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It is shown how to sew string vertices with ghosts at tree level in order to produce new tree vertices
using the Group Theoretic approach to String Theory. It is then verified the BRST invariance of
the sewn vertex and shown that it has the correct ghost number.

I Introduction

In the early days of String Theory, one way to obtain
amplitudes for the scattering of an arbitrary number of
strings was by using the factorization property, what
means that the scattering amplitude of N strings may
be interpreted as the scattering amplitudes of a smaller
number of strings sewn together. This made it possible
to build the N string scattering amplitude by knowing
the expression for three string scattering amplitudes.
Even though they were very ingenious and successful,
those calculations didn’t take into account the ghost
structure of the vertices, and that is what is done here.

In [1], it was shown how to sew tree vertices without
ghosts using the Group Theoretic approach to String
Theory [2] in order to obtain a new, composite vertex.
Following the same procedure, we shall calculate the
scattering amplitude of N strings taking account the
ghost structure.

We shall start with a short review of how to sew tree
vertices without ghosts. What we must do is sew two
legs of two vertices, one leg from each vertex. What we
have in the beginning are two vertices V; and V5 with
N; and N, legs, respectively (Fig. 1).
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Figure 1. Individual vertices.

We now sew leg E from V; with the adjoint of leg
F from V5. What we have now is the substitution of
the two sewn legs by a propagator (Fig. 2). When this
propagator is written in parametric form, it is an inte-
gration of one of the variables (in order to cancel one

spurious degree of freedom) and a conformal factor P
which contains terms of L,’s acting on leg F only.
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Figure 2. Sewn vertices.

So the resulting vertex V. (called the composite ver-
tex) has the generic form

V.=ViPV, , (1)

where the hermitian conjugate of V5 is for the sewn leg
F only and

P:/de 2)

where z is a suitable variable. In what follows, we shall
often write P instead of P, calling attention to the in-
tegration when necessary.

When the two vertices are sewn together, we iden-
tify legs E and F. We also identify the Koba-Nielsen
variable zg with one of the Koba-Nielsen variables of
vertex VQT, and the Koba-Nielsen variable zp we iden-
tify with one of the Koba-Nielsen variables of vertex
Vi. In [1], this identification is made in the following
way: zg may be identified with zp_; or zpy1, and zp
may be identified with zg_1 or zg41. So there are four
possible combinations: a) zg = zp_1 , zr = zg—1; b)
ZE = ZF41 , ZF = ZE4+1; C) ZE = ZF—1 , 2F = ZE4+1; d)
ZE = ZF41 , ’F = ZE—1-
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IT Oscillator case

The two original vertices satisfy some overlap identities
and so shall do the composite vertex. One particular
overlap identity is given by considering the operator
Q" with conformal weight d = 0 defined by [2]

=

0
day "

, (3)
where a#* are bosonic oscillators with commutation re-
lations

QUE) == Y k(€)™ + ol g +

n=-—oo

[ahl a%i] = =t 8968,y nym £0,  (4)
[ag, a1 =0, ¥n . ()

The overlap identity is given by
VI[Q"(&) - QM (&)] - (6)

Because we are considering the adjoint of leg F' in
vertex V5, we must see what the adjoint of these overlap
identities are. First, by the definition of Q**, we have
that

Q"1(&) = TQRM(&)T = Q™ (&) - (7)
So, the adjoint of the overlap equations is given by
[Q(T&) — QM ()] Vi=0. (8)

We now take the overlap identity considering the
effects of the operator Q**(&;) on the vertex Vi on a
generic leg i and on leg E' (Fig. 3):

J
L=

Figure 3. Overlap identity for V.

Vi [Q" (&) — Q"E(¢p)] = 0. (9)

We may then insert the unit operator 1 = PP~!
and multiply by P without altering the result:

ViPP~ 1 [Q"(&) — QP (EE)] P . (10)

Since the conformal operator P acts only on leg E,
it will have no effect on Q**(¢;). In order to compute
the effect of P on Q"F(¢g), we must know that, for
a conformal transformation V acting on a conformal
operator R(z) of weight d,

VR(z)V™! = <%>dR(z) i (11)
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Since Q*F(¢x) has conformal weight d = 0, we have
P (Ep)P = Q"F (P~

and (Fig. 4)

¢s) , (12)

Co——

Figure 4. Overlap identity for V;P.

ViP[Q"& — QP (P~ ¢R)] = 0. (13)

The second term in the expression above is facing
now leg F' of vertex V;, or best, its Hermitian conju-
gate. Considering that the Hermitian conjugate of Q!
(given by (7)), we then have the following overlap iden-
tity between legs i and F":

PQY(&) - Q" (TP~ ¢p)] =0 (14)

We can then make a cycling transformation in order to
obtain the correct factor for an arbitrary leg j (j # F)
of vertex VJ. The only term that will be affected is the
term depending on leg F":

VR (0P ee) Vi) =

Q™ (V;'VrTP™'¢p) . (15)

Doing this, the overlap identity for the composite ver-
tex V. (Fig. 5) can be written as

J
Figure 5. Overlap identity for V..

Ve [@"(&) — QW (V; 'VpTPTiep) =0, (16)

which is the overlap equation between two arbitrary
legs ¢ and j of the composite vertex V..

LAs we shall be seeing soon, this form of the overlap will not lead to the correct composite vertex in the case where the cycling
transformations of the legs that are not sewn involve the sewn legs E or F'.
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But the overlap identity for the composite vertex,
since none of legs ¢ or j involves the propagator, must
be given by

Ve [QM(&) — QM (&)] =0 (17)

and so in order for the equation we have obtained for
the overlap of the composite vertex V. to be true we
must have

VETP Wl =1=> P =TV, Vg (18)
which implies that the propagator is given by
P =V, 'Vpl . (19)

In order to give an explicit expression for the prop-
agator, we will now choose &; to be of the form
L=Vilz=z2—2. (20)
This choice is called the “simple cycling” [1] and it is
the one that simplifies our calculations the most. In
this choice, the propagator is given by

1
’Pz:;+zF—zE, (21)
or in terms of the LE operators?,
P = eler—ap=DLE (L) ITeIT oL (22)

This form works for all choices for the composite
vertex discussed before®. The true propagator is given
by expression (22) integrated over a suitable variable.
Choosing this variable to be s = zp — zg, we then have

