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Surface Waves and Wave Resistance

in Magnetic Fluids
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We present here the experimental determination of the dispersion relation of surface waves of a
ferro
uid submitted to a steady vertical magnetic �eld. The results are compared to a linear theory
where all the magnetic characteristics of the 
uid have been taken into account. The knowledge of
the dispersion equation is then used to analyse the capillary-wave resistance, that is the drag force
associated to the emission of waves by a moving disturbance at a free 
uid surface. It undergoes a
transition from zero to a �nite value as the speed of the disturbance reaches a certain critical value.
The e�ect of viscosity is explored, and a magnetic 
uid is shown to allow controlling the critical
speeds. Contrary to the theoretical model, however, the measured wave resistance reveals a non
monotonic speed dependence after the threshold.

I Introduction

Magnetic 
uids, sometimes called ferro
uids, are col-
loidal suspension of magnetic particle which have a
giant magnetic susceptibility, usually in the order of
unity. When submitted to he in
uence of an external
DC vertical magnetic �eld, one is stricken by the struc-
turation of its surface into peaks, usually distributed
on an quasi-hexagonal array. The linear analysis of
this phenomenon [1], called after its discoverer the
\Rosensweig instability" has been the foundation stone
of ferrohydrodynamics [2] , the thermo-hydrodynamics
of non-conducting magnetic liquids. The 
uid peaks
arise because capillary-gravity waves, either induced by
thermal 
uctuations or ambient vibrations, are ampli-
�ed when a suÆciently strong vertical magnetic �eld is
present.

The precise knowledge of the dispersion equation is
of paramount importance for any process that is sensi-
tive to surface instabilities. In fact, every classical hy-
drodynamical instability such as the Rayleigh-Taylor,
or B�enard-Marangoni instabilities [3], has a magnetic
counterpart with ferro
uids. The additional magnetic
�eld, acting as a new control parameter, usually allows
to control the threshold of the instability [4].

The �rst part of this paper deals with the measure-
ment of the dispersion equation of capillary-gravity sur-
face waves of a magnetic 
uid under the in
uence of a
vertical and steady magnetic �eld. The results are con-

fronted to a linear theory that takes into account all the
magnetic characteristics of the ferro
uid sample used.
The results are then used to analyse a threshold phe-
nomenon : the capillary-gravity wave resistance.

When an object is moved at the free surface of a

uid, it experiences a drag force which physically orig-
inates from: (a) bulk dissipation in a viscous boundary
layer for low Reynolds numbers, and in the turbulent
wake for high Reynolds numbers; (b) the emission of
capillary-gravity surface waves. Such waves remove mo-
mentum from the perturbating object to in�nity. The
associated force that the object experiences is called
wave resistance.

For the convenient moderate speeds on which we
focus in this paper it may overcome the bulk dissipa-
tion type drag. Wave resistance has been studied for
more than a century in the case of pure gravity waves
[5], mainly because this topic has obvious naval appli-
cations [6]. However the case of capillary-gravity waves
has only been theoretically treated in a recent work of
Rapha�el and de Gennes [7]. The dispersive properties
of such waves are such as there exists a minimum phase
speed Vc = (4�g=�)1=4 at which waves are able to prop-
agate (here � is the surface tension of the free air-
uid
interface and � the density of the 
uid). Since the wave
pattern is stationary in the reference frame of the mov-
ing object, no wave can be emitted for V < Vc [8], and
therefore there is no wave resistance in that case. As
modeled in [7], the wave resistance should experience a
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�nite jump Rc at V = Vc and increases above Vc. The
system is thus supposed to undergo a discontinuous bi-
furcation.

The second part of this work deals with the mea-
surement of the wave resistance. In order to check these
theoretical predictions it is necessary to vary Vc. Vary-
ing � and � is very ine�ective way to change Vc (it would
merely vary from 17 cm/s to 23 cm/s for any kind of

uid). We here show theoretically and experimentally
that the action of a magnetic �eld on a magnetic 
uid
provides a means to tune the critical velocity from its
maximum value V H=0

c = (4�g=�)1=4 down to 0.

