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Pulsed laser crystallization of SiGe alloys on GaAs
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We have investigated the crystallization of amorphous SiGe �lms deposited on crystalline GaAs
(001) substrates using ns laser pulses. Analysis of the �lm structure using Raman spectroscopy
indicates the formation of heteroepitaxial SixGe1�x/GaAs structures for Si compositions up to x =
25%. Higher compositions lead to polycrystalline �lms. This is attributed to the increased lattice
mismatch between SixGe1�x and GaAs as the Si fraction in the alloy increases.

I Introduction

Pulsed laser crystallization (LC) [1] is a standard tech-

nique for the fabrication of large area polycrystalline
�lms from the amorphous (a-) phase. This technique

can also be used to produce high quality epitaxial Ge

layers with abrupt interfaces on GaAs (001) substrates

[2]. Since Ge and GaAs are well lattice-matched, an

interesting question is how the epitaxial LC proceeds
when Si is introduced in a controlled way into the Ge

matrix, so as to form Si1�xGex alloys with a lattice

constant di�erent from that of the substrate. In this

contribution, we address this question by investigating
the LC of a-SixGe1�x alloys deposited on GaAs (001)

substrates. Raman scattering studies of the LC �lms

give evidence for the epitaxial crystallization of 100-nm-

thick SixGe1�x alloys with compositions x up to 25%.

Higher compositions lead to polycrystalline �lms. This
behavior is attributed to the increased lattice mismatch

with the substrate, when the silicon concentration in

the alloy increases. Since the epitaxial crystallization

requires the melting of the amorphous �lm by the laser
pulse, a second important issue regarding the crystal-

lization of SixGe 1�x alloys on GaAs is the intermixing

at the interface with the substrate. The intermixing

was investigated using secondary ion mass spectrome-
try (SIMS).

II Experimental

The a-SixGe1�x samples were grown by ion-beam-

assisted sputtering on GaAs (001) substrates. Before

�lm deposition, the substrates were heated to 350ÆC
and bombarded by a 30 eV hydrogen ion beam for 1 min

in order to remove the natural surface oxide. Oxide

removal was monitored in-situ using x-ray photoelec-

tron spectroscopy. 100-nm-thick a-Si and a-Ge �lms

were then deposited from Si and Ge targets (99.999%

pure) using 1000 eV Kr+ ions from a Kaufmann gun.

a-Si0:1Ge0:9 �lms of the same thickness were grown us-
ing a Ge target covered with a piece of Si. In order

to obtain laser crystallized SixGe1�x alloys with other

compositions x (x = 0.25, 0.50, and 0.75), a-Si/a-Ge

multilayers with individual Si and Ge layer thicknesses
below 25 nm were deposited. Each multilayer sample

consists of 6 layers adding up to a total thickness of

100 nm. As will be demonstrated below, the layers com-

pletely intermix during the laser crystallization process,

leading to the formation of a homogeneous crystalline
(c-) SiGe alloy with the composition determined by the

relative thicknesses of the original a-Ge and a-Si layers.

The samples were crystallized with single pulses

(pulse width of approx. 7 ns) from a frequency-doubled

Nd:Yag laser (� = 532 nm). A Gaussian-like laser beam
pro�le with a diameter of approx. 4 mm was obtained

by using a vacuum spatial �lter. The laser pulse 
uen-

cies were estimated from the measured pulse energy by

assuming a Gaussian pro�le for the distribution of light

intensity on the irradiated area. The crystallization
process was monitored in-situ by recording the tran-

sient re
ectivity of a cw diode laser beam (� = 675 nm)

during the LC process. The increase in the re
ectivity

indicates that the a-SiGe alloys melt during laser irra-
diation [3].

Raman spectroscopy was employed to study the
structural properties of the samples. The measure-

ments were performed at room temperature in the

backscattering geometry using the z(x; y)�z, z(y; y)�z,

z(x0; y0)�z, and z(y0; y0)�z scattering con�gurations,
where x; y; z; �z; x0 and y0 denote, respectively, the [100],

[010], [001], [00�1], [�110], and [110] crystallographic di-
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rections of the (001) GaAs substrates. Note that de-

formation potential Raman scattering by longitudinal

optical (LO) phonons is allowed by selection rules only

for the con�gurations z(x; y)�z and z(y0; y0)�z [4]. The
red lines (�L = 676:4 or 647.1 nm) of a Kr+-laser were

used for excitation.
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Figure 1. Raman spectra of a LC c-Si0:25Ge0:75 alloy

recorded in the z(y0; y
0)�z (thick line, upper curve) and in

the z(x0; y
0)�z (thin line, lower curve) scattering con�gura-

tions. The laser 
uency was approx. 500 mJ/cm2.

III Results and Discussion

The Raman spectra of as-grown a-SiGe multilayers
show broad Raman lines centered around 270 and 470
cm�1, which are attributed to the Ge-Ge and Si-Si vi-
brations of the a-Ge and a-Si layers, respectively. After
LC, these lines narrow and shift somewhat in energy.
A Raman spectrum of a LC c-Si0:25Ge0:75 alloy with an
average composition x = 25% recorded in the z(y0; y0)�z
con�guration is shown by the solid line in Fig. 1. The
three main peaks found at 290, 400 and 470 cm�1 cor-
respond, respectively, to Ge-Ge, Ge-Si and Si-Si vibra-
tions of a c-Si0:25Ge0:75 alloy [5]. The Ge-Si line, which
only appears after LC, evidences the intermixing of the
Si and Ge layers during laser irradiation. The sharp line
at 292 cm�1 (close to the Ge-Ge vibration) corresponds
to scattering by LO phonons in the GaAs substrate.