0
1
P= / ds P = —(—I)LOEeLFe_Lfl, s=zp—zp .
—00

IE,
(23)
Before going any further, we must discuss another
aspect of the theory that depends on the particular way
in which the legs are identified during the sewing pro-
cedure. Let us consider the more general case of an
arbitrary cycling V;. This kind of cycling may depend
on other coordinates that are not z;. As an example, let
us suppose that we are identifying coordinate zg of leg
FE with coordinate zp_; of vertex VQJr and coordinate
zp of leg F' with coordinate zp_; of vertex V. The
overlap identity between legs ¢+ and E — 1 on vertex V}
is

V[@e (e - @ (Vdz)] 2y

20ther forms for this propagator are given by [1]:

P = e_L{E/S(—l)L(])ESQL
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where we are calling V0;1 the cycling transformation
onleg j (j =1,...,N). These cycling transformations
may depend on the other legs. As an example when this
happens, we take another choice of the cycling trans-
formations & that is not as trivial as (20) but gives a
simpler formula for the propagator. This choice is given

by [1][3]

(z — 2;)

(Z — Zi—l)

(2i+1 - Zifl) )
(Zit1 — 2i)

&=Vy'z= (25)

which is the transformation that takes z;_1, z; and z;4;
to 0o, 0 and 1, respectively. Its inverse is given by

Voiz = Zi—1(% — Zig1)2 + 2i(Zig1 — 2Zi—1) o (26)
(zi — zig1)z + (Zig1 — 2ziz1)

In the case of the cycling given by (25), the cycling
for leg £ —1 will depend on leg E, which is not present
in the composite vertex. On this vertex, the overlap
between leg ' — 1 and an arbitrary leg j reads

e (k) -0 9]

This overlap equation involves terms that depend on
leg E, which is non-existent in the composite vertex V..
The correct overlaps should be given by

Ve [@UFT (Vigthiz) = @ (v )] L 28)

where the cycling transformations V', and Vj_1 do
not depend on legs E or F. So, in order to restore the
correct cycling transformation for the composite ver-
tex, a conformal transformation must be made on the
cycling transformations on vertex V;. These are given
by

V();l — Cl‘/o;l ) .] # E ) (29)
where
Ny
C, = HViAVOi . (30)
i=1

In this definition, we consider implicit that the trans-
formation Vg, YWor = 1 since the conformal transforma-
tions on leg E will not be part of the composite vertex
and so need not be modified.

Considering the general case, we have that the over-
lap equation for V; (Fig. 6) that will lead to the cor-
rect composite vertex is now obtained from the original
overlap

E
e[/71/3

p - (71)L0E7Lf/ss2(L0EfLF/s)e—(L{3—L‘?l)/s.

3This affirmation is usually not valid for other choices of &;.



Leonidas Sandoval Junior

@ :

Figure 6. Overlap identity for V;.

@

Vi [Q" (&) — @"F (&r)] =0, (31)

where &y; = ‘/E;lz and &g = V(;Elz. By inserting con-
formal transformation (30), we obtain (Fig. 7)

® @

Figure 7. Overlap identity for V1C".

ViCT! [@"(&) - Q"F(€r)] =0 . (32)

Inserting now the propagator, we obtain (Fig. 8)

i J

®-@

Figure 8. Overlap identity for V1C; 'P.

ViCTH P [Q7(&) — Q" (P~¢p)] =0 (33)

and we expect the composite vertex to have a differ-
ent form (given shortly) than in (1) in order to amount
for the contributions of the conformal transformations.
The second term of the overlap is now facing leg F' of
vertex V; so that we have the following overlap between
legs ¢ and F':

VICT'P[QY (&) — QT (TP ¢p)] =0 (34)

We are now facing the conformal transformation Cr*,
defined by
Cr=Vy'Vor (35)
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which is necessary in order to change &y — &p. Intro-
ducing this transformation we obtain (Fig. 9)

Figure 9. Overlap identity for ViC;'PCp.

ViCT"PCF [QM (&) — QT (Vor VTP~ '¢R)] = 0.
(36)

Making a cycling transformation from leg F to leg
J, we then obtain (Fig. 10)

® @

Figure 10. Overlap identity for ViCT'PCrV, .

ViOT ' PCRVY [Q (&) — QU (Ve ' VTP~ ép)] =0 .
(37)
Once again, a conformal transformation must be in-

troduced because of the cycling transformations Vogl.
This is defined by

Co= [ Vi "Vai - (38)

Figure 11. Overlap identity for ViC['PCrV, C; L.

4In this case, like we have seen for leg Vz, V@ may depend on the variable zp.
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ViCT ' PCRVI Oy [QM (&) — QM(V ' VpT P ép)] = 0. (39)

The composite vertex must be defined in terms of the new cycling transformations and so it must now include
the conformal transformations that perform this change. So, it will now be defined by

V. =WViC'PCRVy Oy (40)
Considering this, the overlap identity for the composite vertex V. can be written as
Ve [Q¥(&) — QW (V' VeTP Hep)] = 0. (41)

Since the correct overlap identity for the composite vertex is given by

Ve [QM(&) — QM (g)] =0 (42)
we must have
VETP 'V =1 (43)
which implies once again that
P=V;'VpT . (44)

For the cycling transformation (25), it is only necessary to do conformal transformations on legs E—1, E, E+1,
F —1, F and F + 1, depending on the particular way the variables associated with these legs are identified with
the variables associated to legs E and F. In this particular example (which is case a seen before), the conformal
transformations are given by

‘/()?}13—1) - C’lVozé_l) ) Gy = TLOE_l ) (45)
Vo?l%ll) - 02‘/()?1}11) ) Cy = tLg_l (46)
where
_ (2r-1 —2E—2) (2B-1 — 2E) _ (2zm—1 —2F_2) (2r—1 — 2F)
. L _ (47)
(2r1—25-1) (22— 2B) (251 —2Fr-1) (2r—2 — 2F)

For the cycling (25), the propagators obtained for the four possible combinations discussed before are given by

a) P, = alo , b) Py= e LT gLt e~ L% , ¢) P.= e~ T o , d) Pg= bhv eI ) (48)
where®
0= (ZE+1 - ZE—1)(ZF+1 - ZF—1) b= (ZE+1 - ZE—1)(ZF+1 - ZF—1) (49)
(ZE+1 - ZFfl)(ZF+1 - ZEfl) ’ (2E+1 - ZF+1)(ZF71 - ZEfl) -