II Surface waves

1.1 Dispersion equation

Cowley & Rosensweig [1] were the �rst to study the
peak instability at the free surface of a magnetic 
uid.
Although they didn't actually express the dispersion
equation for waves at the free surface of a ferro
uid
(they were interested in the threshold value of the mag-
netic �eld at which the peaks form), they developed the
linear theory which allows to directly derive the mag-
netic term in the dispersion equation. They considered
that the ferro
uid was inviscid, that its depth was in�-
nite and that it was in�nitely extended in the horizontal
direction.

Since then, other authors re�ned this analysis in-
cluding more realistic conditions : Zelazo & Melcher [9]
expressed the dispersion equation of surface waves of a
ferro
uid layer resting between the poles of a magnet.
More recently, Abou & al. [10] changed this bound-
ary condition (the layer is generally surrounded by free
space, for visualization purposes), and included the ef-
fect of viscosity. However, they omitted to take into
account the demagnetization coeÆcient and also sup-
posed that the permeability of the material was con-
stant, a fact that is not supported experimentally, since
a magnetization saturation exists in the material. This
shortcoming has been removed in an article of the co-
authors [11].

In order to simplify, only their main results are pre-
sented here. In the case of constant permeability for an
inviscid 
uid of in�nite depth, the dispersion relation
writes :

!2 = gk +
�k3

�
� �0H

e2k2

�

�
�2

(1 + �)(2 + �)

�
; (1)

where ! is the pulsation, k the wave vector, g the grav-
itational acceleration, � the surface tension of the fer-
ro
uid layer, � its density, �0 the vacuum permeability,
He the external vertical magnetic �eld and � the mag-
netic susceptibility.

Figure 1. Dispersion relation of surface waves in a fer-
ro
uid. Here !c = 2(�g3=�)1=4 is introduced to normalize
the curves. It corresponds to the pulsation when k = kc
without magnetic �eld.

The �rst two terms of the right side of eq. (1) are
classical and respectively account for the gravity and
capillarity e�ect. The last term includes the e�ect of
the magnetic �eld. It is a destabilizing term : at the
critical �eld Hc, the dispersion curve (Fig. 1) adjoins
the zero frequency axis at a non zero wavevector kc.
Analytical derivation yields :

Hc =

s
2(1 + �)(2 + �)

�2

p
�g�

�0
(2)

kc =

r
�g

�
(3)

It is noteworthy that the wavevector at the thresh-
old of the Rosensweig instability is indeed the capillary
wavevector.

In the more realistic case where the 
uid layer has
�nite depth, is viscous and its magnetic susceptibility
is �eld dependent, the general picture previously pre-
sented is only slightly modi�ed.

Including viscosity in the previous equations ren-
ders them very complex, and as we show further on, the
terms accounting for viscosity in the dispersion equa-
tion can most of time be omitted. It is possible to de�ne
two Reynolds numbers [10], either based on the depth
h of the ferro
uid layer, or based on the wavelength :

Re =
!h2

�
; or Re =

!

�k2
: (4)

The in
uence of viscosity on the 
ow generated by sur-
face waves is negligible provided the Reynolds number
is greater than 10 [12]. This leads to two conditions for
the pulsation ! for short and long wavelengths :

! > sup
�
10

�

h2
; 10�k2

�
: (5)

In Figs. 5 and 6, the area of the parameters where the
viscosity cannot be neglected (according to the previous
equation) has been shaded. Most of the experimental
points lie outside this region.

