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Monte Carlo simulations with up to 1765 spins con�rm the Chen-Dohm theory for the �ve-
dimensional Ising model. Also world record sizes 10001922 ; 99843; 8804; 486 and 217 spins were
simulated in the literature, and we describe the needed multi-spin coding algorithm.

Brazil does good Ising research, but Ising was not
born there. Thus in contrast this paper reports on some
work done in the town where Ernst Ising was born a
century ago: Monte Carlo simulations of large Ising
models in d dimensions: nearest-neighbour spin 1/2
model without any further quantum e�ects, periodic or
helical boundaries on hypercubical lattices of Ld spins.

It is a waste of memory to store every spin of an
Ising model in a full computer word of, say, 32 bits.
Friedberg and Cameron [1] seem to have started putting
spins into single bits, Claudio Rebbi [2] made the tech-
nique popular as multi-spin coding, but in biology such
bitstrings were known from Eigen's quasispecies model
[3], also of 1972. Since in three dimensions we have to
sum up over six neighbours, giving zero to six antipar-
allel spins, the energy requires three bits. In more than
three dimensions, more bits are needed. Here we use
four bits per spin, allowing simulations in up to seven
dimensions and �tting nicely into modern 32- or 64-
bit words. (Rebbi used 3 bits on 60-bit words.) I do
not deal here with the more eÆcient but less versatile
method of using one bit per spin and doing the sum
over the nearest neighbours through purely logical op-
erations. Instead, the program allows for varying the
dimensionality d by just changing one parameter. Its
principles were already explained long ago [4, 5].

Let us assume we already have a working three-
dimensional Ising program with multi-spin coding using
4 bits per spin, on a supercomputer like the Cray-T3E
with 64 bits per word and thus 16 spins per word. The
spin words are called IS(ii; i) with ii going from 1 to
LL = L=16 and i = 1 : : : Ld�1 in d dimensions. To
add a fourth or �fth dimension we just have to add
two or four neighbours. If we do this with an inner-
most loop over the 6 (or 2d) neighbours then vector
computing is slowed down. If we deal with traditional
if-commands then both vector and scalar computers are
slowed down. The trick is to use if-commands depend-
ing on a constant dimension idim de�ned at the begin-

ning through a Fortran PARAMETER statement (or
analogous constructs in lesser languages). Then a state-
ment like if(idim:eq:3) goto 8 is evaluated already at
compile time, the compiler might even give you a warn-
ing that the following line is never reached, and after
compilation the executation is no longer slowed down
by the numerous if-statements.

Of course, it is still a waste of memory to have four
bits per spin when one suÆces. A way out is compres-
sion: only the current hyperplane and the two neigh-
bouring hyperplanes are stored as IS with four bits
per spin, while for all other planes four words are com-
pressed into one after shifting them by zero, one, two
or three bit positions. They can be re-read from there
by logical-AND statements with some MASK of 0001
sequences, called MK(0); : : :MK(3) here. Normally
this would reduce the main spin array ISM(ii; i) to
ii = 1 : : : L=64; i = 1 : : : Ld�1.

However, in this case the minimum linear dimension
would be L = 128 since at least two words are needed
for each lattice line in multi-spin coding. This would
rectrict the applications of the program very much.
Therefore, this 4:1 compression was instead performed
for the second index i, thus requiring a main spin array
ISM(ii; i) with ii = 1 : : : L=16; i = 1 : : : Ld�1=4. Un-
fortunately, this makes programming complicated, in-
volving the variables I0; IM; IP; INDEX; INDX af-
ter the loop DO 4 in my program. And I cannot
use it for two dimensions anymore, where compression
was made in the ii-direction instead. (In case of need,
ask stau�er@thp.uni-koeln.de for a simpler program is-
pardd9.f in two to seven dimensions without compres-
sion; the complicated one is ispardd0.f.) More than
twenty spins were updated every microsecond on every
processor of a fast Cray-T3E in J�ulich, for �ve dimen-
sions.)

[Technical remarks: This program was written for
parallel computing with NPROC processors by di-
viding the hypercube into NPROC layers of thick-
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ness L=NPROC � 2. The message-passing com-
mand shmem get(a; b; c; d) gets c words from proces-
sor d, starting with word b there, and stores them
into the memory of the current processor NODE =
shmem my pe beginning at word a. The line INFO =
BARRIER() synchronizes the processors: computa-

tion proceeds after all nodes have reached this line.
POPCNT counts the number of set bits in a word,
IRTC the number of machine cycles, and the �nal loop
do iadd = 1; nproc� 1 gives a primitive global summa-
tion over the magnetization in every node. We use the
Heat Bath algorithm.]