The true propagators are obtained when we integrate the expressions above multiplied by a suitable constant. The
results are:

1 1
1 1
a) P, :/ da abs ! = 7R b) Py :/ da e LT qlo Lo LT = o LT ﬁe’Lfl, (50)
0 0 0 0
1 1
1 1
c) PCZ/ db e LT plo 1 :e*LfL—E , d) Pd:/ db bLo Lo L5 :L—Ee’Lijl. (51)
0 0 0 0

It is now necessary to verify the effect of the gauge transformations C; and C'; on the composite vertex as given
by formula (40). We shall do it by verifying the effect of C; on vertex V. In order to do this we need the explicit
expression for the bosonic oscillator vertex Vi, given by [1] [4]

N 1 N1 o0 ) )
Vi = (Hi(0|> exp | 5 >N ol D (T 'Voy) ad, (52)

i=1 i,7=1 n,m=0
i#j

c
c—1"

5The coefficient a can be connected with the coefficient c in reference [1] by a =
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where V;;* and Vp; are cycling transformations involving leg E and the oscillators o/’ have commutation relations
given by (4, 5). Matrices Dy, () are defined in the following way [3]:

Dno(v) = 7 BRI (53)
Do) = R ber| (54
D) = g || 55)
and have the following multiplication property:
Dim (1172) ian Dypm(72) + Dno(71)80m + GonDom (72) - (56)
p=1

In order to calculate the effects of the conformal transformation C; on these oscillators we must make use of the
following conformal operator [2]

Pr(&y) = Z Vinladi (§0:) " + ab(0i) " (57)
n:;ooo

which has conformal weight one, what means it transforms like

d?”f Pri(6y;) (58)

02

P “i(fm) =
An oscillator a#? (n > 1) can be expressed in terms of this conformal operator in the following way:

ki = \1r£ o (60" P 6 (59)

Acting on it with the conformal transformation C, we have

d
CiaC;t = doi (§0:)" ( 1V0z§0z> PRV Waikor) - (60)
\/_ {01—0 df 07
Making now a change of variables &y; — &;, we have
L 1
Craf'Crl = —= dé; (Vo ' Vi&i)" P (&) - (61)

\/,,_7’ £:=0

Expanding (V;;'Vi&)™ in terms of D,y (7y) matrices and P#¥(£i) in terms of the oscillators, we obtain

Cla“ic_l =

> 2t (VD 0 @ 3\ (i 6
S =0 m=1

p#0

1 " -1 3 i —1 m—1 wi
- 7!: dé; l\/ﬁDno 05" @ + 3 \/%Dnm (Ve'Vi) (&) ]% . )

Performing the integrations we then obtain
o0
C1al'Crt =3 D (Vi 'Vi) ol - (63)
m=0

Using the same process for af)”, we obtain
Cia'CTt = ol . (64)
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Using these transformation properties, the multiplication rules of matrices Dy, () (equation (56)) and the

property [3]

Dnm(')/) = Dmn(FW_IF) ) (65)

we can show that the effect of the conformal transformation Cj on vertex Vj is given by

Ny

oo

V1011=< ,»<0|> exp —% Y Y albiDun (CVV)) ady | (66)

=1

i.e. the effect of C'y on vertex V; is to change VO;l —
V;~! and Vp; — V; thus eliminating the dependence of
the cycling transformations of every leg except leg E on
the latter. The same can be done to obtain the effect
of conformal transformation Cs on vertex V;, with the
same results. So, the effect of these transformations
is to eliminate from the cycling transformations of the
composite vertex all dependence on the sewn legs E and
F.

IIT Introduction of ghosts

We now introduce ghosts in the vertex so that what we
must sew now are two vertices with some ghost vari-
ables attached to them, i.e. we will be considering the
physical vertices [4] which have the correct ghost num-
ber. In this case, in addition to satisfying the over-
lap identities with the conformal operator Q#¢, the two
physical vertices and the composite vertex must also
satisfy some overlap identities with the conformal op-
erators b’ and ¢, given by [4]

DD () (67)

(&) =
&) = Y )t (68)

where ci, and b}, are ghost anticommuting oscillators
with anticommutation relations
{C;:bzn} =0n,—m - (69)

These operators have, respectively, conformal weights
2 and —1, what means that they transform like

d¢;

o) v, (70)

v =

i,j:.l n,m=0
i#]

@ = (&) vg.

The overlap identities for a vertex V' with these op-
erators are given by

v b - (2—2)2bﬁ‘<@>] —0, (1)
v ci<&>—(j—§jj)lcf<fj> —0. (1)

We shall be working here with overlap identities for
the physical vertex U [4], which has the correct ghost
number, instead of the overlap identities for vertex V.
The physical vertex is given by [4]

N N 00
v=v II > > e (74)

where a,b,c are any three legs of the vertex and the
matrix e¥/ is given by

> L) =vi'o.y; (75)

n=—1

where the cycling transformations are now defined on
the complete generators L£! of the conformal algebra
of the bosonic oscillators and of the ghost oscillators.
These vectors e have the following property:

ov N 00 o
e V;ngl eus . (76)

In order to derive the overlap identity for the physi-
cal vertex U, we must multiply the overlap identity for
V by the same factor as in equation (74),
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dg;

dg;

and pass it through the overlap identities, obtaining

v b - (&)2%)] ~0,

dgi
dg;\ !
v |6 - () cj(fg)]
N N N oo
o e I 2
p=1 k=1 I=1q¢=-1
p£a,b,c k#a,b,c
k#p

From (80) we can see that there will be an anoma-
lous term in the ¢’ overlap of the physical vertex U
unless both legs 7 and j are precisely those legs (a, b
or ¢) that do not have any ghosts attached to them.
These ghosts which are attached to all the other legs
are responsible for the anomalous terms.

ITI.1 Analysis of the ghost number

Before going any further, it is necessary to make
some considerations on the ghost number of the com-
posite vertex. As we shall see shortly, in the case where
we perform the sewing with ghosts included, using the
physical vertices, the resulting composite physical ver-
tex will not have the correct ghost number unless we
insert some extra ghosts in vertex U; before the sewing
takes place. Considering this, we shall define the com-
posite vertex to be given by

U, = UyGPU] (81)

where G are some extra ghosts that will be introduced
in order to make vertex U, have the correct ghost num-
ber and P is the propagator (in its integrated form).

