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The e�ective magnetoconductivity tensor of selectively doped heterostructures with non-screened
potential is evaluated for high-frequency regime. The lateral inhomogeneity of the donor distribution
in the structure results in a large-scale variation of the energy levels. The contribution due to such
inhomogeneity takes place in addition to the standard Drude mechanism of absorption and this
mechanism is dominant for the high-frequency regime.

I Introduction

In high-frequency regime, if the photon frequency ! or
the cyclotron frequency !c exceed the relaxation fre-

quency (but corresponding energies are smaller than

the mean electron energy), the linear response of elec-

trons shows the Drude dispersion, i.e. the conductivity

is found to be proportional to !�2 or !�2c . This gen-
eral dependency appears to be violated in semiconduc-

tor heterostructures with non-screened potential. The

screening is not e�ective on a random potential due

interface roughness or due to in-plane non-uniform Æ-
doping in QW with two occupied subbands[1] or in mul-

tiple selectively doped QWs[2].

In the present paper, we describe the response of

the 2D high-mobility electrons in selectively doped

heterostructures taking into account an in-plane elec-
tron redistribution under non-screened random po-

tential due to lateral inhomogeneity of Æ-doping (see

Fig.1). Based on an electrostatic description of the

non-screened variation of the potential, the e�ective
conductivity tensor of the non-uniform electron gas is

obtained from the linearized kinetic equation in Sec.

II. The interplay between the Drude frequency disper-

sion, due to the standard relaxation processes, and the

additional contribution, due to the planar large-scale
inhomogeneity, is described in Sec. III. This frequency

dependency of the e�ective conductivity is analyzed for

the case of acoustic phonon scattering. Our numerical

results demonstrate an essential modi�cation on the re-
sponse. The concluding remarks are presented in the

last section.
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Figure 1. Schematic view of (a) the heterojunction with Æ-
doping N2D(x) and (b) the band diagram along z axis, with
non-uniform ground level "o(x).

II E�ective Conductivity Tensor

The self-consistent description of the 2D electrons in
selectively-doped structures with large-scale variations
of donor distribution over the 2D plane is based on
the Schr�odinger and the Poisson equations. Within the
�rst order approximation to the inhomogeneous poten-
tial wx, the electron concentration nxz can be written
in the form nxz = �2D("F � wx) 

2
z , where �2D is the

2D density of states, "F the Fermi energy, and  z the
wavefunction of the ground level. For the large-scale



F.T. Vasko and G.-Q. Hai 351

variation of the potential (under the condition lc � aB,
where lc is the lateral correlation length of non-uniform
donor distribution and aB is the Borh radius), the so-
lution of the Poisson equation is of a simple form[2]:

wq ' �
Ænq
�2D

e�qZ ; (1)

where Ænq is the Fourier component of the 2D donor
concentration and Z is the average distance between the
2D electrons and the Æ-layer. Thus, the non-screened
potential is suppressed if Z � lc. For further numer-
ical estimations we assume a Gaussian correlation of
variation of the donor concentration. Within the sec-
ond order accuracy, the correlation function W (q) =R
d(�x) exp(�iq��x)hwxwx0i is given by

W (q) = �l2c

�
Æn

�2D

�2

exp[�(qlc=2)
2 � 2qZ]; (2)

where Æn is the typical variation of the 2D concentra-
tion and n2D = �2D"F .

In a lateral electric �eld Ex exp(�i!t) and a trans-
verse magnetic �eld HkOZ, the linear response of the
2D electrons within the dispersion law "px = "p + wx
("p = p2=2m is the kinetic energy and m is the e�ective
mass) is described by the �eld-induced contribution to
the distribution function: (�"q+�pq) exp(�i!t+ iqx).
Separating the symmetric and non-symmetric part of
the distribution function, �"x and �pq, respectively, we
write the linearized kinetic equation as follows (see [3]
for details):�

i! + bJnel��"q = i f(q � v)�pqg ; (3)

bRq�pq � i f(q � v)�pqg = �pq � i (q � v) �"q: (4)

Here bJnel is the non-elastic collision integral, v = p=m,

and f � � � g �
R 2�
0
d' (� � �) =(2�) stands for the average

over the in-plane angle '. The collisionless evolution
operator bRq and the non-homogeneous term �pq are
given bybRq = fi(q � v � !)+�e + [!c � p] � rpg

�1
;

and

�pq =
X
q0

(eEq0 �v)

Z
dx

L2
e�i(q�q

0)xÆ("Fx � "p);

respectively, where �e is the momentum relaxation
frequency corresponding to the short range scatter-
ing mechanism, !c=jejH=(mc) the cyclotron frequency,
Eq the Fourier component of the electric �eld, and
"Fx = "F + wx the non-uniform Fermi energy. The
non-symmetric part of the distribution is determined
by Eq. (4) and can be expressed through

f(q�v)�pqg =
f(q � v) bRq�pqg � f(q � v) bRq(q � v)g�"q

1� if(q � v) bRqg
:

The symmetric part of distribution is given by �"q w
f(q � v)�pqg =! for the high-frequency limit.

