non—analyticaf limiting behavior
lima_, 1+ C§ = 0 results from both the QMC [5] and
ED data (obtained in the subspace with total spin pro-
jection S* = 0).

The static spin susceptibilities x{(A) are depicted
in Fig. 3. In the FM region, for sufficiently low A val-
ues, Xff shows a maximum at q = 0 being a precursor
of the FM instability (in the zz-correlators) at A = —1.
Note that (XE{)_1 = 0, reflecting the transverse long-
range order (LRO) at T' = 0, by Eq. (13) corresponds to
(X(T,;:[.)_l = 0. In the antiferromagnetic (AFM) region

0 < A <1 the maximum in Xg at g = Q is indicative
of the longitudinal AFM LRO at A > 1.

Finally, in Fig. 4 we show the longitudinal spin-wave
spectrum wg’ (cf. Eq. (7)). For ¢ = |q] < 1 we have
w§ = cZ7q, where the spin-wave velocity cZ* increases
with A over the whole easy-plane region. The mini-
mum in wg at q = Q in the AFM region corresponds
to the maximum in xg (cf. Fig. 3a) and reflects the
increase of the longitudinal AFM SRO with A (see also
C§#(A) in Fig. 2).
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Figure 2. Transverse and longitudinal spin correlation func-
tions Cr at T'= 0. Symbols denote ED results obtained for
a 6x6 lattice.
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Figure 3. Wave-vector dependence of the longitudinal (a)
and transverse (b) static susceptibilities xgq at T = 0.

II1 Finite-temperature results

The temperature dependence of the short-ranged lon-
gitudinal spin correlations is displayed in Fig. 5. Again
the analytical results agree remarkably well with the
ED data. In the FM region, for the first time in the
2D model, we observe the so-called “sign-changing” ef-
fect which was found numerically [3] in the 1D model
and later on reproduced by our Green’s-function cal-
culations [4]. That is, at fixed separation r and with
increasing temperature or at fixed temperature and
with increasing r, C§* changes sign from negative
to positive values. The temperatures To(A,r) where
C# (To(A,r),A) =0 are given in Table I. As in the 1D
case, Ty at fixed A decreases with increasing r. How-
ever, compared to the 1D case [4], our analytical results
are in much better agreement with the ED data.

The sign change of C§* may be interpreted as a
quantum to classical crossover [3] because with increas-
ing temperature the system behaves more classically,
i.e., it becomes dominated by the potential energy (neg-
ative A term of the Hamiltonian favoring the parallel
alignment of two spins). In the AFM region we obtain
the expected alternating signs of Cg* corresponding to



722 Brazilian Journal of Physics, vol. 30, no. 4, December, 2000

the longitudinal AFM SRO.

In Fig. 6 various susceptibilities Xq atq=0, Q are
plotted as functions of 7" and compared with numerical
data. For A = 0.5 the longitudinal and transverse uni-
form susceptibilities are in reasonable agreement with
the QMC results [5] and our ED data (the up- and
downturn at lower temperatures is a finite-size effect).
The increase of x§(7), the maximum near the exchange
energy (J = 1), and the crossover to the Curie-Weiss
law are due to the decrease of AFM SRO with increas-
ing temperature. On the other hand, the staggered
susceptibility XZQZ is enhanced as compared with x§* by

the longitudinal AFM SRO. In the FM region (Fig. 6 b,
A = —0.5) the maximum in x§*, where the analytical
and numerical results yield nearly the same position,
may be explained as a combined SRO and sign changing
effect as discussed for the 1D model in Ref. [4]. Con-
trary to the AFM region, Xa is suppressed as compared

with x§* which is caused by the FM correlations above
Tp.
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Figure 4. Temperature dependence of the NN (a) and next
NN (b) longitudinal spin correlation functions Cg*. Sym-
bols denote ED results obtained for a 4x4 lattice.

The temperature dependence of xg~ = Xa_fl may

be explained again as a SRO effect.
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Figure 5. Longitudinal and transverse static spin suscepti-
bilities x§ as functions of temperature 1" for the 2D AFM
(a) and FM (b) easy-plane XXZ models.
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Figure 6. Longitudinal spin-wave dispersion wg along the
major symmetry directions of the 2D Brillouin zone.