We must now analyze the ghost number of the com-
posite vertex and of its parts in order to calculate the
ghost number that the extra ghosts G must have. In
order to do this, we shall use the ghost number opera-
tor Ngn. For a vertex with N legs, the ghost number
operator is defined by

3 cinb;__jfibinc;> |
n=2

n=—1

N
(82)

Ngh:2<

v |pe - (@)2w<@>]

v }f‘(&) - (@)lcf(fn]

o0

kipl
i D

n=-—1
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N N %)
I > > e, | =0, (77)
k=1 I[=1n=-1
k#a,b,c
N %)
I > > el | =0 (78)
k=1 I[=1 n=—1
k#a,b,c
(79)
-1
lezi(gi)n+l _ (Z_?) egj(ij)rﬂd] =0. (80)

The reason why the ghost number operator is a sum
from ¢ =1 to @ = IV is because there are N vacua that
will annihilate the operators corresponding to each one
of them. When acting on the physical vertex, this oper-
ator gives a ghost number N, what is the correct ghost
number for a tree vertex with NV legs.

In the case of the composite vertex, it has N1+ No—2
legs (because it does not have legs E and F', which have
been sewn together) and so it must have ghost number
(N1 + N2 —2). For this vertex, the ghost number oper-
ator N&" can be divided into two parts:

Ngh = NBM 4 NP (83)
where
N1 o] 00
h i i i i
N =Y (Z c_nbn—Zb_ncn> | (84)
i=1 n=-—1 n=2
i#E
No o] o]
h i i i i
N = S (Z c_nbn—Zb_ncn> . (85)
izl n=-—1 n=2
iEF

This ghost number operator will have the following ef-
fect on the composite vertex:

U.N&h = U, (th + N§h) — (N, + No — 2)U. . (86)

Given formula (81) for the composite vertex, we then

have
U.NE' = UNE'GPUS + U, [G,ngh] PU}

+ U,GPUJNZ". (87)
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In order to calculate this, we must pay some atten-
tion to terms one and three of the right hand side of
the expression above. We know that
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Taking the Hermitian conjugate of equation (89) only
on leg F', we obtain

t8h 4 vehpt = t
U—1 (ngh +N§h) :N1U1 , (88) U2N2 +NF U2 —N2U2 . (92)
U, (NE" + N&") = N,U. 89
2 ( 2 F ) 22 (89) Since for N f;hT (and for any arbitrary ghost number
where operator)
00 o] thf . gh
NE = ST ERE-STECE, (90) Np' =—Ng' +3 (93)
n=-—1 n=2
0 00 we then obtain, substituting (88), (92) and (93) into
NE = Z cl bl — Z bE el (91) equation (87),
n=—1 n=2
|
U.NEY = (N, + Ny — 3)U,GPUS + U, [G,ngh] PU} — UyN&'GPU} + U,GPNE'US . (94)

Passing NV %h through the extra ghosts G, we then obtain

U.N8" =

(Ny + No — 3)U,GPUJ + U, [G, ngh] PUJ

~Uy [Ngh,G] PU} — hGPNB'U} + U,GPNE'U] . (95)

We must now remember that, in the composite vertex, we identify every operator on leg E with operators on
leg F' so that N %h =N gh. Doing this, the last two terms in (95) cancel and we obtain the following result:

U.NEY = (N, + Ny — 3)U,GPUS + U, [G,ngh +N&| PUS . (96)

The fact that U, has ghost number Ny 4+ N — 2 then
implies that

[G, NS L NE] =@ (97)

i.e. the extra ghosts that must be introduced in vertex
U, must have ghost number 1. 6

There is an infinite number of combinations of
ghosts that have ghost number 1. We could have any
linear combination of ghosts of the type b, bch, bebeb,
etc. but it will prove to be simpler to choose G to be a
combination of b's only so that we may represent it as

oo

N
G=> Y aibt (98)

i=1 n=—00

where ol are the coefficients of the linear combination.
In order to determine the correct linear combination, we
must use some other conditions, like BRST invariance
of the scattering amplitude. This we shall see next.

|
IT1.2 BRST invariance

We must now impose that the scattering amplitude
obtained from the composite vertex is BRST invariant
and check whether this condition is strong enough to
determine G. The scattering amplitude [1] is obtained
by acting with the composite vertex

U, = UyGPU] (99)

on a certain number of physical states
(Ix1)x2) - - - |x~)) and then by integrating over all vari-
ables z; (i=1,...,Ny + Ny; i # E, F):

Ni1+Na2
w :/ H le U1GPU2T|X1>|X2>...|XN> . (100)

=1
i£E,F

6This contrasts with references [5] and [6] where it is claimed that the extra ghosts should have ghost number 1, 2 or 3, depending
on the way one chooses legs E and F' to have or not to have ghosts attached to them.



Leonidas Sandoval Junior

P is the propagator in its integrated form and G are
the extra ghosts to be inserted in Uj .

Ni1+Na2
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The action of the BRST charge () on this scattering
amplitude is given by

wo- [ [T = [0nQIGPUlhe) - how)

z;éEF
N1+ N2 Ni1+N»
+f [T = 0 (G- QUPUIle) - o) + +f [T da UG QU)o
z;éEF z;éEF
N1+Na
w11 = 6 o Q] ) - how (101)
z;éEF

The first and third terms will result in total derivatives
that give zero when one integrates over some variables
[1] and so what remain are just the second and third
terms.

The commutator P is given by a pure conformal
transformation, and it is a function of the generators

LE (n=-1,...) only. As the BRST charge commutes
with all £E7s, i.e.

