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The kinetic Ising model on an n-isotopic chain is considered in the framework of Glauber dynamics.
The chain is composed of N segments with n sites, each one occupied by a di�erent isotope. Due
to the isotopic mass di�erence, the n spins in each segment have di�erent relaxation times in
the absence of interactions, and consequently the dynamics of the system is governed by multiple
relaxation mechanisms. The solution is obtained in closed form for arbitrary n, by reducing the
problem to a set of n coupled equations, and it is shown rigorously that the critical exponent z
is equal to 2. Explicit results are obtained numerically for any temperature and it is also shown
that the dynamic susceptibility satis�es the new scaling (Nagel scaling) proposed for glass-forming
liquids. This is in agreement with our recent results (L. L. Gon�calves, M. L�opez de Haro, J.
Tag�ue~na-Mart��nez and R. B. Stinchcombe, Phys. Rev. Lett. 84, 1507 (2000)), which relate this
new scaling function to multiple relaxation processes.

Universal behavior in various physical model sys-

tems has been one of the clues to uncovering funda-

mental regularities of nature. About ten years ago,

a scaling hypothesis (Nagel scaling) was proposed to

describe experimental work on dielectric relaxation in

glass-forming liquids[1]. This hypothesis was meant to

replace the more usual normalized Debye scaling, where

the frequency is scaled with the inverse of the (single)

relaxation time and the real and imaginary parts of the

dynamic susceptibility are then divided by their values

at zero and one, respectively. However, and in spite of

its phenomenological success and apparent ubiquity, its

physical origin is as yet not quite well understood.

Very recently, we put forward what we believe to

be the �rst bona �de microscopic model in which Nagel

scaling is shown to arise[2]. In this previous work, we

computed the magnetization, the dynamic critical ex-

ponent z and the frequency and wavevector dependent

susceptibility of the kinetic Ising model on an alternat-

ing isotopic chain with Glauber dynamics[3]. Our re-

sults indicated that as soon as the two relaxation times

of this model became substantially di�erent, the agree-

ment with the Nagel scaling improved signi�cantly. The

question remained of whether the inclusion of more re-

laxation mechanisms would lead to the same sort of

results. It is this issue that we mainly want to examine

in this paper. Hence we present an extension of the al-

ternating isotopic chain in which rather than only two

relaxation times, n relaxation times are involved.

The model consists of a linear chain with N seg-
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ments, each one containing n sites occupied by iso-

topes characterized by n di�erent spin relaxation times.

The Hamiltonian for the lth segment is the usual Ising

Hamiltonian given by

Hl = �J
nX

j=1

�l;j�l;j+1; (1)

where �l;j is a stochastic (time-dependent) spin vari-

able assuming the values �1 and J the coupling con-

stant. Note that if n = 2, this model reduces to the

alternating isotopic chain treated in Ref. [2]. The con-

�guration of the segment is speci�ed by the set of values

f�l;1; �l;2; :::�l;ng �
�
�l;n

	
at time t. This con�gura-

tion evolves in time due to interactions with a heat

bath. We assume for the segments the usual Glauber

dynamics so that the transition probabilities are given

by

wli(�l;i) =
1

2
�i

�
1� 


2
(�l;i�1�l;i + �l;i�l;i+1)

�
; (2)

where 
 = tanh (2J=kBT ), kB being the Boltzmann

constant and T the absolute temperature, and �i is the

inverse of the relaxation time �i of spin i in the absence

of spin interactions.

The time dependent probability P
��
�l;n

	
; t
�
for a

given spin con�guration satis�es the master equation

c

dP
��
�l;n

	
; t
�

dt
= �

nX
i=1

wli (�l;i)P
��
�l;n

	
; t
�

+

nX
i=1

wli (��l;i)P
�
Tli
�
�l;n

	
; t
�
; (3)

where Tli
�
�l;n

	 � f�l;1; �l;2; :::�l;i�1;��l;i; �l;i+1; :::�l;ng. The dynamical properties we are interested in, namely

the magnetization, the dynamic critical exponent and the susceptibility, require the knowledge of some moments of

the probability P
��
�l;n

	
; t
�
. Hence, we introduce the following expectation values de�ned as:

qli (t) = h�li (t)i =
X
f�l;ng

�l;iP
��
�l;n

	
; t
�
; (4)

where the sum runs over all possible con�gurations. Using the master equation (3) and this de�nition of qli (t), one

can easily derive the result

dql;1
dt

= ��1
�
ql;1 � 


2
(ql�1;n + ql;2)