Here, the transverse FM SRO results in a spin stiff-
ness against the orientation of the transverse spin com-
ponents along a staggered field perpendicular to the
z-direction, so that XJCS”F{ is suppressed at low temper-

atures and exhibits a maximum.
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Table 1: Temperature Tp(A;r) of the sign change in the
longitudinal correlation functions C§*(T'; A). The cor-
responding results obtained from ED of a 4x4 lattice

are given in parenthesis.

A To(A;r)

r=(1,0) r=(1,1) r=(2,0)
-0.1  2.98 [2.540] 1.76 1.76 [1.520]
-0.3  0.96 [0.931] 0.74 0.72 [0.713]
-0.5  0.66 [0.605] 0.52 [0.527]  0.50 [0.476]
-0.7 0.46 [0.391] 0.36 [0.303]  0.34 [0.301]
-0.9 <0.2[0.125] <0.2[0.106] <0.2 [0.106]

IV Summary

To summarize, we presented a Green’s-function the-
ory of magnetic LRO and SRO in the 2D easy-plane
XXZ model which allows the complete calculation of
all static magnetic properties in excellent agreement
with numerical diagonalization data. In particular,
in the FM region we found a quantum to classical
crossover in the longitudinal spin correlations. We con-
clude that our approach is promising for application
to other anisotropic spin models, such as the quasi-2D
XXZ model for the parent compounds of high-T,. super-
conductors.

Appendix: Green’s-function the-
ory

The spin susceptibilities xg ™ (w) = —((S§; S-q))w and
Xff(w) = —((S§; SZq))w, expressed in terms of two-
time retarded commutator Green’s functions, are de-
termined by the projection method, developed, for the
XXZ chain, in Ref. [4]. Taking the two-operator basis
(S&,iS&)T and (Sé,iSé)T we obtain

, Mg 2
Xq(w)——m, v=r4—,z2z, (2

with
My~ = =40 (1 - Avyq) + 2055 (A — 7q)],(3)
Mg = —4CH (1-1q), (4)

Crm = CF, CF = (S¢S;p), CF = (S§Sf), r =
ne, + mey,, and 7q = (cosq, + cosqy)/2. The spin
correlators are obtained from Eq. (2) as

1« MY ,
v _ 1 2 v qr
G =y Ll e, )

where p(wg) = (ewEl/T — 1)L, The spectra wg, cal-
culated in the approximations —5’& = (wq™)?Sq and

723
_S(Zl = (wff)zsa introducing vertex parameters o
(i =1,2), are given by
(wq ) = (14205 (Cfy +2017)](1 - Ayq)

+A(1+4ad ~ (C55 +2CT)I(A — 1q)
+20{7[CfT (A4A%4 - A = 37q)

+2075 (47g — 1 = 3A7q)], (6)
Wg)? = 2001 —rq)[l +2a57(C35™ +2C7)
—2Aa57CHy (1 + 49q)] - (7)

In the easy-plane region —1 < A < 1, the long-
range order at 7" = 0 is reflected in our theory by
wa_ =0 [Q = (m,7m)]. Accordingly, the condensation

part CeiQr s separated from Cf~ (cf. Eq. (5)), and
the magnetization m is calculated as

1 )
2 __ — L=t _
m _—Er:c; e=iQr = ¢ 8)

The parameters af(T') are determined from the sum
rules Cjfy” = 1/2 and C§§ = 1/4. To obtain of(T)
we adjust C7,(T = 0) taken from our ED data and
assume, as additional conditions for the calculation of
Xg (w) and Xa* (w), temperature independent ratios

2z __ ahzm(T) -1
B )
and

() -1
R = @ | for A>0 10
> Oéfi(T) _ 1 or I ( )

- o (T)-1
RI™ = 0 (1) =1 for A<O, (11)

respectively. For the discussion it is useful to perform
the unitary transformation which rotates the spins on
the sublattice B around the z-axis by the angle 7, S; =

UTS:U with U = [[;cp 257. We get SY = i Qri gy

S; =57 and

)/ 1 — zZQz

H=3 D (=SfS; +ASES). (12)
(4,3

Due to (A)y = (fi)# for any operator A, we obtain the

relations

Xqu@) = X ;@) k=a-Q,  (13)
Cin = eiQrCIﬂ;%, (14)

Xgn(w) = Xf;ﬂ(w), and C5%, = Cizg As shown in
Ref. [4], the rotational symmetry at A = %1 is pre-
served by our theory.
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