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Ferrroelectric Phase Transitions and the Ising Model
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The Ising model has been an important theoretical tool in the understanding of phase transitions
in ferroelectric materials. We �rst review how it relates to the underlying physics of order-disorder
phase transitions in these systems, as well as mean-�eld results for the spontaneous polarization and
the dielectric constant near the critical temperature. For hydrogen-bonded ferroelectrics, a term of
interaction with an external transverse �eld is necessary to account for proton tunneling between
the two minima of a double-well potential. Finally, we discuss both experimental and theoretical
results for the problems of proton-lattice interactions, central peak dynamics, dynamical behavior
of pseudo-one-dimensional ferroelectrics and pressure e�ects on hydrogen bonded ferroelectrics.

I Introduction

We begin with the Hamiltonian of a crystal used in
the study of ferroelectric phase transitions [1]. A fer-
roelectric phase transition is classi�ed as a displacive-
type or order-disorder type transition. For a displacive
phase transition some requirements are imposed on the
Hamiltonian parameters so that a transition takes place
on the crystal. For an order-disorder transition a disor-
dered lattice becomes ordered with lowering of the tem-
perature. Quantum e�ects may also become important
in this case.

In order to obtain the Hamiltonian we take a single-
ion model. Consider a diatomic crystal consisting of
atoms A and B and assume that in a phase transition
A atoms move while B atoms remain �xed. The forces
acting on atom A are due to the neighboring B atoms
and also from next-neighbor A atoms. Let u(~R) be the
displacement along an axis, say the z-axis, of an atom
A in the unit cell whose center is located at ~R. The
Hamiltonian is

H =
X
~R

(
1

2
au(~R)2+

1

4
bu(~R)4)+

1

2
c
X
~R; ~R0

(u(~R)�u( ~R0))2

(1)
where a < 0, b > 0 and c is the sti�ness coeÆcient for
the forces (strings) linking the particles. The �rst term
in Eq. (1) describes the interaction between A and B
atoms while the second term describes the interaction
between atoms A. Let us explain how the two types of
phase transitions are described by this Hamiltonian.

(a) Displacive phase transitions (jaj � c). For
T > Tc, the mean positions of atoms A are in the cen-
ters of the cells and, therefore, u(~R) = 0, except for ~R0,
which is the coordinate of the cell center. The potential

acting on an A atom is

U =
1

2
(a+ 6c)u( ~R0)

2 +
1

4
bu( ~R0)

4 (2)

The coeÆcient of the �rst term is positive and the in-
dividual A atom moves in an e�ective potential with a
single minimum (Fig. 1).

(b) Order-disorder phase transitions (jaj � c). In
Eq. (2), if jaj � c the �rst term is negative, while the
second is positive. An individual atom moves in a sym-
metric phase in a double well potential (Fig. 2). Each
atom occupies one of the two equilibrium positions cor-
responding to the energy minima,

u1;�1 = �
r
jaj
b

= �u( ~R0): (3)

The displacement of an A atom from the center of the
unit cell is a quantity which can have only two values,

u(~R) = uS( ~R0); (4)

where S(~R) = �1. Inserting Eq. (4) into Eq. (1) and

considering that S(~R)2 = 1, we �nd that

H =
1

2

X
~R; ~R0

JS(~R)S( ~R0) (5)

where J = 2cu20 and terms not containing S(~R) have
been omitted. This is the Ising Hamiltonian, used to
describe order-disorder phase transitions.
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Figure 1. E�ective potential with a single minimum, occur-

ring in displacive phase transitions.

II Order-disorder ferroelectrics

In these ferroelectrics, the particles perform oscillations
relative to their equilibrium positions, and can also
move from one equilibrium position to the other, under
the action of randon thermal forces. Therefore, they
move a distance of 2u( ~R0) and a charged particle per-
forming such a motion, from position 1 to �1, or from
�1 to 1, can be regarded as a reversible electric dipole.
The dipole moment is p = �eu( ~R0). So, in the disor-
dered phase the crystal is a system of randomly aligned
dipoles. The particles occupy either equilibrium posi-
tion with the same probability. In a phase transition
the probabilities of the two equilibrium positions are
unequal. In the ordered phase each particle occupies
one of the positions for a longer period of time than in
the other. As we mentioned earlier the Ising Hamilto-
nian describes this mechanism.