Finally, it is important to note that the experiment
is realized in cylindrical geometry : the produced waves
are concentric. The derivation of the dispersion equa-
tion has however assumed plane waves. As long as the
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observed wavelength is smaller than the radius of the
ferro
uid container, it is possible to neglect the e�ect
of geometry. To be more precise, the Bessel J0 function
is the basis for the cylindrical capillary-gravity wave
dispersion equation. If the distance between two con-
secutive crests is assumed to be the plane-wave wave-
length, then the error is 11 % for the �rst two crests
(starting from center), and then only 4 % for the next
two (and decreasing as the radius increases). Since the
radius of the container is 9.6 cm, the wavelengths are
measured in at least within a 11 % approximation if
they are smaller than 4.8 cm, which correspond to a
limiting wavevector of 1.3 cm�1. The complete calcu-
lation of the dispersion equation including the magnetic
term in a cylindrical geometry is a theoretical problem
that has yet to be solved; it might yield a better un-
derstanding of the e�ect of non-periodic magnetic �eld
perturbations.

I.2 Experimental setup

I.2.1 Characteristics of the ferro
uid sample

We use an ionic ferro
uid synthesized according to
Massart's method [13]. It is composed of a colloidal
suspension of cobalt ferrite particles in water. Its den-
sity is 1560 kg/m3 and the deduced volume fraction of
particles is 14 %. Its surface tension with air, care-
fully measured with a Kr�uss K10T ring tensiometer, is
71.4 mN/m at 20C. This value is very close to the sur-
face tension of water (73.2 mN/m), in agreement with
the fact that our ionic ferro
uid is free of surfactant.
The dynamic viscosity of the sample, measured with
a Poiseuille viscometer, is 20 mPa.s which leads to a
kinematic viscosity of 1:28 10�5 m2/s.

Figure 2. Magnetization curve of the ferro
uid sample. The
best least square �t with equaton (6) gives A0 = 26.15 kA/m
and A1 = 3.63 kA/m. inset : same curves for a more ex-
tended magnetic �eld range. The Langevin curve does not
�t the whole magnetizaion curve.

The magnetization curve has been obtained by the
use of a calibrated 
uxmeter (Fig. 2). Because our
ferro
uid is highly concentrated and polydisperse, it
is unlikely to follow a classical Langevin paramagnetic
curve. However, this approximation may stand for the

range of magnetic �eld amplitude of our interest (from
0 to about 12 kA/m, the �eld around which the peaks
instability develops) :

M � A0(coth(H
i=A1)�A1=H

i): (6)

Here M is the magnetization and H i is the magnetic
�eld inside the ferro
uid : He = H i +M . It should be
noted that the A0 value obtained is a priori di�erent
from the magnetization saturation of the ferro
uid sam-
ple. The knowledge of the parameters of the �t A0 and
A1 allows us to compute all the magnetic parameters
of the problem.

Figure 3. E�ective magnetic susceptibility �e�as a func-
tion of the external magnetic �eld He for di�ernet non-
dimensinal wavevectors kh.

Eq. (1) represents the dispersion equation when
magnetic permeability is a constant, which is obviously
not the case here. Following [11], it is possible to de-
�ne an e�ective magnetic susceptibility �e� , function
of the magnetic �eld and the non-dimensional product
kh, and computed so that eq. (1) is correct. It is also
a measurement of the discrepancy when the magnetic
term of eq. (1) is misused. The following plot (Fig. 3)
shows that the value of �e� is almost independent of
the magnetic �eld thus justifying a posteriori the use
of a simpli�ed magnetic term (i.e. � constant) ; on
the other hand it shows that the dependence of the
magnetic term on the thickness of the layer has to be
accounted for.

I.2.2 Experiment design

A circular Te
on dish of 20 cm in diameter that
contains the ferro
uid is placed between two horizon-
tal coils; they produce the static vertical magnetic �eld
and are arranged such as to ensure a horizontal spa-
tial homogeneity more accurate than 99%. It should be
pointed that the maximum observable wavelength is of
same order as the radius of the vessel.
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Figure 4. Shadowgraph method.

