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The instability of the paraelectric phase in ferroelectrics, driven by thermal 
uctuations, is dis-
cussed on the basis of the quantum three-dimensional spin-1/2 transverse-�eld Ising model (TIM)
within the framework of the Green function method. The two-step critical dynamics of the TIM is
analyzed through the ferroelectric order-parameter 
uctuation spectra observed above the critical
temperature Tc. The spectra pro�les are given near Tc in explicit form. The slow-down exponents
�c = 5

4
and �s = 1

4
are deduced for the slow and fast parts of structural relaxation and are

compared with those known from the literature.

I Introduction

After Elliot [1] and Stinchcombe [2] it has been repeat-
edly recognized that the pseudo-spin Transverse Ising
Model (TIM) [3],

H = ��

NX

f

Sxf �
1

2

X

ff 0

Jff 0SzfSzf 0 ; (1)

is generic to describe the critical dynamics observed
in ferroelectrics and antiferroelectrics near structural
phase transitions that occur at a critical temperature
Tc. The transverse �eld � provides speci�c dynamics
near Tc: This is due to short-range thermal 
uctua-
tions of the local order parameter that can be treated
in terms of compact correlation regions (or clusters) of
the local polarization. Critical dynamical e�ects are
directly observed in the ferroelectric order-parameter-

uctuation spectra both below and above Tc and are
known as the central peak (CP) phenomenon.

The main qualitative features of the CP are as
follows. The di�usive-type central-mode (Re!c = 0,
Im!c 6= 0) appears in the dynamical spectra, in ad-
dition to the renormalized soft mode !s related to
the side-band peaks. Near Tc the central-mode inten-
sity I(!; T ) diverges but the soft mode remains �nite
(Im!s 6= 0). The CP phenomenon appears to be as-
sociated with all structural phase transitions [4], and
has been intensively studied by a great variety of ex-
perimental techniques, namely, by neutron, light and
M�ossbauer scattering, electron and nuclear paramag-
netic resonances, dielectric dispersion and ultrasound
[5]. In this work we give a microscopic description of

the observed CP phenomena based on the critical dy-
namics of the 3-dimensional (3D) TIM (1) developed
through the Green function method.

II CP Microscopical Descrip-

tion

We discuss the CP phenomenon in terms of the well-
known phenomenological description proposed by sev-
eral authors [5]. This description introduces the aux-
iliary parameters Æ (coupling strength) and 1

� (Debye
relaxation time) through the dynamical spectral pro-
�les,

I(!; T ) _
1

!
ImG0(!; T );

and

G0(!; T ) _ [!20 � !2 � i!
Æ2

� � i!
]�1: (2)

The auxiliary parameters Æ and � of unknown nature
were suggested to describe the interaction of a trial un-
damped soft mode !0 with some unspeci�ed degree of
freedom, called a relaxation mode. The auxiliary pa-
rameters can in turn be derived from the observed spec-
tra and given in terms of the frequencies !s and !c and
their widths, respectively, 
s and 
c . Thus, as T ! Tc,
the CP behavior is given by

!2s ! !2
1

= !20 + Æ2;
c ! �
!20
!2
1

: (3)

From the Heisenberg equations of the spin-1/2 TIM (1)
one obtains the Green function
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Gff 0 (t) = �i�(t) < [Szf (t)Szf 0 (0)] >T (4)

with < Syf (t) >T=< Szf (t) >T = 0, and
< Sxf (t) >T= �(T ) = 1

2
tanh( �

2T ). The Fourier trans-

form Gq(!; T ) has been developed up to the forth order
and consistently reduced by application of the sym-
metrized Tyablikov decoupling scheme. The closed
chain-equation system was found [6] in explicit form,

c

Gq(!; T ) =
��(T )

�
[!2 � !2q (T )��q(!; T )]

�1 with !2q (T ) = �[�� Jq�(T )]; (5)

where Jq stands for the Fourier-site 3D transformed nearest-neighbor exchange energy and the polarization \oper-
ator" is

�q(!; T ) =
!2 < S2z >T

N

X

q0

J2
q0

!2 � !2
q0 (T )

�
�2 < S2x >

2
T

N
Jq
X

q0

Jq0

!2 � !2
q0 (T )

: (6)

For q ! 0 and T ! T+
c , Eqs. (5) and (6) provide the following CP phenomenological auxiliary parameters,

!0 ! �(
T

Tc
� 1)1=2;Æ ! � and � ! �(

T

Tc
� 1)1=4: (7)

as well the observable parameters,

!s ! �;
s ! �(
T

Tc
� 1)1=4 and 
c ! �(

T

Tc
� 1)5=4: (8)

d

The critical regime is de�ned by the conditions Æ >>

� >> !0: Distinct microscopic approaches to the CP
problem, based on the TIM (1) suggest a di�erent de-
scription of auxiliary parameters Æ and � (for discussion
see Refs. 5,7).

The analysis of the CP phenomenon is given in the
TIM rigid-lattice approximation but there is the prob-
lem of the stability of the solutions (8) against lattice
vibrations characteristic of real crystals. The stability
of the thermal-
uctuation mechanism was investigated
[8] by a complete qualitative analyses, including lat-
tice distortions, spin-phonon interactions and phonon
unharmonicity, carefully accounted through the ETIM,
an extended version of the zero-order lattice-vibration
TIM. The ETIM was introduced in the second-order
lattice-vibration approximation, that, in a way, gener-
alizes the well known (see e.g. Ref.3) �rst-order lattice-
vibration Kobayashi model. The ETIM is proposed [8]
as a credible model for real crystals that expose struc-
tural order-disorder transition.

III Summary

We have discussed the relaxation phenomenon observed
near the structural transition in three-dimensional
hydrogen-bonded ferroelectrics above the transition
temperature Tc. The analysis is given through the in-
stability of paraelectric phase studied within the scope

of the 3D spin-1/2 TIM by the Green-function method.
The observed central-mode intensity (2,3) is described
microscopically near Tc by Eqs. (7) and (8). The
mean-�eld dynamic description, given by the trial soft
mode and !0(T ), with Re!0 _ (T � Tc)

1=2 and Im!0
= 0, is explained by accounting for the short-range
order-parameter correlations and is given in terms of
the divergent relaxation scale �(T ). The latter, in
turn, is given by the di�usive-type, central-mode !c(T )
(Re!c = 0 and �c = Im!�1c _ (T � Tc)

��c) and the
overdamped soft-mode !s(T ) (Re!s v � and �s =
Im!�1s _ (T � Tc)

��s) order-parameter excitations.
As follows from Eq.(8) the slow-down exponents are,
respectively, �c = 5

4
and �s = 1

4
. One of these

results can be compared with the numerical estimate
�c = 1:26 elaborated in Ref.9.

The instability of the ferroelectric phase below Tc
was additionally analyzed on the basis of the classi-
cal Ising model by the Thompson method [10,11]. The
following slow-down exponents, namely, �

0

c = 5
4
and

�
0

s =
5
16
, were deduced in the case of the real 3D space.

We see that the Ising-model critical dynamics, associ-
ated with Tc-critical dynamics in hydrogen-bonded fer-
roelectrics [1-5], is driven by thermal order-parameter

uctuations (intrinsic CP mechanism) and does not de-
pend on the quantum model correlations characteristic
of the TIM.
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