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Highly accurate adapted Gaussian basis sets are used to study the ground and some excited states
for the neutral atoms and also some corresponding 6s and 4f ionized states from Cs through Lu. Our
total energies are compared with those calculated with a numerical Hartree-Fock method. The mean
error of our energy results is equal to 0.74 mhartree. Our calculations reproduce the experimental
trend to increase or to decrease the 6s and 4f ionization potentials with increasing atomic number,
although they are respectively smaller and larger than the experimental values.

I Introduction

In this last decade lanthanide chemistry and physics

have experienced tremendous growth, for example in

the �eld of catalysts [1] and high temperature super-

conductors [2]. Thus, it would be highly desirable to

elucidate the electronic structure of lanthanide atoms

at least in the Hartree-Fock (HF) approximation. For

these atoms, numerical HF (NHF) calculations [3-5]

were performed mainly on the ground states.

In this work, the adapted Gaussian basis sets [AG-

BSs - one di�erent set of Gaussian-type function (GTF)

exponents for each atomic species for the atoms from

Cs (Z=55) through Lu (Z=71) [6] are initially aug-

mented until saturation is achieved for each symme-

try of each atom and then, using the generator coordi-

nate HF (GCHF) [7] method, they are reoptimized for

each atomic species. Next the energies for the atoms

Cs-Lu and their positive ions are calculated and com-

pared with those obtained with a NHF [5] method. The

ionization potentials (IPs) are also computed and com-

pared with the corresponding experimental values [8,9].

II The method

An approach to select the basis sets arises from the

GCHF method [7]. In the GCHF method the one-

electron functions are integral transforms, i.e.,

	1(1) =

Z
�i(1; �)fi(�)d� i = 1; :::; n; (1)

where �i are the generator functions (GTFs in our

case), fi are the unknown weight functions, and � is

the generator coordinate. The application of the vari-

ational principle to calculate the energy expectation

value built with such one-electron functions leads to

the Gri�tn-Hill-Wheeler-HF (GHWHF) equations [7].

The GHWHF equations are integrated using a proce-

dure known as integral discretization (ID) [10]. The ID

technique is implemented through a relabelling of the

generator coordinate space, i.e.,


 = ln
�

A
; A > 1 (2)

where A is a numerically determined scaling factor.

In the new generator coordinate space 
, an equally

spaced N -point mesh f
ig is selected, and the integra-

tion range is characterized by a starting point 
min,

an increment �
, and N (number of discretization

points). The highest value (
max) for the generator

coordinate is given by


max = 
min + (N � 1)�
 : (2)

The choice of the discretization points determines the

exponents of the GTFs.

In the last four years, the GCHF [7] method was

successfully tested in the generation of basis sets for

atomic and molecular systems [11-16].
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III III Results and discussion

By employing the GCHF method we have generated

AGBSs for the atomic species presented in Table 1.

Throughout the calculations we have used the scal-

ing factor A (see Eq. (2)) equal to 6.0, and for all

atomic species we have sought the best discretization

parameter (
min and �
) values for each s, p, d and f

symmetries. All calculations were carried out using a

modi�ed version of the ATOMSCF program [17], and

for each atomic species the optimization process is re-

peated until the total energy value is stabilized within

ten signi�cant �gures. The resulting wave functions

are available by request through the e-mail address

jorge@cce.ufes.br.

Table I shows the ground and some excited state

HF total energies (in hartrees) for the neutral atoms

and some cations from Cs (Z=55) through Lu (Z=71)

computed with our AGBSs and with a NHF [5] method.

Our basis set sizes are presented in the seventh column.

We recall that the AGBSs are generated from the basis

sets of Ref. [6]. First, we augmented these basis sets

until saturate each symmetry of each atom, and sec-

ond, using the GCHF [7] method, we reoptimized each

AGBS of each atomic species studied here. From Table

I, we can see that our total energies, for all atomic specie

of interest, are in good agreement with the correspond-

ing NHF [5] values and that our energy errors do not

exceed 1.72 mhartree. Here it is important to say that

the vector coupling coeÆcients used in the calculations

of the open-shell con�gurations have been taken from

the tabulation by Malli and Olive [18]. These tables

show the vector coupling coeÆcients for the electron

con�gurations s, pn, spn, dn, sdn, pmdn, spmdn and fn.