The shadowgraph method [14] is a very sensitive
optical method to detect the wave amplitude (60 �m
amplitude ripples are still visible). The ferro
uid sur-
face is illuminated by a parallel light beam coming from
a point-like source (an optical �ber illuminator) at the
focal distance of lens L1. The camera lens L2 is placed
in order to provide a parallel light beam to the CCD
detector (see Fig. 4). The distance d between the CCD
and the camera lens is set such as to focus just beneath
or above the ferro
uid surface. The curved parts of the
surface act as virtual lenses, and appear lightened or
darkened on the video screen whether the curvature is
positive or negative.

To produce surface waves, a small sinusoidal mod-
ulation in the vertical �eld is applied. Propagative cir-
cular waves are emitted by the edges due to magnetic
forces in the meniscus. Because of the viscous damping
[15], no stationary waves are observed, except in the
center of the ferro
uid container.

This method is very reliable for the production
of waves in the interesting frequency range (3 Hz -
25 Hz). The undulating component is merely 0.5 %
of the threshold �eld Hc. It is however diÆcult to ex-
trapolate the results at �elds lower than 0.1 Hc where
the undulation ratio is already 5 %.

I.3 Results

In order to represent experimental results and to �t
parameters of the theoretical wave dispersion equation,
we chose two cuts in the (k; !; �0H

2) space of parame-
ters (Fig. 5 and Fig. 6). The only parameter allowed
to vary is the surface tension, because of its sensitiv-
ity to contaminants. All other parameters (the mag-
netic quantities, the density and the thickness of the

ferro
uid layer) are set to their previously measured
values. We have drawn on both Fig. 5 and Fig. 6 the
parameter domain where the e�ects of viscosity could
not be neglected: our experimental points lie outside of
this zone.
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Figure 5. Experimental dispersion equation in the (k; !2)
plane for di�erent magnetic �elds. The black lines represent
the theoretical dispersion equations with � = 60 mN/m.
The dotted line is the theoretical dispersion equation at
the threshold �eld. The shaded area represents the fre-
quency domain where viscosity e�ects become non negligible
(Re < 10).
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Figure 6. Dispersion equation in the (k; �0H
2) plane for

di�erent frequencies. The black lines represent the theo-
retical dispersion equation with � = 60 mN/m ; the thick
dotted line is the theoretical marginal curve of stability
(null frequency) ; the thin dotted lines locate the mini-
mum of the marginal curve and read kc = 5:1 cm�1 and
HC = 11.2 kA/m. The shaded area represents the fre-
quency domain where viscosity e�ects become non negligible
Re < 10). For clarity purpose, only a few error bars have
been plotted.

The �t for any value of ! and H leads to an average
surface tension of 60 mN/m, which is 16 % lower than
the carefully measured value obtained from a ring ten-
siometer. The natural contamination of the surface by
atmospheric dust behaving as a surfactant may explain
this discrepancy. We thus perform another tensiome-
ter measurement by letting the ferro
uid surface rest
in an unpuri�ed atmosphere: after a few minutes, the
measured surface tension is only 52 mN/m. Since the
surface tension is extremely sensitive on the presence



450 Brazilian Journal of Physics, vol. 31, no. 3, September, 2001

of any contaminant, the �tted value has to be under-
stood as an in situ value, compatible with tensiometer
measurements.

In a �rst experiment the magnetic �eld is set to dif-
ferent values and the wavevector measured as a function
of frequency. The experimental dispersion is presented
in Fig. 5. The �ts are satisfactory, although it is dif-
�cult to make any assertion when the wavevector is
smaller than 3 cm�1. The critical �eld is estimated
from the �ts: as we will see later on, it is extremely
diÆcult to de�ne a precise value of the threshold mag-
netic �eld Hc in our particular system. The maximum
experimented value of the ratioH=Hc is voluntarily lim-
ited to 0.79 because above this �eld, peaks form at the
boundary of the ferro
uid vessel; during the time of
the experiment, the 
uid in the peaks would dry and
become lumpy.