The spectrum recorded in the forbidden z(x0; y0)�z
con�guration in Fig. 1 (thin line) shows a strongly re-
duced scattering intensity. This reduction is attributed
to the epitaxial orientation of the Si0:25Ge0:75 �lm rel-
ative to the GaAs substrate. Similar results were also
obtained for alloys with x = 10%. Only polycrystalline
regions were observed for x > 25%, thus indicating that
the large mismatch prevents the formation of epitaxial
�lms.

The Raman spectrum and thus the structure of the
LC layers depends sensitively on the laser pulse 
uency.
This result is illustrated in Fig. 2, which displays a se-
quence of Raman spectra recorded at di�erent radial

250 275 300 360 380 400

λ
L
=647.1 nm

r(mm)=Si-Ge

epitaxial

polycrystalline

Ge-Ge / LO-GaAs

amorphous

Si
0.1

Ge
0.9

 

3

1.5

1.2

1.0

0

S
ca

tt
er

in
g

 In
te

n
si

ty
 (

ar
b

. u
n

it
s)

Raman Shift (cm-1)

 z(x,y)z
 z(y,y)z

Figure 2. Raman spectra of a LC c-Si0:1Ge0:9 alloy recorded

at di�erent radial distances r from the center of the LC spot.

The 
uencies for x = 0, 1, 1.2, 1.5, and 3 mm are estimated

to be 2000, 1250, 1000, 650, and 0 mJ/cm2.

distances r from the center of the spot produced by LC
on a multilayer with x = 0.10. The laser pulse 
uency
decreases with r following the Gaussian-like pro�le of
the laser beam. For large distances (r = 3 mm), the
pulse energy is insuÆcient to induce the phase tran-
sition, so that the material remains amorphous. For
r = 1.5 mm, comparable intensities are measured in
the z(x; y)�z and z(y; y)�z geometries, thus indicating
the formation of a polycrystalline c-Si0:1Ge0:9 alloy. For
r < 1.2 mm, the ratio between the scattering intensities
in the allowed and forbidden scattering geometries be-
comes very large. We attribute this large ratio to the
formation of an epitaxial �lm with the same crystallo-
graphic orientation as the substrate.

The laser 
uency of 1000 mJ/cm2 estimated for
r = 1.2 is approximately the same as that required to
obtain high quality LC-Ge �lms on GaAs. Although the
material still crystallizes epitaxially for r < 1.2 mm, the
peak intensity of the Raman lines at approx. 290 cm�1

recorded in the allowed scattering con�guration (thick
line in Fig. 2) decreases with decreasing r. At the same
time, the line broadens. This behavior is attributed to
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Figure 3. Concentrations of Ge, Si, and Ga as a function of

SIMS sputtering time for an a-Si/a-Ge multilayer (a) before

and (b) after LC. The composition of the c-SixGe1�x alloy

is x = 0:25. The original position of the interface with the

substrate is indicated by the vertical dashed line.

the high temperatures induced in the Si1�xGex layer
under high laser 
uencies, which leads to strong ma-
terial intermixing at the GaAs/Si1�xGex interface and,
eventually, to a partial melting of the underlying GaAs.
When the Si1�xGex alloy crystallizes, its absorption co-
eÆcient decreases, and it becomes almost transparent
to the incident (and scattered) light. As a result, a sub-
stantial fraction of the Raman signal detected in LC
�lms originates from the material close to the interface
with the substrate. The broadened Raman line cen-
tered at 280 cm�1 is attributed to the scattering from
coupled LO-phonon-plasmon modes in the intermixed
p-type GaAs:Ge layer [6, 7].

The strong intermixing for high pulse 
uencies be-
comes evident in the SIMS pro�les displayed in Fig. 3,
which were recorded on an a-Si/a-Ge multilayer before
[Fig. 3(a)] and after LC [Fig. 3(b)]. The SIMS experi-
ments were performed using oxygen as the primary ion

beam. The dashed vertical lines indicate the original
position of the Si0:25Ge0:75/ GaAs interface, located ap-
prox. 100 nm below the surface. The modulation of the
Ge and Si concentrations in the as-grown multilayer is
evident in Fig. 3(a). This modulation disappears as the
individual Si and Ge layers completely intermix during
LC, giving rise to a homogeneous c-Si0:25Ge0:75 �lm
[Fig. 3(b)]. The pro�les also show a strong interdif-
fusion of Ga into the c-Si0:25Ge0:75 �lm and a much
less pronounced di�usion of Ge and Si into the sub-
strate. Arsenic di�usion (not shown) was also observed
in SIMS pro�les measured with a cesium primary ion
beam.

IV Conclusions

In conclusion, we have studied the structure of LC SiGe
alloys grown on (001) GaAs substrates. Epitaxial �lms
with a thickness of 100 nm were obtained for Si con-
centrations up to 25%. Higher Si concentrations lead
to polycrystalline �lms.
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