In order to get some basic information on order-
disorder ferroelectrics we use the results of the mean
�eld approximation, which are more accurate the larger
the radius of interaction of the particles. The main re-
sults are the following:
(i) The temperature dependence of the spontaneous po-
larization is given by

P 2 = �(3p
2

v2
)
(T � Tc)

Tc
; (6)

where p is the dipole moment, v is the volume of the
unit cell, Tc = J0=kB is the Curie transition tempera-

ture, and J0 =
P

~R0
J(~R; ~R0) is a constant representing

the interaction of the particle at ~R with all the other
particles in the range of interaction of radius ~R0.
(ii) The dielectric constant along the direction of the
polarization is

" = 1 +
4�p2

J0v

Tc
T � Tc : (7)

The Curie-Weiss law is thus obtained, with the Curie
constant C = 4�p2Tc=J0v. The type of interaction in

the system has to be given so that the value of J0 can
be obtained before quantitative calculations are per-
formed.

(iii) The electric �eld (mean value) acting on each par-
ticle is

E = E0 +
J0v

p2
P; (8)

where E0 is the macroscopic �eld. For crystals be-
longing to the order-disorder type, the relation C=Tc =
4�=� = 3 is approximately ful�lled, where � = J0v=p

2

is known as the Lorentz factor. The following are ex-
amples of order-disorder crystals: (a) TGS, Tc = 322K
and C = 3200K; (b) NaNO2, Tc = 433K and C =
5000K; (c) KH2PO4, Tc = 123K and C = 3600K. On
the other hand, in the case of crystals of the displacive
type that relation is not ful�lled even approximately, as
in BaTiO3, where Tc = 400K and C = 170000K.

(iv) Another test to characterize an order-disorder tran-
sition is the change of the entropy from T = 0K to
T = Tc. In that case one obtains �S = R ln 2 per
mole. In orders of magnitude the value �S=R � 1 is
an indication of an order-disorder type crystal. In fact,
for TGS, �S=R = 1:1, while NaNO2 and KH2PO4

have the same numerical value, namely 0:7.

III Tunneling e�ects in ferro-

electrics

An order-disorder phase transition occurs when the dis-
order e�ects (kBT ) are comparable with the ordered
e�ects (J0). However, if the masses of the particles
responsible for the dynamics are small, such as hydro-
gen, then quantum-mechanical tunneling of the parti-
cles through the barrier (see Fig. 2) will add to the dis-
order mechanism. We will now sketch the deduction of
the Hamiltonian which describes quantum-mechanical
order-disorder phase transitions. The Hamiltonian will
turn out to be the transverse Ising model [2].

Figure 2. E�ective double-well potential, where an atom lies

at one of the equilibrium positions with minimum energy.
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The state of each particle in a double-well potential
can be represented by the wave function,

' = c1'1 + c2'2; (9)

where '1 and '2 are the wavefunctions describing the
states of the particle on the left and right sides of the
potential, with the normalization condition c21+ c

2
2 = 1.

Note that excited states are not considered here. Upon
considering the e�ects of tunneling across the double-
well internal barrier, the ground state energy "0 will
split into two levels, with energies "1 = "0 � 
 and
"2 = "0+
, corresponding to symmetric ( 1) and anti-
symmetric ( 2) combinations. Hence the wavefunction
describing the system is

 = a1 1 + a2 2; (10)

where

a1 =
1p
2
(c1�c2) and a2 =

1p
2
(c1+c2): (11)

The Hamiltonian of the many-particle system is
given by

H =
X
~R

H0(~R) +
1

2

X
~R; ~R0

V (~r � ~r0); (12)

where ~r0 = ~R+ u(~R) and

H0 =

�

 0
0 �


�
= 
Sz(~R): (13)