The Fourier components of the induced charge
�q and current jq are introduced through the stan-
dard relations: �q = (2e2=L2)

P
p
�"q, and jq =

(2e2=L2)
P

p
v�pq. The average induced current is ex-

pressed through h�"qi and h�pqi, where h� � �i stands for
the average over the random potential. Since the aver-
age values are proportional to Æq0; we obtain hjqi = Æq0
j. After the summation over p we transform the in-
duced current into

j =
e2

2mL2

X
q

�
ihn�qEqik

(+)
! +

!c � hn�qEqi

!c
k(�)!

�
;

(5)
with

k(�)! =

�
1

! + !c + i�e
�

1

! � !c + i�e

�
;

where the right side is written through the Fourier com-
ponent of the concentration nq = n2D + �2Dwq. Sepa-
rating the uniform and potential parts of electric �eld
(under the condition curlEx = 0), we write Eq as
Eq = EÆq0 � iq�q with E the homogeneous electric
�eld. The random Fourier component of the potential
�q is determined from the Poisson equation with the
high-frequency charge density �q. Within the �rst order
approximation to the random contribution, its solution
appears to be proportional to (q � E)wq. Substituting
the random �eld into Eq. (5) and averaging according
to Eq. (2), we obtain j through the e�ective conductiv-
ity tensor as j = b�eff! E. The diagonal (non-diagonal)

component of the conductivity �effd (�eff
?

) is written
as

�effd;? = �d;?

"
1 + L�2

X
q

W (q)

"F
Ad;?(q)

#
; (6)

where �d;? corresponds to the uniform case. Since
Ad(q) and A?(q) depend on ! and !c, the above equa-
tion describes the frequency dispersion of the e�ective
magnetoconductivity (including the case of cyclotron
resonance). It also appears to be temperature depen-
dent through the relaxation frequency �e. A geneal ex-
pression for �effd;? may be obtained after the evaluation
of Ad;?(q) and the integration over q in Eq. (6).

III Spectral Dependencies

We consider now, in the absence of magnetic �eld, the
modi�cation on the Drude spectral dependency �eff!

result from the second addendum to Eq. (6). Using an
explicit expression for �q and performing the average
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over non-screened random potential, we transform the
non-uniform contribution as follows:

Ad(q) = �
(dB"q=d")"F
aBq + B"q

;

with

B"q =

�
q � v

q � v�! � i�e

��
1 +

�
i�e

q � v�! � i�e

���1
:

Further, performing the integral over q we �nd
the e�ective conductivity in the form �eff! =
(e2n2D=m�e)F (
; �) with the dimensionless function:

F (
; �) =
i


+ i

"
1 +




2

�
Æn

n2D

�

�2

�

Z 1
0

dx exp
�
�x2 � 
x

�
x3

V
(�x) [V
(�x)� i] [(1 + �x) (V
(�x) � i)�
]

#
;

where 
 = !=�e , � = 2lF=lc, 
 = 4Z=lc, � = aB=lc,

and V
(�x) =

q
(
 + i)

2
� (�x)2.

The numerical calculation is performed for Æ-doped
AlGaAs/GaAs heterojunction with Æn=n2D � 0:3. We
have used ��1e � 76 ps and lF � 14:7 �m in agree-
ment with the experimental data[4] for the structures
with high mobility. Figure 2 shows the frequency de-
pendence of ReF (
; �) for di�erent � and 
. The pa-
rameter � is determined through � by � = (aB=2lF )�.
The Drude dispersion for the ideal structure is given
by the dotted curve in the �gure. One can see that
the random-induced absorption is comparable (or up
to 10 times greater) to the Drude contribution and the
hump-type dispersion takes place for the high-frequency
region. The considered frequency corresponds to GHz
frequency range.

IV Conclusion

In this work, we have studied the e�ective conductiv-
ity tensor of the selectively-doped heterostructures with
non-screened large-scale random potential induced by
the inhomogeneity of the doping layer. The presence of
such a potential leads to a lateral variation of the en-
ergy levels and, consequently, modi�es qualitatively the
character of the frequency response of the system due to
the contribution of non-uniform electric �eld. This new
mechanism of the frequency dispersion is essential for
the spectral region ! & vF=lc and the obtained contri-
bution is proportional to the mean square variation of
the level in the weak disorder regime. Since the Drude
absorption is suppressed as !�2 at high frequency, the
proposed mechanism appears to be a few times greater
than the standard result (see Fig.2 ).

To conclude, the obtained spectral (or temperature)
dependencies of e�ective conductivity will stimulate an

experimental study of high-frequency response taking
into account the lateral inhomogeneity of selectively-
doped structures. Along with the frequency measure-
ments of electron response, other characteristics of non-
homogeneous structures, like 2D plasmon dispersion or
cyclotron resonance, are also in
uenced by the non-
screened variation of the levels. In addition, the tem-
perature dependence of mobility and the static magne-
totransport phenomena should be modi�ed due to the
analogous mechanism. In the static case we need to
�nd �"q taking into account the non-elastic collisions.
These phenomena require a special consideration.
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Figure 2. The real part of �eff! versus the dimensionless
frequency 
 = !=�e at 
 = 0:1 for di�erent � = 2lF =lc.
Inset shows ReF (
; �) for di�erent 
 = 4Z=lc at � = 4.
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