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Magnetic �eld due to instabilities in plasma is expected to be re
ected in the conductive vessel wall.
We evaluate the re
ection e�ect in the Brazilian tokamak TCABR. The magnetic �eld due to the
plasma is represented by a toroidal harmonic function in vacuum and the re
ected �eld is written
as a series of harmonic functions in vacuum, generated in the external region. The conclusion is
that a signal originated in the plasma may be strongly deformed, close to the wall. Even far from
the wall, around the plasma, the e�ect of the wall may still be considerable.

I Introduction

The magnetic �eld due to Mirnov oscillations in a toka-
mak plasma is re
ected in the conductive vessel wall.
Therefore, the measurement in the probes is a super-
position of the �eld produced by the plasma and its
re
ection in the wall. If Mirnov probes are assembled
near the wall we have the problem of discerning the
instability �eld originated in the plasma.

In present work we calculate the re
ected �eld in
TCABR tokamak [1].

For simplicity, the magnetic �eld due to plasma is
represented here by an axisymmetric toroidal harmonic
function in vacuum and the re
ected �eld is written as
a series of harmonic functions in vacuum, generated in
the external region. In fact, the Mirnov oscillations are
helical. But, the e�ect of vacuum vessel can not be
very di�erent for a helical �eld as compared with an
axisymmetric one. The coeÆcients of the series are de-
termined, assuming that the wall is a magnetic surface,
or, equivalently, that the magnetic �eld has no compo-
nent normal to the wall. TCABR chamber has rect-
angular cross section. A method is developed in order
to solve a boundary value problem when the boundary
is not a circular torus. Presently, a set of Mirnov coils
are �xed near (� 1.9cm) the wall. There is a project
for another set of coils to be placed around the plasma.
We estimate the �eld in the positions of these two sets.

The conclusion is that a signal originated in the
plasma may be strongly deformed, close to the wall.

In section II, boundary conditions are formally writ-
ten in terms of harmonic functions, by using conven-
tional toroidal coordinates. In section III, idea of best
approximation in the mean is introduced in order to
establish boundary conditions over surfaces with any
shape. The method is applied to �nd �eld re
ection

in a tokamak vessel, in section IV, and speci�cally in
TCABR, in section V. Conclusions are drawn in sec-
tion VI.

II Boundary Conditions

The magnetic �eld in the vacuum is written

~B = ~BP � ~BR; (1)

where the suÆx P denotes �eld associated to instability
mode in the plasma and R, �eld re
ected in the wall.
If the �eld is axially symmetric, it can be written in
terms of 
ux function 	 as

~B = r	� ~e'

r
; 	 = 	P �	R; (2)

where (r; '; z) are the usual cylindrical coordinates and
~e' is the unity vector in the toroidal direction.

Toroidal coordinates (�; �; ') are de�ned by the fol-
lowing relationships with the cylindrical coordinates:

r =
R0 sinh �

cosh � � cos �
and z =

R0 sin �

cosh � � cos �
;

where R0 is he radius of the circular axis and ' is the
toroidal angle.

In this paper we assume axial symmetry because
the calculation becomes considerably easier and we do
not expect signi�cant di�erence in order of magnitude
of re
ection if there is no symmetry.

Also, we assume up-down symmetry.

The plasma �eld is taken as a single toroidal har-
monic:

	P = 	i
m0
; (3)
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where

	i
m0

=
sinh �p

cosh � � cos �
P 1

m0�1=2
(cosh �) sin(m0�): (4)

We use Pn
m and Qn

m for associated Legendre func-
tions of �rst and second kinds, respectively.

The re
ected �eld is considered as a superposition
of �nite number (N) of regular toroidal harmonics

	R �
NX

m=1


m	
e
m (5)

where

	e
m =

sinh �p
cosh � � cos �

Q1

m�1=2(cosh �) sin(m0�): (6)

The border is described by a relation in the form

cosh � = xs(�): (7)

This is a convenient form as xs is a single-valued func-
tion of �.

Instead of (5), we can write the re
ected �eld as

	R �
X
k

ckFk(cosh �; �); Fk =
X
`

�k;`	
e
` ;

�k;` = constant: (8)

Fk is a linear combination of 	`. Therefore, equation
(II) is a di�erent assembly of the same functions.