Notice that the energies have been shifted by "0.
Here Sz(~R) are the spin-1=2 Pauli matrices, and V (~r�
~r0) is the interaction operator. The latter can be ex-
panded in terms of the displacements of the particles
u(~R) = u, for u� ~R, as follows,

V (~r � ~r0) = V (~R� ~R0) + (~u(~R)� u( ~R0)V 0(~R� ~R0)+

1

2
(u(~R)� u( ~R0))2V 00(~R� ~R0) + : : : (14)

The matrix representation of the particle displace-
ment is,

u(~R) =

�
u11 u12
u21 u22

�
; (15)

where

uij =

Z
 iu 

�

j dv: (16)

By taking into account the symmetries of the displace-
ments (u is an odd function of the coordinates), of the
potential (even function of the coordinates) and of the
functions  1 and  2 (even and odd, respectively), we
obtain after a straightforward calculation the Hamilto-
nian in terms of spin-1=2 Pauli operators, Sx(~R) and

Sz(~R),

H = V0+
0

X
~R

Sz(~R)� 1

2

X
J(~R� ~R0)Sx(~R)Sx( ~R0);

(17)

where V0 =
P

~R; ~R0
V (~R� ~R0), 
0 = 
+ 1

4

P
~R0
V 00(~R�

~R0)(u211�u222) and J(~R� ~R0) = 2V 00(~R� ~R0)u212. In the
representation of the functions '1 and '2, we obtain,

H = �

X
~R

Sx(~R)� 1

2

X
~R; ~R0

J(~R � ~R0)Sz(~R)Sz( ~R0);

(18)
which is the transverse Ising model Hamiltonian.

The polarization is proportional to < Sz > and,
in the mean �eld approximation, it can be obained by
solving the transcendental equation,p

(
2 + J20 < Sz >2)

J0
= tanh(

p
(
2 + J20 < Sz >2)

kBT
):

(19)
The transition temperature obtained within the mean
�eld approximation is

Tc =
2J0
kB

=

=J0

ln 1+
=J0
1�
=J0

: (20)

With the increase of tunneling (as we are setting ~ = 1,
the tunneling frequency is 2
) the transition tempera-
ture drops and Tc ! 0 as 
! J0. Therefore, tunneling
works as a disorder mechanism.

IV Discussion of experimental

and theoretical results

We shall present now some experimental results that
have been explained by the use of the models discussed
previously. They are the result of investigations done
in the Physics Department of the Federal University of
Minas Gerais, Brazil. More recent experimental and
theoretical results can be found elsewhere [3].

(a) Proton-Lattice Interactions.
The addition of a BijS

x
i S

x
j {type coupling between

the tunneling motion of one proton and that of another
to the Ising model in a transverse-�eld Hamiltonian,
or the addition of the probably larger Sx

i F
x
i Qi{type

pseudospin phonon coupling (describing the modula-
tion of the distance between the two equilibrium sites
in a O-H-O bond by nonpolar phonons), results in a
temperature-dependent renormalization of the proton
tunneling integral [4]. This is important close to Tc,
where the soft-mode frequency vanishes, !crit ! 0.
This may lead to large isotope shifts in Tc on deutera-
tion even for small values of the tunneling integral and
may explain some phenomena observed in PbHPO4

[5,6] and squaric acid [7] as well as the dependence of
the e�ective proton-lattice interaction constant on hy-
drostatic pressure in KH2PO4-type systems. This last
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e�ect may be also due to the presence of a Sx
i D

x
i Q

2
i

term in addition to the Kobayashi term Sz
i F

z
i Qi when

coupling with polar optic phonons is taken into account
[4]. When the lattice motion is so anharmonic that
the lattice ions move in a double-well potential and the
proton-lattice coupling are so strong that the protons
can tunnel in only one out of the two possible lattice
con�gurations, two Curie temperatures may appear [4].

(b) Dynamic Central Peak.