PARAMETER(TTC = 0.7, NPROC=88, LL=11, IDIM=5, max= 5,

1 L=LL*16,L2=L*L,L3=L2*L,L4=L3*L,L5=L4*L,N=L**(IDIM-1)/4,

2 NPLANE=N/L, LLP=LL-1, N8=N/NPROC, IMAX=N8+2*NPLANE,

3 NPLAN4=NPLANE*4, ID2=2*IDIM, LENGTH=N/16)

DIMENSION IS(LL,3),ISM(LL,IMAX),IEX(0:ID2),MK(0:3)

COMMON /T3E/ ISM,M,MSUM

INTEGER SHMEM_N_PES, SHMEM_MY_PE

ISII(K)=ISHFT(IAND(MASK,ISM(II,1+K/4)),-INDEX)

DATA ISEED/ 2/,MSK/X'1000000000000000'/,

1 MK/X'1111111111111111',X'2222222222222222',

2 X'4444444444444444',X'8888888888888888'/

NODE=SHMEM_MY_PE()

NUMBER=SHMEM_N_PES()

IF(IDIM.EQ.3) T=0.2216544

IF(IDIM.EQ.4) T=0.149695

IF(IDIM.EQ.5) T=0.113915

IF(IDIM.EQ.6) T=0.092295

IF(IDIM.EQ.7) T=0.077706

T=T/TTC

IF(NODE.EQ.0) PRINT 11, TTC,IDIM,L,MAX,ISEED,NUMBER,

1 (LL*IMAX)/131072

LNPROC=L/NPROC

11 FORMAT(1X,F9.6,6I5)

NODEU=NODE-1

NODED=NODE+1

IF(NODE.EQ.0) NODEU=NUMBER-1

IF(NODE.EQ.NUMBER-1) NODED=0

IBM=2*ISEED-1

MULT=16807

DO ITER=0,NODE

IBM=IBM*65539

END DO

DO 2 I=0,ID2

EX=EXP((4*I-2*ID2)*T)

2 IEX(I)=2147483648.0*(4.0*EX/(1.0+EX)-2.0)*2147483648.0

DO 1 I =1,IMAX

DO 1 II=1,LL

1 ISM(II,I)=0

TIME=IRTC()*3.33E-9

DO 6 ITIME=1,MAX

INFO = BARRIER()

CALL SHMEM_GET(ISM(1,1),ISM(1,1+N8),LENGTH,NODEU)

INFO = BARRIER()

DO 7 II=1,LL

IS(II,2)=ISHFT(IAND(MK(3),ISM(II,NPLANE)),-3)

7 IS(II,3)= IAND(MK(0),ISM(II,NPLANE+1))

DO 49 IPLANE=1,LNPROC

LPLANE=IPLANE*NPLAN4-1

IF(IPLANE.NE.2) GOTO 9
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INFO = BARRIER()

CALL SHMEM_GET(ISM(1,1+NPLANE+N8),ISM(1,NPLANE+1)

1 ,LENGTH,NODED)

INFO = BARRIER()

9 CONTINUE

DO 4 I=1,NPLAN4

I0=I+LPLANE

IM=1 + I0 /4

IP=1+(I0+1)/4

INDEX=MOD(I-1,4)

INDX =MOD(I ,4)

MASK=MK(INDEX)

NOTMSK=NOT(MASK)

DO 10 II=1,LL

IS(II,1)=IS(II,2)

IS(II,2)=IS(II,3)

10 IS(II,3)=ISHFT(IAND(MK(INDX),ISM(II,IP)),-INDX)

DO 4 II=1,LL

IF(II.EQ. 1) GOTO 40

IF(II.EQ.LL) GOTO 41

IEN=IS(II-1,2)+IS(II+1,2)