This is why it is better to set the frequency to dif-
ferent �xed values, and measure the wavelength as a
function of the magnetic �eld. The corresponding re-
sults are presented in Fig. 6. This plot is more dis-
criminating, especially in the low wavelength domain
(k < 3 cm�1). Here it can be seen that the �t is not
compatible with the experimental data especially in the
region where the dispersion curve is non monotonic.

Figure 7. Spontaneous static deformation below the critical
�eld (H=Hc = 0.79).

In this region, where the magnetic �eld is close to
Hc, it seems that an unexpected static circular pattern
develops (Fig. 7). It actually becomes visible (ampli-
tude of the deformation exceeds 60 �m) as soon as the
magnetic �eld exceeds half of the threshold value. Only
the precision of the shadowgraph method allows to see
such a deformation of the surface. The pattern is inde-
pendent of the magnetic �eld, only the amplitude of the
deformation increases with the magnetic �eld intensity.
It could be understood as a pre-transitionnal e�ect of
the Rosensweig instability, perhaps due to the limited
horizontal extension of the layer.

Unfortunately it renders the measurement of the
wavelength more uncertain, especially close to the
threshold: that is the drawback of the shadowgraph
method. It is diÆcult to precisely assess the value
of the threshold magnetic �eld Hc. Besides, a experi-
ment with direct visualization of the surface shows that

the peaks don't appear simultaneously on the surface :
when the �eld is increased to the threshold value, the
peaks grow inward from the edges to the center of the
cell (they start appearing on the edges at lower �elds,
because of the �eld gradient created by the presence of
an edge). A precise estimation of the threshold mag-
netic �eld is dependent on the choice of a threshold
criteria. We choose to keep the value of the magnetic
�eld above which no image is visible anymore. This
method provides a measurement of the threshold �eld
of 11.5 kA/m which is merely 3 % above the expected
value obtained from the �ts in Fig. 5 and Fig. 6.

The now precise knowledge of the dispersion equa-
tion of surface waves in a ferro
uid submitted to a
steady vertical magnetic �eld allows us to forecast the
in
uence of this magnetic �eld in other hydrodynamic
processes that involve surface waves.

III Wave resistance

II.1 Ordinary 
uids

II.1.1 Theory

In a regular 
uid, the wave emission process is con-
trolled by the dispersion equation for capillary-gravity
surface waves,

!2 = gk + �k3=�; (7)

where ! is the pulsation and k the modulus of the wave
vector. As already pointed out by Kelvin [5], the wave
pattern is stationary in the frame of reference of the
moving object.

The dispersion relation of surface waves is valid in
the frame of reference K in which the 
uid is at rest,
and all physical variables (speed, pressure,. . . ) are pro-
portionnal to exp(i(k:r�!t)). In the frame of reference
K 0 which translates at speedV, those variables are then
proportional to exp(i(k:r0 � !0t)) where r0 = r�Vt is
the position vector in K 0 and !0 = ! � kV the pul-
sation in K 0 (one recognizes the Doppler e�ect). The
stationarity condition implies !0 = 0 and thus:

! = kV cos �; (8)

where � is the angle between the speed and the wave
vector.

Combining (7) and (8) we obtain the following equa-
tion (Vc = (4�g=�)1=4 the minimum phase speed):

�
k

kc

�2

� 2

�
V

Vc
cos �

�2�
k

kc

�
+ 1 = 0 ; (9)

which has no solution for V < Vc. Thus no wave pattern
is to develop if the speed of the moving perturbation is
smaller than Vc.
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For a Dirac Delta pressure distribution P (x; y; t) =
pÆ(x � V t; y) moving along axis x, the wave resistance
is [7]:

R =
p2

��

Z arccos Vc
V

0

cos �
k+(�)

2 + k�(�)
2

k+(�) � k�(�)
d� ; (10)

where k+(�) and k�(�) are the two roots of eq. (9).
This formula remains valid as long as the characteristic
size of the pressure distribution in experiments is much
smaller than the capillary wavelength. In those condi-
tions, according to eq. (10), the wave resistance takes
a �nite value Rc = p2kc=2

p
2� just above the thresh-

old and increases monotonically with speed (see the full
line in Fig. 12 and the uppermost curve in Fig. 15).