(£7,Q] =0 (102)
we have

[P,Q]=0. (103)
Considering now that

we then have, for G given by (98),

L [G,Q] = Ulz i ol Ll (105)

i=1 n=—1

N1 N1 oo

U1G2V1 H Z Z effbfnx

i=1 k=1m=-1
i#a,b,c

In order for the scattering amplitude W to be BRST
invariant, expression (105) must be zero or a total
derivative (that can be integrated out to become a null
surface term). At the same time, we want these extra
ghosts to place (talking in terms of the simple cycling)
a ghost on one of the legs in U; that do not have any
ghosts attached to them. If we now remember property
(76), we see that we can satisfy these constraints in a
nice way by choosing G to be given by

= (=1)Nte Z i el (106)

j=1ln=-1

where a (a # E) is one of the legs of vertex Uy that does
not have ghosts attached to it. Inserting these ghosts
in vertex U, we have

N1 oo N1 Ni oo
P S an-n [y Y. am
j=1ln=-1 =1 j=1n=-1
z;ébc

Using formula (106) for the extra ghosts G, we then have

Ul [G7 Q] = Ul(_

N1 (o)
DN S S e [

N1 [e%)
Ql=(DNrU Y Y eis,

j=1n=-1 j=1n=-1
Ny N1 oo
— (-1 N1+a H Z Z e pl (108)
z;jb c j=tn=—t

what is a total derivative that will vanish when one does the integration over z,.
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In references [5] and [6], the extra ghosts have been cycling transformations V; ' which involve leg E. Con-
placed in the propagator. Although this can be done, sidering equations (79) and (80), the overlap identities
there is no way one can derive a formula for the ghosts for vertex U between an arbitrary leg i and leg E are
in the propagator for a general cycling. In that case, given by (Fig. 12)
the extra ghosts must be derived and BRST invariance
has to be checked for each particular cycling. Also, the i J

resulting composite vertex obtained in that case is not

similar in its ghost structure to an ordinary tree vertex, \ o ”

although it has the correct ghost number.

IT1.3 Overlap identities

We must now use the overlap identities to determine Figure 12. Overlap identity for U?.
the propagator that satisfies them. In order to do this
we shall start with vertex U, which is the vertex with

]
2
Uy |b'(6oi) — (Zi?) bE(fmﬂ)] =0, (109)
—1
U? | (6os) - (‘fli(;’f) cE<£OE)]
Ny Ny Ny o) (o] df —1
RS | B IS [ezi@m)”“—(—”) ezE@OE)”“] —0.  (110)
Gk o
k#p

The extra ghosts must then be inserted in vertex U so that the composite vertex will have the correct ghost
number. Multiplying expressions (109) and (110) by the extra ghosts G (given by (106)) and passing them through
the overlaps we obtain (Fig. 13)

®-@

Figure 13. Overlap identity for UYG.

0 i ngE 2 FE
UG b(fm)—(dga) b”(&r)| =0, (111)
0 i dé.OE - E 0 Ni+a - ai n+1 dEUE o oF n+1
UPG | (éoi) — ( d&)‘) (&) | +UP(-1)M T D7 feni(ge)" ! — (%) e (éor)
7 n——1 [

Ny Ny Ny oo Ny oo
a3 e T (X3 d) (33
p=1 k=1 =1 g=-1 j=1n=-1

p#a,b,c k#a,b,c
k#p

[e%s) —1
D> [emm)”“— (%) ezE@OE)”“] ~0. (12)

n=-—1
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The second and third terms of equation (112) can be combined so that it becomes

e - (522 h cE@OE)]

optel

d&oi
N1 N1 N1 oo 00 dé‘ _1
i n E n
AR C | | (}/ > elqczblq> > leg (&0i)™ ! — (f) " ((or) +1] 0. (113)
p=1 k=1 =1 ¢g=—1 n=—1 0
p#b,c k#b,c
k#p

At this point, we must introduce conformal transformations of the type of C;, given by (30) in order to have at
the end the correct cycling transformations for the composite vertex. In order to do this we need to use matrices
Em(7), defined by [5]

1 omt o \'
E — ntl (& 114
o
which have the following properties:
1

Z Ert('Yl)Ets('YQ) = Ers(’Yl’Y2) ) T,S,t = _1707 1 ) (115)
t=—1
Ep(y)=0, r=-1,0,1 , n>2, (116)
Y Enp(1)Epm(12) = Epm(m) , nym > —1, (117)
p=—1
00 1
ZEHP('YI)Epm(W) = Enm('yl')/?) - Z Enr('YI)ETS('YQ)‘Ssm , n,m>2. (118)
p=2 r,s=—1

The action of the operator C; on the ghosts b}, can then be calculated in the following way: first we write b, in
terms of an integral over the conformal operator b, (&;)

= § do (o)™ b ) (119)
£0:=0
Then we insert the operator C;:
) d 2
Cib,Cr ! :7{ d€oi (S0i)™ ! (%I/;_IVOigOi) b (Vi Voikos) - (120)
£0i=0 i

After a change of variables &; = Vi_IVOifgi we have?”

d

-1
d—&%?vifi) b(E) . (121)

i _ _ n+1
cicr = §_ds ()™ (
£i=0
Using matrices E,,, (), we then may expand &; in terms of &;. If we also expand b%(&;), we then obtain
CHCT = 3 S e BV V(@)™ (6 (122)
m=—1p=—oo ’ §i=0
Performing the integration we then have
C10,Crt = ) B (Vo; 'Vi)bl, - (123)
m=—1

Using (123) in equations (111) and (113) and multiplying (111) by (dfi/d§0i)_2 and (113) by d¢;/d&o;, we then
have (Fig. 14)

"Note that, because &; is a polynomial in £y; (with no constant term), then £5; = 0 = & = 0.
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@

Figure 14. Overlap identity for UPGC .

oGo-1 |y dép\®
vtac: e - (S2) b (sE)]zo, (124)
- dép T ISS S g (r=tyyy!
vieer e - (B2) " erien| + vier 2_; I LZ; Fu (Ve Vi) 1

p#b,c k}ﬁ’;

-1
<y %) eh Enm (Vor Vi) (€6)™"'| =0 - (125)

n,m=—1

eplEnm OZIV) (fi)m—‘rl - (

Before going further, some words must be said about the effects of C;™' on vertex U? with the extra ghosts G.
This is given explicitly by [4][5]

N; N, 0o 0o
(Hi<o|) oo | 355 S B (Vi) b

i=1 i,j=1 n=2m=-—1
i#]
1 N1 1 N1 N 0
| DIPIILLN IDID I Y (126)
r=—114i=1 s=—1 =1 j=1n=-1

z;éb c

Making use of matrices F,,,,(7), defined by [5]