GOTO 42

40 IEN=IS(2,2)+IOR(ISHFT(IS(LL,2),-4),ISHFT(IS(LL,2),60))

GOTO 42

41 IEN=IS(LLP,2)+IOR(ISHFT(IS(1,2),4),ISHFT(IS(1,2),-60))

42 IEN=IEN+IS(II,1)+IS(II,3)+ISII(I0-L)+ISII(I0+L)

IF(IDIM.EQ.3) GOTO 8

IEN=IEN+ISII(I0-L2)+ISII(I0+L2)

IF(IDIM.EQ.4) GOTO 8

IEN=IEN+ISII(I0-L3)+ISII(I0+L3)

IF(IDIM.EQ.5) GOTO 8

IEN=IEN+ISII(I0-L4)+ISII(I0+L4)

IF(IDIM.EQ.6) GOTO 8

IEN=IEN+ISII(I0-L5)+ISII(I0+L5)

8 ICI=0

DO 3 IB=1,16

IBM=IBM*MULT

ICI=ISHFT(ICI,-4)

IF(IBM.LT.IEX(IAND(15,IEN))) ICI=IOR(ICI,MSK)

3 IEN=ISHFT(IEN,-4)

IS(II,2)=ICI

4 ISM(II,IM)=IOR(IAND(NOTMSK,ISM(II,IM)),ISHFT(ICI,INDEX))

49 CONTINUE

c IF(ITIME.NE.(ITIME/10)*10) GOTO 6

M=0

DO 5 I =NPLANE+1,NPLANE+N8

DO 5 II=1,LL

5 M = M + POPCNT(ISM(II,I))

INFO = BARRIER()

IF (NODE .EQ. 0 .AND. NPROC .GT. 1) THEN

DO IADD = 1,NPROC-1

CALL SHMEM_GET (MSUM, M, 1, IADD)

M = M + MSUM

ENDDO

ENDIF

X=1.0-(M*0.5)/(N*L)

IF(NODE.EQ.0) PRINT 100, ITIME,M,X



790 Dietrich Stau�er

6 CONTINUE

TIME = IRTC() * 3.33E-9 -TIME

IF(NODE.EQ.0)PRINT *,4*TIME,NUMBER,

1 (MAX*L**IDIM/NPROC)/(4000000.0*TIME)

100 FORMAT(1x,I4,I20,F12.9)

END

What can we do with this program? As the ti-

tle promises it allows to simulate world record sizes,

with L = 106 in two dimensions, matching Linke et

al. [6], L = 104 in three dimensions equalizing perco-

lation [7], and 8804; 1765 and 486 spins in higher di-

mensions. These world records were established at the

same time as the prediction of Ceperley [8] was pub-

lished, that 1012 sites could be simulated. (Since we

need at least two hyperplanes per processor, the 512

nodes of the Cray-T3E cannot all be used for higher

dimensions. Fortunately, in physics there is little need

for more than �ve dimensions.) Some of the results in

lower dimensions were given before [9] and are compat-

ible with those from smaller systems [10]. Now come

some new �ve-dimensional simulations.

According to Chen and Dohm [11], the behavior in

�ve dimensions, above the upper critical dimension of

four, is far from trivial: Some �nite-size �eld theories

are invalid, and �nite-size scaling is not of the usual

one-parameter type. This work was criticized [12] as

being in contradiction to Monte Carlo simulations, and

that criticism in turn was recently refuted [13]. A com-

parison of �eld theory, �4 lattice theory, and the true

Ising model requires to �t several parameters since e.g.

the critical temperature is not the same. Ref.[12] set

one of these parameters to unity, while Ref. [13] al-

lowed it to be di�erent from one. This latter choice

removed [13] some discrepancy between the theoretical

prediction [11] and Monte Carlo simulation [12]. As

a result, several bulk amplitudes di�er depending on

whether we use the �t of Mainz[12] or Aachen[13], and

we now perform new simulations to �nd out which of

these two predictions, [12] or [13], �ts our new data bet-

ter. (The parameters appearing in the theory of [11, 13]

have been identi�ed as bulk parameters related to the

amplitudes of the bulk correlation length, the bulk sus-

ceptibility and the bulk magnetization. Thus the values

of their parameters can be tested by bulk simulations.)