II.1.2 Experiments

In order to measure R as a function of speed V
for various 
uids, we use a circular channel dug into a
Te
on covered aluminum dish. The latter is �xed to
a shaft and rotated at constant rate, thus simulating a
steady 
ow for the 
uid. The radius of the channel is
20 cm, its width is 2 cm.

The disturbing object consists of a vertical bronze
wire (diameter d=0.2 mm) moving over the 
uid sur-
face. The wire is wetted by a few tenths of millimeters
of 
uid. The de
ection of the wire is proportional to the
horizontal force exerted on its free end (which is typ-
ically in the order of a micronewton). It is measured
with an infrared optical sensor (Fig.9). The calibration
of the sensor is obtained by tilting the base to which
the wire is attached.

Figure 8. Wave resistance measurement setup : 
uid 
ow
system.

Displacement screw

Wire

Optical sensor
Fluid

(top view)

Wire

(side view)

Infrared LED

Phototransistor

Figure 9. Wave resistance measurement setup: force mea-
surement. The light emitted by the LED is re
ected by the
wire and collected into the phototransistor.

Because no theory includes 3D viscous e�ects so far,
we measure the wave resistance for di�erent viscosities.
To this purpose several mixtures of water and glycerol
are used: the surface tension � and the densities � of
the mixtures are very close to one another (see table 1)
so that the impact of viscosity alone may be monitored
in our experiments. The viscosities are measured with
a standard Poiseuille viscometer.

Figure 10. Experimental drag Rexp as a function of speed
V for two water-glycerol mixtures.

Fig. 10 displays the variation of the experimental
drag Rexp as a function of speed for two typical mix-
tures. All the measurements are obtained by increasing
and then decreasing the speed: there is no hysteresis.
We may note that:

(a) There is a critical velocity at which the measured

drag drastically increases. Camera imaging of the 
uid
surface shows that the sharp drag increase occurs at the
same speed at which the wave pattern develops. The
measured wavelength is equal to the capillary wave-
length (within 10% error bars). The measured critical
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velocity Vc is 23 � 0.5 cm/s for pure water. It corre-
sponds to a surface tension interval of 65.1-77.7 mN/m
into which lies the tabulated value of pure water sur-
face tension 72.75 mN/m at 20 ÆC. For water/glycerol
mixtures we obtain Vc � 22.5 cm/s, that is compatible
within experimental error bars with the surface tension
of the mixtures (around 70 mN/m).

Figure 11. Experimental drag Rexp as a function of speed
V for di�erent water-glycerol mixtures. The speed remains
subcritical (V < Vc) and only the viscous contribution to
the total drag is measured. The plain line represents the
phenomenological theory (eg. eq. 11).

Figure 12. Wave resistance R = Rexp �Rvisc as a function
of V . Full line : theoretical expression from eq. 10.

(b) The experimental drag is not null below the criti-

cal velocity, all the more since the viscosity is high. The

viscous drag Rvisc that is exerted over the immersed

wire must be added to the wave resistance R to ac-

count for the measured drag Rexp. Since the length of

the wetted part of the wire is comparable to its diam-

eter, we make the assumption that the viscous drag is

proportional to that of a sphere of the same diameter d.

For the moderate Reynolds numbers of our experiment

(0:5 < Re < 80) the viscous drag may be described by

an empirical formula [16]:

Rvisc = 3��� V d

 
1 + 0:15

�
�V d

�

�0:687
!
; (11)

based on numerous sphere drag experiments. In the

previous expression � represents the viscosity of the so-

lution, � its density and � the aspect ratio introduced

by us to make allowance for a distinction of our short

cylinder from a sphere (for the latter, � = 1 [16]). A

simultaneous �tting procedure on the four Rexp curves

for subcritical speeds (V < 18 cm/s) yields � = 0:77

(see Fig. 11). Fig. 12 presents the R(V ) variations after

subtraction of the viscous drag Rvisc for each sample.