Measurements of the temperature and frequency de-
pendence of the proton and deuteron spin-lattice re-
laxation, T1, show the presence of a dynamic cen-
tral peak in paraelectric KH2PO4, which exhibits a
dramatic narrowing on deuteration. The results of
an NMR study of the frequency and temperature de-
pendence of the proton and deuteron T1 in paraelec-
tric KH2PO4 and deuterated KD2PO4, represented
the �rst direct observation of the narrowing of a dy-
namic central peak on deuteration [8]. The central
peak in deuterated KD2PO4 is more than two orders
of magnitude narrower than the dynamic central peak
in paraelectric KH2PO4. A continued-fraction calcu-
lation of the order-parameter 
uctuation spectrum of
KH2PO4 as a function of deuterium content qualita-
tively reproduces the observed central-peak narrowing
on deuteration. The two studies together represent
strong evidence that small dynamic intrinsic clusters
occur in KDP-type crystals in addition to large static
defect-induced clusters observed in light-scattering ex-
periments. The study showed as well that naturally
abundant deuterium cannot be the cause of the ob-
served static (light-scattering) and dynamic (T1 NMR)
central peaks in KH2PO4.

(c) Dynamics of Pseudo-One-Dimensional Crystals.

Cesium dihydrogen phosphate CsH2PO4 is a hy-
drogen bonded ferroelectric crystal which undergoes
an order-disorder phase transition at Tc = 152K. The
shift of the phase transition temperature Tc = 267K
in the isomorph deuterated compound CsD2PO4 indi-
cates that the motion of the proton in the hydrogen
bonds has an important role for the ferroelectricity in
these materials. Results of X-ray di�raction [9] and
neutron scattering experiments [10] showed that the
hydrogen bonds in CsH2PO4 run along chains. It has
been also shown [11] that the intrachain interactions
due to the hydrogen bonds are much stronger than the
interchain ones, a fact which characterizes the quasi-
one-dimensional behavior of these crystals. Therefore,
in order to study their properties theoretically it is de-
sirable to take into account the strong intrachain in-
teractions as exactly as possible while the interchain
interactions can be treated within a mean �eld approx-
imation. The dynamics of the strongly-anisotropic Ising
model in a transverse �eld was used with the purpose of
explaining the dielectric critical slowing down observed
experimentally in the quasi-one-dimensional hydrogen-
bonded ferroelectric crystal CsH2PO4. Good agree-

ment with the experimental data on the temperature
dependence of the dielectric constant and relaxation
time has been obtained [12].

(d) Pressure E�ects.
Experimental studies [13,14] indicate that the tran-

sition temperature of both CsH2PO4 and CsD2PO4

decreases as the pressure is increased. For CsD2PO4

the critical temperature of the paraelectric-ferroelectric
transition decreases at a rate dT d

c =dp = �8:5 oC/Kbar,
and for pressures larger than about 5:0{6:0 kbar the
system orders antiferroelectrically. The N�eel tem-
perature of the paraelectric-antiferroelectric transition
also decreases with pressure at a rate dT d

n=dp =
�2:5 oC/Kbar. The ferroelectric-antiferroelectric tran-
sition line in the T -p phase diagram was observed to be
associated with a slope of about 35 oC/kbar. The triple
point was located at P d

c = 5:2 kbar and T d
c = �55:2 oC.

A compressible pseudo-spin Ising model Hamiltonian
is used to calculate the pressure-temperature phase di-
agram of quasi-one-dimensional hydrogen-bonded fer-
roelectric crystals such as CsD2PO4 [15]. Strong ef-
fective interactions, which are treated exactly along
chains, and weak volume dependent interactions, which
are treated in the mean �eld approximation, between
chains, were assumed. In agreement with the exper-
imental �ndings, the phase diagram exhibits a triple
point and transition lines between ferroelectric, antifer-
roelectric and paraelectric phases. However, the results
suggested that the Ising model may be too simple to
account for the detailed form of the phase diagram of
CsD2PO4.
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