We assume that on the wall the normal component
of the magnetic �eld is zero; this is equivalent to state
that the border is a magnetic surface (that 	 is con-
stant on the wall).

We use small letters to represent functions of � on
the border:

	 =  (�); Fk = fk(�): (9)

Our boundary value problem becomes �nding ck and
�k;` in order to have the best approximation

 P �  R �
X
k

ckfk(�)

or

bPn � bRn �
X
k

ckbnk(�): (10)

The pre�x n denotes normal component.

There is no ready made theory for boundary value
problems when the boundary is not coincident with con-
ventional coordinate surfaces. In TCABR, the vessel
cross section is rectangular. In order to solve the prob-
lem, idea of best approximation in the mean is taken
from [2] and developped in the next section.

III Best approximation in the

mean

We de�ne distance � between two functions f(�) and
g(�), de�ned on the border, by

�2 �
Z

2�

0

jf(�)� g(�)j2 �(�)d�; �(�) > 0; (11)

where � is a positive weight function.

Then, the distance between the functions  P (�) andPN
k=1 ckfk(�) is given by

�2 =

Z
2�

0

����� P �
NX
k=1

ckfk(�)

�����
2

�(�)d�: (12)

� is a measure of the error caused by representing
the re
ected �eld by a sum of �nite number N of har-
monics. The approximation is considered as the best in
the mean, for a �xed N, when the values of ck are cho-
sen to minimize the distance �. These can be obtained
by evaluating

@�2

@c`
= 0 for ` = 1; 2; � � � ; N:

We get

c
Z

2�

0

 P (�)f`(�)�(�)d� �
NX
k=1

ck

Z
2�

0

fk(�)f`(�)�(�)d� = 0: (13)

d

We de�ne scalar product of two functions f and g
on the surface as

(f; g) �
Z

2�

0

f(�)g(�)�(�)d� (14)

and write (13) as

( P ; f`)�
NX
k=1

ck(fk; f`) = 0: (15)
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If the fk's are orthonormalized in the sense

(fk; f`) = Æk;`; (16)

where Æk;` is the Kronecker symbol, c` is obtained
straightforwardly as

c` = ( P ; f`): (17)

If fk is simply taken as the harmonic function (6),
on the surface, i. e., �k;` = Æk;`, it is necessary to invert
the matrix (fk; f`) in order to �nd the coeÆcients.

Advantages of using orthonormalized functions are
that (i) there is no problem of matrix inversion; (ii)
Gram-Schmidt method can be used to construct, one
by one, an orthonormalized set of functions; and (iii)
it is not necessary to �x, a priori, the number of terms
N . Each time a new term is added, the �t is checked,
either visually, drawing a graph or by evaluating �. If
the result is not satisfactory we proceed with new term.

A disadvantage of using orthogonal functions is
that the Gram-Schmidt orthogonalization may intro-
duce numerical errors if N is too large.

Disadvantages of using non-orthogonal functions
are that (i) the matrix to be inverted may be ill-
conditioned; and (ii) N must be �xed a priori. If the

approximation is not satisfactory it is not a question
of just adding a new term. The calculation has to be
performed all over again.

IV Field re
ection in tokamak

wall

We use the Gram-Schmidt method to construct, one by
one, an orthonormalized set of functions fk, in the form
(II):

fk =

kX
`=1

�k;` 
e
` ; k = 1; 2; � � � ; N; (18)

with the condition of orthonormality (16).  e
1
is nor-

malized to be f1 and each one of the other functions fk
are built to be orthogonal to the previous ones.

In this work, we used weight function �(�) = 1.

Once c` is obtained by using equation (17), we may
write 	R in terms of the original harmonics as in equa-
tion (5).

We use equation (II) and get:

c

NX
m=1


m 
e
m =

NX
k=1

ckfk =

NX
k=1

ck

kX
`=1

�k;` 
e
` =

NX
`=1

 e`

NX
k=`

ck�k;`;

d

and, therefore,


` =

NX
k=`

ck�k;`: (19)

V Application to TCABR toka-

mak

The vacuum vessel of TCABR has rectangular cross
section. The dimensions are: Ra = 0:845 m (external
radius), Rb = 0:4 m (internal radius) and H = 0:52 m
(height).

The plasma minor radius is a = 0:18 m and the
major radius is Rp = 0:615 m.