Fan) = L 2 [ 2] (127
nmAY) = (m —2)! §zm—2 2 5z _0
we may calculate in a similar way as we did for the b%, ghosts the effect of C; on the ¢}, ghosts, obtaining
CrchCT = Fum (Vg 'Vi)cl, - (128)
Using this together with the property
Fam () = Epn(Cy7'T) (129)
and equation (123), we may then show that the result of acting with C;' on UYG is
Ny N1 oo 00 )
i=1 i,j=1 n=2m=-1
i#]
1 1 .
XHZZErs b’XHZZ 4 B (Vo Vi), - (130)
r=—1i=1 s=—1 =1 j=lnm=-1

z;éb c
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So we can see that in this case the action of C| L on UYG is not just to change Vp; — V;. Because of the peculiar
nature of €%, it transforms as
[ee]
el 3 el Bun(VosVi b, (131
m=—1

Ouly in one particular group of cycling transformations (as we shall see later) will this be just equivalent to changing
Voi = Vi. We shall call from now on UYGC V'=p, and VoCT L'=V,. The calculation for vertex CFUTC' will be
similar to the one we have just made for U GC_

Having done this, we must insert the propagator P into the overlap identities (124) and (125) in the same way
as in the case with no ghosts. But now we must take extra care since there are terms depending on qu in the second
term of equation (125). Using equation (123) as a guideline, we have

PP = Y Egn(P)O (132)

t=—1

so that the result of inserting P into overlaps (124) and (125) is (Fig. 15)

pJ

-

Figure 15. Overlap identity for U;P.

2
ULP |bi(&) — <di€P1£E> bE (Ple)] =0, (133)
d -1
UiP |c(&) — <d€ 7’1€E> c? (P~ '¢p)

N1 N1 o0 N1

VP 3007 T 30 | D0 el BV Vb + e B (Vg V)b
p=1 k=1 gq,t=—1] I=1

p#b,c k#b,c l#E

k#p
d
X Z eplEnm OZIV)(gl)m+1 <E
n,m=—1

-1
) B (Vi VENER)™ | =0, (130

The operators of the overlap equations are now facing leg F of vertex U;r . In order to obtain the overlap identities
for this leg, we must now identify the operators of leg E with the ones of leg F', which are adjoint operators:

b 5T | b S bFT | B P (135)
First, as b" and ¢ are conformal operators with weights 2 and —1, respectively, we have
2
t d _
e = T e = (Ter ) 87 (6 = (6) 0 (06r) (136)
t d -
"(er) = T (Ep)l = <EF5F> ' (D) — (Ep)°cF (Tép) (137)
Then, for bf and cE, we obtain
' = pefr=—cF | (138)

pit

n

= ofTef . (139)
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Then, we must also make the change

-1 -1 -1
() i - (£)' () o

-1 oo
() 5 e
v m=—1
So, the overlap equations become
U P |b' (&) — <d§ P~ fE) (P_le) " (TP~ fE)] =0, (141)
-1
ULP |c'(&) + <d(é 15E> (’P*le)%F (TP~ '¢p)
Ny
+WiP Z H Z > el By (V' Vi) b} + efE By (Vo VEP) 0,
,,¢bc k];&blc ot=—t ll;}E‘
k#p
—1 Am+1 _ dE_F - pE —1 m+1| __
5> Voi Vi) (&) a6 ) O Bun (Vog Vi) (€)™ = 0. (142)
n,m=—1 ¢

We are then facing the conformal transformation Cr that takes { into &p. Inserting this transformation we
obtain (Fig. 16):

@@

Figure 16. Overlap identity for U; PCr.

2
UiPCr |b(&) — ( 7 P ¢ ) (P~lep) "

dV, VTP~ ¢g F 1
r = 14
( TP 16 )b( P VelP ™ ) ’ (143)
; dpoae N p Vo VELP 66\ ™ 5 o1y 1o
Ui PCF [C (&) + <d—€l73 1EE> (P 1fE) ( ITP—1¢5 ) " (Vor VeI P 1¢g)
N1 N ) Ny
+WPCr 3 (0" I 30 | D e B (Vo' Vi) b = €4 By (Vo VePTVE Vor) b7
p=1 k=1 gq,t=—1 | I=1
p#b,c k#b,c I#E
k#p
% Z IV) (&)mﬂ _ déor -1 epEEnm (V_lVOF) (&)F)mﬂ =0. (144)
n,m=-—1 OZ d& ! or
We are facing now vertex V2OT. This vertex satisfies the following overlap identity [4]:
Z By (Vop)b" V0T = —y0t Z Z E,s(Voi)bi , r=—1,0,1. (145)

s=—1 i=1 s=—1
i#F
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Using equation (117), we have
Eot (Vo VEPTVE Vor)bf = > Epu(Vo VEPTVE ) Bt (Vor )by (146)
u=-—1

All terms on bf" with ¢ > 2 get annihilated by the conjugate vacuum |0)r, while we may use identity (145) to
substitute the terms in bf", » = —1,0, 1. Doing this, equation (144) becomes

-1

aVor VFFP 1§E>

-1

Ny Ni o)
+PCr Z (=1)” H Z Z eq Eqt (Vo ' Vi) bl + Z € 5 VEPTVy ' Vor) b}
pp:b,lc k]%}c pr==t ; l;éF
k#p
-1 m+1 dEOF - pE -1 m+1| _
x Z Oz V) (fz) - T €n Enm (VOE VOF) (EOF) =0. (147)
n,m=—1 ?

Equations (143) and (147) are the overlap identities between legs i and F.
In order to obtain the overlaps between leg i of vertex U; and an arbitrary leg j of vertex U;r, we must now

perform a cycling transformation that will take the operators from leg F' to leg j. The effect of this transformation
on cf (FP’lvgl‘/}fi) is

AV VTP e\
Vo Wee (Vi Ve Pt Sy = | Y d (Vi WVeI P~ Y¢E) . 148
T Vee” (Vop Vr &) Vi 'V VTV TP e, (Vv ¢e) (148)
Then, we must also write
déor\ ™' déo;\ 7
(%) 3 e (Vi Vor) ()™ = (%) 2 o B (VogVoy) (€)™ (149)

Doing this, overlap equations (143, 147) become (Fig. 17)

®-@

-

Figure 17. Overlap identity for UlPCFVQOT.