�
;

dql;j
dt

= ��j
�
ql;j � 


2
(ql;j�1 + ql;j+1)

�
; (2 � j � n� 1)

dql;n
dt

= ��n
�
ql;n � 


2
(ql;n�1 + ql+1;1)

�
: (5)

Introducing now the Fourier transform eqQ;l (l = 1; 2; :::n) de�ned by

eqQ;l = 1p
N

NX
l=1

exp(iQld)ql;j (6)

where Q = 2�m
Nd

(m = 0; 1; 2:::N), d = na, a being a lattice parameter and the vector 	Q given by

	Q =

0
BBBB@
eqQ;1
:
:
:eqQ;n

1
CCCCA ; (7)

one can derive the following result

d	Q

dt
=MQ	Q (8)
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where the matrixMQ has a rather suggestive structure given by

MQ =

0
BBBBBBBB@

��1 �1

2 0 : : 0 �1


2 eiQd
�2

2 ��2 �2


2 0 : : 0
0 �3


2 ��3 �3

2 0 : 0

: : : : : : :
: : : : : : :
: : : 0 �n�1


2 ��n�1 �n�1


2
�n

2 e�iQd 0 : : : �n


2 ��n

1
CCCCCCCCA
: (9)

The solution to Eq. (8), which yields the magnetization, is straightforward, namely

	Q (t) = eMQt	Q (0) : (10)

The relaxation process of the wave-vector dependent magnetization is determined by the eigenvalues of MQ

denoted as �lQ (l = 1; 2; :::n) and which for n � 5 have to be computed numerically. The same applies to the

dynamic critical exponent z, which is obtained by imposing the scaling relation �Q � �zf(�Q) for the critical mode,

�1Q; with the (Q-dependent ) relaxation time �Q = � 1
�1Q

; in the region T ! 0 and Q! 0 where �1Q ! 0, and the

correlation length � is � � exp(2J=kBT ). This yields

ln

�
� 1

�1Q

�
= C +

2Jz

kBT
; (11)

where C is an irrelevant constant. By plotting ln
�
� 1

�10

�
vs. 2J

kBT
and considering the limit T ! 0, we have checked

analytically for n = 2[2] and numerically for n = 3; 4 and 5 and various values of the �0s that z = 2, so that this

model belongs to the same universality class as the uniform Ising chain.

Let us now introduce the spatial Fourier transform bcQ(t0; t0 + t) of the time-dependent correlation de�ned by

bcQ(t0; t0 + t) =
1

nN

NX
l=1

NX
l0=1

nX
i=1

nX
j=1

e�iQdleiQdl0 h�l;i (t0)�l0;j (t0 + t)i : (12)

Then, the t0 !1 limit of the temporal Fourier transform of bcQ (t0; t0 + t) ; denoted by eCQ(!); is given by

eCQ(!) = lim
t0!1

1

2�n

nX
i=1

nX
j=1

Z 1

�1
he��Q;i (t0) e�Q;j (t0 + t)i exp(�i!t)dt; (13)

with e�Q;m = 1p
N

NP
l=1

exp(iQld)�l;m. After some lengthy and tedious but not very diÆcult algebra, using eq. (4)

and the above de�nitions one may derive the result

eCQ(!) =

nX
l=1

g
lQ

i! � �lQ
(14)

where

glQ =

nX
i=1

nX
j=1

nX
m=1

amlalj
n

he��Q;ie�Q;jieq : (15)

Here, the static correlation functions he��Q;ie�Q;lieq are given by

he��Q;ie�Q;lieq =
8>>><
>>>:

1�u2n
1�2un cos(nQ)+u2n (i = l)

ujl�ij eiQnun

1�eiQnun + u�jl�ij e�iQnun

1�e�iQnun
+ujl�ij

(i 6= l)
(16)
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while u = tanh( J
kBT

), aml denotes the (m; l)� element of the matrix A formed with the eigenvectors of MQ and

alj the (l; j)� element of the matrix A�1. Finally, by using the 
uctuation dissipation theorem[4], the response

function SQ (!) turns out to be given by

SQ (!) =
1

kBT

0
@ 1

n

nX
i=1

nX
j=1

he��Q;ie�Q;lieq � i! eCQ(!)

1
A

= � 1

kBT

nX
l=1

�lQglQ
i! � �lQ

: (17)

d

It should be noted that the frequency dependent sus-

ceptibility is � (!) � kBTS0(!)(1� u)=(1 + u). Thus,

� (!) =
u� 1

u+ 1

nX
l=1

�l0gl0
i! � �l0

(18)

If we set all the �0s equal in Eq. (17), i.e., we

take the uniform chain, then of course the result-

ing susceptibility has the simple Debye form. In any

case, its general structure is a linear combination of n

Debye-like terms. In order to investigate whether the

Nagel scaling holds for this susceptibility, it is conve-

nient to recall that in the so-called Nagel plot the ab-

scissa is (1 +W ) log10 (!=!p) =W
2 and the ordinate is

log10 (�
00(!)!p=!��) =W . Here, �00 is the imaginary

part of the susceptibility, W is the full width at half

maximum of �00, !p is the frequency corresponding to

the peak in �00, and �� = �(0)� �1 is the static sus-

ceptibility. For the sake of illustration in Figs. 1 and 2

we present Nagel plots for the cases n = 2 (with �1 = 1

and �2 = 2), and n = 3 (with �1 = 1 and �2 = 2 and

�3 = 3), respectively, and di�erent values of the re-

duced (dimensionless) temperature T � � kBT=2J . By

comparing the two �gures, we can see that even for this

case, where the relaxation times are very close, there is

a marked improvement of the scaling in the low tem-

perature limit with the increase of the relaxation mech-

anisms. On the other hand, the Debye scaling, shown

as inset in the �gures, presents an opposite behaviour.

This result gives further support to the hypothesis that

Nagel scaling is related to multiple relaxation mecha-

nisms, as discussed in our previous work [2].
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Figure 1. Nagel plot for n = 2 (with �1 = 1 and �2 = 2)
and for T � = 5; 7; 10; 50; 100 and 150. There is reasonable
agreement with the scaling form for this choice except for
low T �. Insert: �00(!)=�00(!p) vs. !=!p in order to test
Debye-like behavior.

Figure 2. The same as Fig. 1 but with n = 3 (�1 = 1 ,
�2 = 2 and �3 = 3) and T � = 5; 7; 10; 50; 100 and 150. The
improvement in the agreement with Nagel scaling is rather
noticeable, while the opposite trend is observed with respect
to Debye scaling.



Brazilian Journal of Physics, vol. 30, no. 4, December, 2000 735

References

[1] P. K. Dixon, L. Wu and S. R. Nagel, B. D. Williams
and J. P. Carini, Phys. Rev. Lett. 65, 1108 (1990); L.
Wu, P. K. Dixon, S. Nagel, B. D. Williams, and J. P.
Carini, J. Non-Cryst. Solids 131-133, 32 (1991); D. L.
Lesley-Pelecky and N. O. Birge, Phys. Rev. Lett. 72,
1232 (1992); M. D. Ediger, C. A. Angell and S. R. Nagel,

J. Phys. Chem. 100, 13200 -13212 (1996).

[2] L. L. Gon�calves, M. L�opez de Haro, J. Tag�ue~na-
Mart�inez, and R. B. Stinchcombe, Phys. Rev. Lett. 84,
1507 (2000).

[3] R. J. Glauber, J. Math. Phys. 4, 294 (1963).

[4] M. Suzuki and R. Kubo, J. Phys. Soc. Jpn. 24, 51
(1968).