Magnetic sensors (22 two-component magnetic
probes) are assembled in a rectangular surface, at 1.9
cm from the wall, as shown in Fig. 1.

Figure 1. Mirnov probe location in TCABR. The probes
are represented by �'s (present set) and the designed set
(in project) is shown by �'s. The outer rectangle represents
the vessel and the circle, the plasma surface.

New sensor set that is planned for TCABR in-
cludes 24 magnetic probes, equally spaced, located at



M. Y. Kucinski and Yu. K. Kuznetsov 115

a circular surface around the plasma, with minor axis
�p = 0:2015 m and major axis Rp = 0:615 m.

Results of calculations form0 = 2 are shown in Figs.
2 to 7.

Figure 2. Comparison between the normal component of
~B, on the boundary, due to the plasma (solid line), and the
�eld re
ected in the vacuum vessel (dots). 16 toroidal har-
monics are used to calculate the re
ected �eld in reply to
single m0 = 2 harmonic generated by the plasma.

Figure 3. Mean error � in the re
ected �eld determination,
on the boundary, as a function of the number N of harmon-
ics.

Figs 2 and 3 show the convergency of the boundary
value method described here. In Fig. 2, bPn and bRn ,
on the boundary, are plotted as function of polar angle
�. As bn is not continuous function of �, the conver-
gency is not uniform. Even so, for N ' 16, normal
components of plasma, and re
ected �elds are nearly
coincident. Fig. 3 shows the method accuracy � as
a function of the number N of harmonics. N ' 14 is
enough to obtain satisfactory result.

By using non orthogonal set of harmonic functions
we came to face problem of inversion of ill-conditioned
matrix for N � 16.

According to equation (5), the re
ected magnetic
�eld in the position of each probe i is

~BR(~ri) �
NX
k=1


k ~Bk(~ri): (20)

In order to estimate the importance of each har-
monic in the re
ected �eld, we de�ne an average am-
plitude of mode k (harmonic k) as

A(k) �
2
4
NpX
i=1


2k

��� ~Bk(~ri)
���2
3
5
1=2

1

Np
; (21)

where Np is the number of probes.
Figs. 4 and 5 refer to measurements in the probes

placed on a square surface, near the wall (present set
of sensors) and Figs. 6 and 7 to measurements in the
probes equally spaced on a circular surface, farther from
the wall (in project).

A(k) is very scattered in Fig. 4, what means that,
in reply to a single mode produced by a plasma, the re-

ected �eld is generated with a complicated structure.
Thus, interpretation of measurements requires recon-
struction of the vacuum �eld, taking into account the
e�ect of the vacuum vessel.

Figure 4. Spectrum of harmonics in re
ected magnetic �eld
at the position of the present set of probes.

Figure 5. Magnetic �eld normal to the wall, in the posi-
tion of the probes (present set). The dotted line refers to
B
P
n (due to the plasma) and the full line, to the total Bn

(Bn � B
P
n �B

R
n ).

If the sensors are placed on a circular surface, near
the plasma (Figs. 6 and 7), the e�ect of the vacuum
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vessel is considerably smaller. This allows identi�ca-
tion of the Mirnorv oscillation mode directly from the
measured �eld.

Figure 6. Spectrum of harmonics in re
ected magnetic �eld
at the position of the designed set of probes (near the plasma
boundary).

Figure 7. Poloidal �eld in the position of the designed set
of probes. The dotted line refers to the �eld due to the
plasma Bp

� and the full line to the total B�(B� � B
p

� �B
R
� ).

VI Conclusions

The magnetic �eld due to instabilities in a tokamak
plasma is re
ected in the conductive vessel wall. A
method is developed here in order to �nd the re
ected
�eld. The method is based on expansion of vacuum
�eld in series of toroidal harmonics.

This method is used to study the e�ect of the vac-
uum vessel on the Mirnov oscillation diagnosis in the
tokamak TCABR.

The conclusion is that, if the sensors are placed near
the vessel of rectangular cross section, the e�ect of the
vessel is rather strong. A possible approach to interpre-
tation of measurements is reconstruction of the vacuum
magnetic �eld from external measurements. This re-
construction would use the same method of expansion
of vacuum �eld in toroidal harmonics generated in the
plasma. Only, in this case, the vacuum �eld is repre-
sented by toroidal harmonics generated in the plasma
and the re
ected �eld.
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