
Brazilian Journal of Physics, vol. 32, no. 2B, June, 2002 641

The Plethysm Technique Applied to the

Classi�cation of Nuclear States

J.A. Castilho Alcar�as

Instituto de F��sica Te�orica, UNESP, 01405-900, S~ao Paulo, Brazil

J. Tambergs, T. Krasta, J.Ru�za,

Nuclear Research Center, LV-2169, Salaspils, Latvia

and O. Katkevi�cius

Institute of Theoretical Physics and Astronomy, 2600 Vilnius, Lithuania

Received on 7 August, 2001

A short summary of the theory of symmetric group and symmetric functions needed to follow the

theory of Schur functions and plethysms is presented. One then de�nes plethysm, gives its properties

and presents a procedure for its calculation. Finally, some aplications in atomic physics and nuclear

structure are given.

I. Introduction

The plethysm operation was introduced by

Littlewood[14] in 1936 as a third type of Schur

function[5, 6] multiplication and only later on it has

received this name.

Plethysms play a fundamental role in Physics when-

ever one applies group theory and can lead to remark-

able simpli�cation in the theory of complex spectra.

Although plethysms have been extensively studied

by matematicians in the past [12]-[20] and even nowa-

days, surprisingly, with rare exceptions[2, 3, 35, 38] this

powerful technique has been unrecognized by physicists.

The main reason of this work is to present this pow-

erful technique to the theoretical physicists comunity

and show how it can be very useful. Basically its utility

relies in the determination of the branching rules of irre-

ducible representations (irreps) of a continuous group

when considered as irreps of one of its subgroups, a

very common situation when one applies group theory,

in particular in the classi�cation of states of a physical

system of identical particles.

II. Schur Functions and Plethysms

In this section we will initially introduce the basic

notions of the symmetric group S(n) needed to the un-

derstanding of the notation used in the plethysm the-

ory. Later we will de�ne plethysm, expose its proper-

ties, give general results and show how is it possible to

compute plethysms of a given degree exploiting these

general results and properties.

II.1 Basic Notions of Symmetric Group and

Schur Functions

The symmetric group S(n) is the group of permu-

tations of n objects and has n! elements. Each element

is denoted by

P =

�
1 2 3 ... n
p1 p2 p3 ... pn

�
(1)

with the meaning that the element 1 is replaced by p1,

the element 2 by p2 and so on, p1; p2; :::; pn being a

permutation of 1; 2; :::; n.

A permutation that changes m � n object ciclicaly

is called cicle of length m. Permutations with the same

cicle structure belong to the same conjugation class. By

this reason the classes of S(n) are labeled by the cicle

structure of their elements. In this way, a generic class

(�) is written as (�) � (1�1 ; 2�2; :::) with the meaning

that their elements have �1 cicles of length 1, �2 cicles

of length 2, and so on.

A partition [�] of n is a set of n integers [�] �
[�1; �2; :::; �n] satisfying the relations

�1 � �2 � ::: � �n;

with

�1 + �2 + :::+ �n = n: (2)

In general one omits the �i 's equal to zero and expo-

nents the repeated ones. As an example [31] � [310:::0];
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[2213] � [221110:::0]. We will denote by Greek letter a

generic partition and by latin letter a particular one.

As example, [n] � [n0:::0], [p; q] � [p; q; 0:::0].

To a given partition [�] one associates a Young dia-

gram that consists in a �gure with �1 boxes in the �rst

line, �2 in the second, and so on. Due to this associ-

ation, its is usual to refer to the �i 's as the rows of

[�].

When one �lls these diagrams with the numbers

1; 2; :::; n in such a way that the numbers in the boxes

grow from left to right and from up to down they are

called standard (or regular) Young tableau. When in

the �lling process the numbers in the rows only not de-

crease being allowed to repeat but in the columns they

continue to grow, the tableau is called strict-column

tableau.

Given the partition [�] = [�1; �2;:::; �p; 0; :::; 0] one

de�nes its conjugate partition by

[e�] = �p�p ; (p� 1)�p�1��p ; :::; 2�2��3 ; 1�1��2
�
: (3)

The Young diagram of [e�] is obtained from the one of

[�] by interchanging rows by columns.

Given n quantities �1; �2; :::�n it is possible to

de�ne three types of symmetric functions built with

them[1]: ar; hr and sr.

The functions ai are those that appear in the ex-

pansion of the polynomial with roots �1; �2; :::�n as

nY
i=1

(x� �i) =
nX

r=0

(�)rarxn�r (4)

The �rst three of them are given by

a1 =
X
i

�i; a2 =
X
i<j

�i�j ; a3 =
X

i<j<k

�i�j�k; (5)

that is, each ai is the sum of all linearly independent

products of r quantities � without repeated indices.

The functions hr are de�ned by the expansion

1Qn
i=1(1� �ix)

=

1X
r=0

hrx
r; (6)

resulting that each hr is the sum of all linearly indepen-

dent products of r quantities � allowing for repeatings.