It is this quantity that has to be compared with the

theoretical expression (10) (full line). It seems that a

pretransitional e�ect takes place, as the measured drag

increases just below the threshold (the higher the vis-

cosity, the stronger the e�ect). A recent model [17] for

2D viscous wave resistance predicts such a feature.

(c) The amplitude of the wave resistance increase

at Vc is comparable to the theory. Assuming a perfect

wetting of the wire by the 
uid, the total force acting

on the 
uid is p = 2�r� (r is the radius of the wire).

Thus an estimate of the wave resistance increase at the

threshold is given by Rc = �2r2
p
2�g�. A comparison

between expected values and what is observed is given

in table 1. The discrepancy is partially due to the im-

perfect wetting of the 
uid on the wire, which leads to

overestimate the applied vertical force. On the other

hand the drag values close to the threshold 
uctuate a

lot.

(d) The wave resistance is a non-monotonic func-

tion of speed for V > Vc. In fact, it can be seen in

Fig. 12 that for V > Vc the wave resistance R �rst de-

creases as the speed increases, and then increases again

for high enough speeds. This feature is not predicted by

the current theory, which anyway overestimates the ac-

tual drag. Viscosity does not seem to in
uence the wave

resistance decrease. One could also imagine that as the

wave pattern develops, the immersion depth of the wire

could drop, thus reducing the viscous drag. This is un-

likely to occur since we do not observe any scaling of the

drag reduction with viscosity. Such a non-monotonicity

is possibly a general feature of capillary-gravity wave re-

sistance, and in this case the theory should be revised

to include non-linear aspects.
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Table 1: Experimental drag discontinuity at the threshold compared to the theoretical predictions of [4], for various
water glycerol mixtures and an aqueous magnetic 
uid (MF).

Glycerol mass fraction (%) 60 44.5 30 0 MF
Viscosity ( mPa.s) 12.5 5.1 2.6 1.0 7.0
Density (g/cm3) 1.16 1.13 1.09 1.00 1.56
Theory ( �N) 3.9 3.8 3.8 3.7 4.2
Experience ( �N) 2.9 2.6 4.0 3.6 4.0
Uncertainty ( �N) 0.3 0.3 0.4 1.8 1.0

IV Magnetic 
uids

In a magnetic 
uid the dispersion equation of capillary-
gravity surface waves is modi�ed with allowance for a
vertical uniform magnetic �eld, as shown in eq. (1).
For a given wave vector, an increase of the �eld inten-
sity lowers the frequency of the waves. The frequency
drops to zero when H reaches the critical value Hc for
which the Rosensweig instability is triggered.

The condition for stationarity implies that k must
be a solution of:�

k

kc

�2

� 2

 �
V

Vc
cos �

�2

+

�
H

H�

�2
!�

k

kc

�
+ 1 = 0:

(12)

Real solutions exists if and only if [18]:

V > V H
c with V H

c = Vc

s
1�

�
H

H�

�2

; (13)

therefore a steady vertical magnetic �eld should allow
the tuning of the critical velocity at which waves (and
wave resistance) appear.

The wave resistance, following eq. (10) and eq. (12),
is given by the integral:

c

RH(V ) =
p2kc
��

Z arccos(V H

c
=V )

0

cos �
�
2B(V; �)

1

2 +B(V; �)�
1

2

�
d� ; (14)

where B(V; �) =

 �
V

Vc
cos �

�2

+

�
H

H�

�2
!2

� 1 : (15)

d

Just above the threshold, the wave resistance has the
�nite value :

RH
c =

p2kc

2
p
2�

 
1�

�
H

H�

�2
!
�

1

2

: (16)

An experiment is conducted using a water based
magnetic 
uid synthesized according to the Massart
method [13]. Its critical �eld H� is 9.15 kA/m and
its surface tension of 60 mN/m doesn't depend on the
magnetic �eld. Other caracteristics are given in table 1.