2
Uy PCRVYT b"(&)—(cl%P*fE) (P~'¢r)

(dvojlvFrplgE

=0, (150)

2
'a —1 —1
AP e > br (Vo VTP )

Uy PCRVT

. -t AV VTP lep) B )
c'(&) + (d& “¢p ) (P 15E)2< OJdI"IfflgE E> e (VOJ-IVFFP Y¢E)
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N1 N1 o0
+ViPCeVy Ty ()P Y Ze By (Vo 'Vi) 0} + Ze Eqt (Vog VEPT Vi Var) by

p=1 k=1 qt=—1 | I=

pibye kb, (7 [ZF
k#p
déo; \ 7!
x Z B (Voi'Vi) (€)™ = ( d£7> e Bnm (Vop Vos) (60)™ | =0 (151)

n,m=—1

The operators are now facing the ghosts that surround vertex U5 (like in equation (74)):

N>
H Z Z efpl + Z S (152)
=1 =1 g=—1 g=—1

k;éd a.h \I£F

so that we must insert these ghosts into the expressions for the overlaps. Before doing that, we must notice that
the extra ghosts acting on vertex V20Jr have at their left both the conformal transformation C'r and the propagator
P so that we must first pass them through in order to reach vertex U;:

N3 00
ree T [555 ctts 3° b,

k=1 I=1 ¢=—1 a=—1

k#d,g,h \I#F

No N> o 00

= H SN el = N e B (Vo VeI P! | PCE (153)

k=1 I=1 ¢=—1 gt=—1

k#d,g I£F

Then, identifying legs E and F', we have the following expression for the ghosts:

N2

No o)
I 1D D el - Z ek S VeDP Y| P (154)

k=1 =1 g=—1 q,t=—1
k#d,g,h LI#AF

We may now pass it through the conformal transformation C7, obtaining

N2

No oo [ee)
I 1D > el — N b By (Vo VTP~ Vg Wor) b | P . (155)
k=1 I=1 ¢g=—1 g, t=—1
k#d,g,h LI#F

This is now facing vertex V, which satisfies the following overlap identity [4]:

Vo Z E,.(Vop)b? = =V Z Z E..(Voi)bi |, r=-1,0,1. (156)
s=—1 i=1 s=—1
i#E
Using this identity, we may then write the extra ghosts as

N>

II Z Z eyl + Z Z ek VTPV W) bl (157)

k=1 =1 qg=—1 =1 gq,t=—1
k#d,g,h LI#£F I#FE

Passing it back through C; we then have

N>

H Z i eblpl + Z i AVETPTWVV) B (158)

=1 =1 q,t=—1
k;éd,gh l;éF I£E
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We now insert these ghosts into expressions (150) and (151). We do so by multiplying them by (158) and passing
it through the first term of the overlaps. What we obtain is (Fig. 18)
i J
/
(Hr=()

-

Figure 18. Overlap identity for U1PCFU3T.

i d ’ —1g )74
bl(fi)_<d_§ip €E> (P~ *¢g)

dVy; ' VTP e
dI"Pfle

Uy PCrUSY

> " (Vo;'Vel P~ ') | =0, (159)

-1
d - o (dVy;' VTP 1ég
0f p-1 -1 0 F — —
Ui PCrU, (5@) (d& £E> (P fE) ( Jdrlpfle c (Vojl‘/FFP 1€E)
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-|-U1'PO}7‘V2OJr Z(—l)p H Z Z e“bl + Z Z VpT'P 1V IVZ) bl
p=1 k=1 =1 ¢g=-1 =1 g,t=-1
k#d,g,h LI#F I£E
k#p
x [Z e B (Vo VETP VWS (&)™)
n=-—1 Lm=-1

-1 AV WVerP e\
_ 2 0 F E _ _ n+1
(a7 fE) (P~¢) ( g ) o (o VelPTe)

N1 N1 [ee]
e SNV | Y Ze Eqgt (Vo' V)b, +Ze (Vo VPV Var) b
p;éblc e N Lz ZF
k#p

[ ~ déo;\ _
< S BBV V) (%) ezEEnm%ElvE)(sm)m“]
n,m=—1 L L
NQ o0
< I Z Z ekbl + Z > By (Vo VTPV ' Vi) by | = 0. (160)
k=1 =1 ¢g=—1 =1 q,t=—1
k#d,g,h LI£F 1£E

We are then facing the last term of this composite vertex: the conformal transformation C> on vertex V2OT.
Inserting it into equations (159) and (160), we obtain (Fig. 19)

@@

Figure 19. Overlap identity for U1PU§.
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2
U, PUS [bi(fi) — (%P*&;) (79—151;)’4

dV; VTPt
x ( i VrtP &p =0, (161)

F —1 1
P IE, )b (Vi 'VeTP Y¢g)

—1 —1 1 -1
d P1§E> (7’715}3)2 (dV] VrlP gE) e (V]-_IVFFP71§E)

v PUY [ o+ (5

d¢; dU'P~1¢g
N‘) N [o @]
+UPV] Z H Z Z ey Bar (Vo ' V)bt + Z ey” Eq (Vo VETP ™'V 'V) bt
p=1 k=1 qt=—1 | I=
k#d,g,h l;éE
k#p

X Z [Z eF By (Vo VET PV 1) (&)™

n=-—1 Lm=-1
2
A N e (VeI e\
1y,
w(@EPe) e (Vg ) 05 TP )
N1 N1 o0 N1
+ PV S o I Y | DD M Ea (vt b’+Ze’“Eeq( Vo VePTV ' V) B
pAboe v T Lizk (ZF
k#p
e\ !
mz W)™ - (52) B (Vi Vi) )
N2 o0
I > Ze Eyu(V, Vzbl+Ze SVETPT V) b =0 (162)
wtaon VN LZE ZE

where we have called C’FUSTCgl = U;r and CFV2OTC;1 = VJ.
We must now extract the ghosts from vertex U; in the second term of equation (162):

N
6r = VTl S |30 BV i + P BV Vet | P
v " Uiz
N1 00 N1
= WP I X2 | 2 e BuVir Vbt + e B (Vg VEP)bC | - (163)
e P LR

Identifying bF with b¥, and passing now these ghosts through the conformal transformation Cr, we obtain

Ny
UyPCr =ViPCr [] Z Z el Byt (Vo ' V)b, — e By (Vo VEPTVE 'Vor)bf | (164)
wa P LZE

Using now overlap identities (145) for vertex VJ and inserting the conformal transformation C5, we then obtain

N1 oo
nrerVy =virerVi I Y2 Z M By (Vo 1 V)b + Z e (Voi VePTV, Vi) 0L | (165)
k’;:bfc wt=—t I;E l;éF
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Substituting (165) into equation (162) we then obtain the overlap identities between legs 7 and j:

. d 2 _
Ue [b(&) — <d&7’ 'V 1V€z> (P'VE Vi) !
d 2
(d&P Wi 1V§,> I (VWVETP VG| =0, (166)
i d 1 1 - —1y,—1 2
U. C(fi)"‘ d&P VE Vi& (P VE szz)
d -t
(d&P IVE1V§Z> (V7 'WVelP~'VE Vi)
N1 o0
+v. [I > Ze Eu(Vir'Vh) bl-i—Ze Vi VePTV V) B
e P LR ZF
k#p
x Z H Z Ze 7 VeTP VW) lefZe at (Vey V)b,
p;gdg h k:;édg h o= l;é l;éF
k#p
d -1
<Y | B (Vi Ve V) (&)m“+< i 1V51V&> (P vig)’
n,m=—1 2
dV: Vel P~ g . B B L L
’ ( g O B (Vo' V) (VT VTPV V)
Ny Ny oo
AADSRCL | Y Ze Eut (Vo ' Vi), + Ze’fEeq( Vo VePTV, 1) b
p=1 k=1 gq,t=—1 | [=1
p#b,c k#b,c I#E l;éF
k#p
<y e — () B (V) ()
Epm( Vo i dé; €n Lnm \Vog Vi) (Gj
n,m=—1
N>
H Z Ze VTP Ve V) 0 + Zekleq Vo 'Vibh| =0. (167)
k;éd,gh ot=—t l;éE l;éF

k#p

If we now impose that these are the correct overlap equations between legs i and j of the composite vertex we
then must have:

Vo WVETP g = ¢ (168)
what fixes the propagator as
P =V, Vel (169)

which is the same form of the propagator for the bosonic part, but now with the cyclings defined on the complete
generators L£!. The overlap equations now read

AUCHES bJ‘(@-)] —0, (170)

N1 o0
+ Ve H Z Ze gt ( OllVlb+Ze (Vo;;lvl)bé
e ot=—t IZE [ZF

k#p
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x Z H Z Zeq Vl bl+ze gt ( ozlw)bt

k=1 g,t=—1 | I=1

p;sd,g h ki% h I#£E l;éF
—1
X Z e’ E Vi) (&)™ — a5 ePI By (Vi1 V5) (&)™
nm OF i d& n —nm\vo; YJ J
n,m=—1
Ny
+Ve Y (= H > Zeeq oﬂvzb’+2e Vil Vi) b
p=1 k=1 ¢qt=-1|I=1
p#b,c k#b,c I£E l;éF
k#p
oo ) df 71
x> eﬁlEnm(VOil‘G)(fi)m*l—(d—g) eh” Enm (Vor V) (fj)”“]
n,m=—1 v
N2 o0
<~ 11 > Ze Vi bl+Zekleq (Vo 'Vobh| =0. (171)
wragn " LiZE (7
k#p

These are the overlap identities between legs i and j of the composite vertex U.,.
From these overlap equations it is then possible to derive the form of the composite vertex. It is given by

N1+N> Ni1+N>s oo oo 1 Ni+N> 1
| TIPS i o S INCSIATA I | B Sl oR-AtE
i=1 i,j=1 n=2m=-—1 r=—1 =1 s=—1
iAB,F i #EF
4,j#E,F

Ny [e%)
<II > ZeEano]Vb]+Ze (Vo V3) ¥

i=1 n,m=-1

i#b,c J#E J#F
N1 N2
x H Z Y et Bum (Vo Vi) b+ D el B (Vo V)b, | - (172)
n,m=-—1 | j=1 j=1
zséri,g h J#E J#F

Although this is the correct composite vertex for a general cycling, its ghost structure is not very apparent. We
may use the explicit expression for the vectors e¥ [7]:

el = > KB (vl,) (173)
m=—1
where
kY =6y L Y (174)
J 0 82’@ 0 » n Bzi’ =
and
Y, =V, (175)

vo= exp (—56 In ag) exp (— Z d%ﬁ%) ) (176)
n=1

v = exp (— > c‘l%%) , p>1. (177)

n=p+1

If we assume now that the cycling transformations V; ! and Vi ! do not depend on the variables z; of vertex Uy
or z; of vertex U;r, and if we have in mind that e = 0 for any leg i of vertex U; and a leg j of vertex U;r (or
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vice-versa), then we have

1
ed =09 3" E_1,(Vi) (178)
r=—1

what simplifies things considerably. We shall call all cyclings that have such properties “simple cycling-like”. In
this kind of cyclings, each leg has its own ghost attached to it, with the exception of three of the legs which have no
ghosts attached to them. We will now consider three cases separately: one in which none of the legs E or F' have
ghosts attached to them, one in which one of these legs (say E) has a ghost attached to it, and a case where both

legs (E and F) have ghosts attached to them.
The composite vertex for the case where neither E nor F' (we choose E = b and F' = g) have ghosts attached is

given by

Ny 1 N: 1
vt = vk [ S Bonitix [ Y Bon (VY (179)

i=1 r=—1
i#£b
i#E

2
i=1 r=-—1
i#d,h
i#F

where V8" is the vertex given by the first two terms of equation (172). For the case where leg E has a ghost attached
to it, but not leg F' (we shall call F' = g), the composite vertex is given by

N1 1 No 1 N> 1
Ut =VE s I D0 Eooe(Wbix D > B (Vb x [ D E-an(Vi)bL . (180)

1=

i£E

=1 r=-—1 j=1 r=—1
i#b,c j#F

i=1 r=-1
i#d,h
i#AF

In the last case, where both E and F' have ghosts attached to them, we then have

N1 1
vst = VERx I YD B (Vibh
i=1 r=-—1
i#b,c
i#E

No 1 Ny 1 No
XD D Bon(Viblx 30 Y0 Boan(V)bl x lj

j=1 r=—1

j=1 r=—1
J#F JFE

1
S B (Vb (181)
1= r=-—1
i#d,g,h
iAF

We can see that, for each case, the composite vertex has the correct ghosts number (N; + Ny — 2).

IV  Conclusions

Using overlap identities, two vertices were sewn to-
gether in order to become a composite vertex. The
calculations have been done with the correct ghost num-
bers for each vertex and the result has both BRST in-
variance and the correct ghost counting.
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