First, we determined the correlation length �, de-

�ned through the exponential decay of the correlation

function, by observing the magnetization pro�le be-

tween two hyperplanes of up spins, �tting an expo-

nential on an intermediate space region somewhat re-

moved from the surface but where the magnetization

still di�ers signi�cantly from its bulk value, Fig.1. We

used one-word-per spin coding for typically 355 spins

above Tc in zero magnetic �eld and multi-spin cod-

ing (4 bits per spin) for 485; 805; 1125 at T = Tc in

a magnetic �eld h = �B=kBT , where � is the mag-

netic dipole moment. Typically, 2000 Monte Carlo

steps per spin were simulated. Fig. 2 shows the data

for T > Tc in zero �eld, Fig.3 the case T = Tc in a

positive �eld. In spite of the larger lattices, the re-

sults in a magnetic �eld are less accurate since then,

as opposed to paramagnets, the bulk magnetization is

nonzero and has to be subtracted from the magnetiza-

tion pro�le. We thus estimate �h1=3 = 0:27� 0:03 and

�[(T � Tc)=Tc]
1=2 = 0:36 � 0:02, in better agreement

with the Aachen predictions (0.273 and 0.396) than the

Mainz estimates (0.390 and 0.549).

The magnetizationM can be determined more accu-

rately since no �t to an exponential pro�le is involved.

Fig. 4 shows at T = Tc the amplitude M=h1=3 and

Fig.5 shows M=(1 � T=Tc)
1=2 below Tc in zero �eld.

Again the lower horizontal line is the Aachen predic-

tion, which agrees better with the data than the upper

horizontal line from Mainz. Moroever, Fig.5 using up

to 1765 spins shows, as predicted by analytic theory

[13], a scaling correction 2:25�1:1 � (1�T=Tc)
1=2 which

�ts better than the correction linear in T�Tc suggested

by Cheon et al [11].

Figure 1. Examples of the magnetization pro�le. Straight
lines in this semilogarithmic plot determine 1=�. Two
boundary hyperplanes had all spins up to produce these
pro�les.
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Figure 2. Correlation length amplitudes above Tc in zero

�eld.

Figure 3. Correlation length amplitudes at Tc in positive
�eld.

Figure 4. Magnetization amplitudes at Tc in positive �eld.

Figure 5. Magnetization amplitudes below Tc in zero �eld

with t = T=Tc � 1; the straight line with negative slope

suggests scaling corrections / p�t.

Figure 6. Six-dimensional dynamics. The correct critical
temperature requires z = 2 asymptotically. Our slight de-
viation T=Tc = 0:9998 � 0:0001 may come from the �nite
L = 48.

Thus in all cases the Aachen prediction �ts bet-

ter than the Mainz alternative, and only Fig.2 suggests

that Aachen is only approximate.

[Two side remarks: (i) In six and seven dimensions,

Figs. 6 and 7 con�rm the series estimate J=kBTc =

0:092295(3) and 0.077706(2) less accurately [16]: For

the correct temperature the intercept of the extrapola-

tion gives the asymptotic kinetic exponent z = 2. The

217 spins were simulated without multi-spin coding.

For Swendsen-Wang cluster 
ips, Fig.8 shows nicely the

exponential decay of the magnetization with time in two

dimensions: z = 0. Three-dimensional Q2R cellular au-

tomata still have an unexplained dynamics, z = 3:37,

Fig.9. Fig.10 shows results for Metropolis kinetics with

Ito's one-bit-per-spin and parallelization in stripes and

1010 updates per second. These system sizes can be

compared with the present site percolation records [7]
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of L = 4 million, 10000, 611, 127, 49, and 26 for two to

seven dimensions.

Figure 7. Seven-dimensional dynamics analogous to Fig.6,

with 217 spins.

Figure 8. Two-dimensional Swendsen-Wang dynamics[18,
19] for L up to 14001.

Figure 9. Three-dimensional Q2R cellular automata with

1012 spins at criticality.

Figure 10. Three-dimensional Ito-Metropolis algorithm,
suggesting z ' 2:06 depending on the choice [10] of Tc.
The speed was 11 Giga updates per second, and we assume
�=� = 0:515.

(ii) At the last conference in Belo Horizonte in which

I took part, the Brazilian computational physics meet-

ing, I learned [14] that simulations of dipole forces are

easy. As a result, the stability of arrays of parallel strips

of Ising spins interacting also with long-range dipole

forces, as for iron monolayers on stepped surfaces [15],

was investigated by Michelsen [17]. He found the Curie

point to be stable for large systems, and not just a

gradual freezing-in as in a glass.]
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the manuscript, SFB 341 for partial support, and the
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