The critical value V H
c is experimentally estimated

as the velocity for which a sudden increase of the drag
is observed. RH

c is the amplitude of such an increase.
Both are plotted versus the normalized magnetic �eld
H=H� in Fig. 13 and Fig. 14, and are compared to the-
oretical predictions (13) and (16).

Figure 13. Reduced critical speed V H
c =V H=0

c at which wave
resistance appears in function of the applied reduced mag-
netic �eld H=H�. The straight line represents the theoreti-
cal law given by eq. (13). There is no adjustable parameter.
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Figure 14. Drag at threshold RH
c as a function of the re-

duced magnetic �eld H=H�. The full line represents the
theoretical law as given by eq. (16). There is no adjustable
parameter.

Figure 15. Wave resistance RH = RH
exp�RH

visc as a function

of reduced speed V=V H
c for di�erent reduced magnetic �elds

H=H�. The theoretical curves are derived from eq. (14,15).
The uppermost curve describes the wave resistance of a reg-
ular non-magnetic 
uid.

The theoretical expression (13) of V H
c (Fig. 13) re-

markably �ts the data points | note that there are
no adjustable parameters. A data point lies outside the
curve, but this is probably related to an imperfect mag-
netic wetting phenomenon. As the magnetic �eld gets
closer to the peak instability threshold value H�, the

uid \climbs" onto the wire, producing a much higher
viscous drag, a situation which gets away from our in-
viscid linear theoretical analysis. This also explains the
discrepancy in Fig. 14 between experimental and theo-
retical RH

c values. We do not account for the force that
the magnetic �eld is exerting at the meniscus close to
the wire. Indeed, the very shape of the meniscus cre-
ates a non homogeneous magnetic �eld which results in
a force that sucks the magnetic 
uid up and changes the
shape of the meniscus. Only advanced numerical simu-
lations would allow to compute the net force added and
[19].

In order to compute the wave resistance from the
measured drag, as for ordinary 
uids, we estimate the

viscous drag Rdrag using eq. (11). This time, because
the immerged length of the wire depends on the mag-
netic �eld intensity, each curve at subcritical speed are
separately �tted. Fig. 15 presents the results obtained
for di�erent magnetic �elds in a reduced representa-
tion RH=RH

c = f(V=V H
c ) with RH = Rexp � Rvisc. It

also gives a comparison to the theoretical predictions of
eq. (14). As it was pointed out about regular viscous

uids, the theoretical variations of R=RH

c lie above the
data points, except for H � H� . Then the experi-
mental data and the theory are very comparable. The
present theoretical description thus gives a correct gen-
eral trend for the in
uence of the �eld on the wave
resistance.

V Conclusion

We have designed a shadowgraph experiment in order
to measure the dispersion equation of waves at the free
surface of a magnetic 
uid submitted to a vertical mag-
netic �eld. The model includes the speci�c magnetic
behavior of the ferro
uid used, sensible boundary con-
ditions and the e�ects of limited thickness. The agree-
ment between theory and experience is quite satisfac-
tory except in the region where the dispersion equation
is non-monotonic. We have used this knowledge in wave
resistance measurements.

A drag discontinuity is always observed at a critical
velocity Vc. Thanks to a magnetic 
uid the critical ve-
locity range is experimentally extended. In all cases the
measured critical velocities and the critical values of the
resistance are in good accordance with the developped
model. If an inviscid theory is correct at the threshold,
there are some discrepancies for V > Vc such as a non-
monotonic behavior of the wave resistance. Viscosity
and non linear aspects should be taken into account in
further works. Finally, in order to get rid of the vis-
cous drag that is always present in our experiments,
another mode of disturbance is envisaged, such as a
small magnet placed just above the free surface of a

owing magnetic 
uid.
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