The HF total energies of the ground states of the atoms

Ce and Gd and of some states of the cations Pr+, Nd+,

Pm+, Sm+, Eu+, Tb+, Dy+, Ho+, Er+ and Tm+ are

not calculated here, because the electron con�gurations

of these atomic species have 5d and 4f and 6s and 4f

open shells, respectively. The electron con�guration of

Lu+ (3H) has 5d and 4f open shells, and thus the wave

function for this cation is not generated here.

Table II contains the IPs (in eV) computed by us-

ing the Koopmans theorem (" is our orbital energy),

the total energy di�erence �E = E(X+) �E(X)[X is

the atomic symbol and E(X+) and E(X) are our to-

tal energies respectively for the cation and the neutral

atom presented in Table I], and the experimental values

(Eexpt:) [8,9].

From Table II we can see that the di�erences be-

tween our IP's calculated through �" (see the fourth

column) and through �E (see the �fth column) are

small for 6s orbital, indicating that the Koopmans the-

orem works for the 6s ionization. Besides this, for the 6s

orbitals, our IPs calculated with these two approaches

are very similar to those computed with a NHF method

(see the sixth column). For all lanthanide atoms pre-

sented in Table II, and from our results for �", we can

see that the 6s orbitals are more di�use than the cor-

responding 4f orbitals, that is, the 6s IPs are smaller

than the 4f lPs. For these atoms, it is known that the

mean values of r for the 6s orbitals are larger than those

for the 4f orbitals, that is, the 6s electrons are far from

the nucleus than the 4f electrons. From La through

Eu, both the calculated �" (�4.4-4.6 eV) and the ex-

perimental (�5.4-5.8 eV) 6s IPs are almost constant.

After Tb, the �" and experimental [8,9] IPs gradually

increase. The experimental IPs are always larger than

the �" values. To correct this discrepancy, it is neces-

sary to include in the calculations electron correlation

e�ects and relativistic corrections, but this is outside

the scope of this work. Here, it is important to say

that Jorge et al. have developed the generator coor-

dinate Dirac-Fock (GCDF) [19,20] method for closed-

shell atoms and a segmented contraction methodology

for relativistic Gaussian basis sets [21,22]. From Table

II, only Yb (Z=70) has closed-shell, thus, for the other

atoms presented in this Table, we cannot use the GCDF

method to calculate the relativistic IPs.

Besides this, Table II shows that for the lanthanides,

the 4f IPs calculated by us through �" and through �E

give very di�erent results. The ionization of the elec-

trons in the outermost 6s shell causes small reorgani-

zation on the whole electron distribution, whereas the

inner 4f electron ionization causes larger reorganization

e�ects because of the appearance of a hole in the inner

shell. Thus, for these atoms, it is not appropriated to

use the Koopmans theorem to calculate the 4f electron

ionization. For all lanthanide atoms, the 4f IPs calcu-

lated by us (�E) are in good agreement with the corre-

sponding values obtained with a NHF [5] method, and

although the calculated 4f IPs are 1-3 eV greater than

the corresponding experimental values [8,9], NHF and

our �E calculations describe the experimental trend

well.

IV Conclusions

In this work we have generated AGBSs for the 45

atomic species presented in Table I with the GCHF [7]

method. The largest di�erence between the total ener-

gies calculated by us and by a NHF [5] method is equal

to 1.72 mhartree for Lu. Although our 6s and 4f IPs

(�" and �E) are respectively smaller and larger than

the corresponding experimental values [8,9], our cal-
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culations reproduce the experimental trends on the 6s

and 4f electron ionizations well. For the 4f IPs, our �E

results are better than those computed with the Koop-

mans theorem, whereas for 6s IPs the two approaches

give similar results.
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