It follows from (4)- (6) that the �rst hr 's are

c

h0 = 1; h1 = a1 =
X
i

�i; h2 = a21 � a2 =
X
i

�2i +
X
i<j

�i�j ;

h3 = a3 � 2a1a2 + a31 =
X

i<j<k

�i�j�k +
X
i<j

(�i�
2
j + �2i�j) +

X
i

�3i :

The functions sr are de�ned as the sums of the r-products of the �'s �.e.,

sr =

nX
i=1

(�i)
r: (7)

Given a matrix A of dimension n� n one de�nes its immanant jAj[�] by the relation

jAj[�] =
X
P

�[�](P )a1p1a2p2 :::anpn ; (8)

where �[�](P ) is the character of the permutation P (with components p1; p2; :::; pn) in the irrep [�] of S(n).

Since in the irrep [1n] the character of a given permutation is its parity, jAj[1n] is the determinant of A. Similarly,
jAj[n] is its permanent.

The Schur function f�g of degree r = �1 + �2 + �3 + ::: + �n in the quantities �1; :::; �n is de�ned in terms of
immanants as

f�g = 1

r!
jZrj[�] (9)

where Z is the matrix
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Zr =

0BBBBBB@
s1 1 0 0 ... ... ... 0
s2 s1 2 0 ... ... ... 0
s3 s2 s1 3 0 ... ... 0
... ... ... .. ... ... ... 0
sr�1 sr�2 ... ... ... ... s1 r-1
sr sr�1 ... ... ... ... s2 s1

1CCCCCCA : (10)

For the symmetric and antisymmetric partitions the Schur functions assume very simple expressions, namely,

frg = hr and f1rg = ar : (11)

As example, we give below the explicit expressions of the Schur functions of degree r=3:

f3g =
1

6
(s31 + 3s1s2 + 2s3) =

X
i<j<k

�i�j�k +
X
i<j

(�i�
2
j + �2i�j) +

X
i

�3i � h3,

f21g =
1

3
(s31 � s3) = 2

X
i<j<k

�i�j�k +
X
i<j

(�i�
2
j + �2i�j) , (12)

f13g =
1

6
(s31 � 3s1s2 + 2s3) =

X
i<j<k

�i�j�k � a3 .

d
Using the explicit expressions of immanants in the

de�nition of the Schur function one obtains the relation

f�g = 1

r!

X
�

n(�)�[�](�)s�11 s�22 ::: (13)

which gives the fundamental link between Schur func-
tions and characters of the symmetric group. In the
equation above the sum is over the classes (�) �
(1�1 ; 2�2 ; :::) and n(�) is the number elements of class
(�).

Schur functions of degree r0 can be \multiplied" by
Schur functions of degree r00 in 3 di�erent ways and
in each of them the \product" is expressed as a linear
combination of Schur functions all of the same degree
r000.

These 3 types of multiplication are:
1) Inner(or direct) product: f�0g � f�00g =P

�000 �(f�0g � f�00g ! f�000g)f�000g,
2) Outer product: f�0gf�00g =P�000 �(f�0gf�00g !

f�000g)f�000g,
3) Plethysm: f�g 
 f�00g =

P
�000 �(f�g 
 f�00g !

f�000g)f�000g,

where �(:::) is a non-negative integer denoting the
multiplicity of f�000g in the expansion. For clarity we
attach to it an argument denoting the kind of operation
that produced it.

In the inner product the degrees of the Schur func-
tions involved are all equal, i.e., r000 = r0 = r00 = n,
and the expansion coeÆcients � are the coeÆcients of
reduction of the Kronecker product of S(n) irreps [�0]
and [�00].

In the outer product one has r000 = r0 + r00 and
the coeÆcients � are obtained simply by making the
product of a Schur function in variables (x1; x2; :::; xn0)
by another in variables (y1; y2; :::; yn00 ) and expressing
it as a linear combination of Schur functions in vari-
ables (z1; z2; :::; zn000) with zi = xi for 1 � i � n0 and
zn0+i = yi for 1 � i � n00. Littlewood obtained a proce-
dure to �nd the coeÆcients of the outer product known
in the literature as \Littlewood's rules".

One �nds in the literature[1],[3],[37] tables of outer
products for n0+n00 = 1; 2; :::; 14. Tradicionally such ta-
bles are organized as the table given below for n0+n00 =
5 .

f5g f41g f32g f312g f221g f213g f15g
f4gf1g 1 1 f14gf1g
f31gf1g 1 1 1 f212gf1g
f22gf1g 1 1 f22gf1g
f3gf2g 1 1 1 f13gf12g
f21gf2g 1 1 1 1 f21gf12g
f13gf2g 1 1 f3gf12g

f15g f213g f221g f312g f32g f41g f5g
Table I: All outer products that produce Schur functions of degree 5.
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The numbers in the internal part of the table
give the multiplicity of the Schur functions f�000g that
appear in the decomposition of the outer product
f�0gf�00g and the empty boxes mean zero. The Schur
functions in the upper edge correspond to the products
that appear in the left edge while the ones of the bot-
tom edge correspond to the products that appear in the
right edge.

Plethysms will be considered in the next subsection.

II.2 Invariant Matrices and Plethysms

Let A � (aij) be a nonsingular matrix of dimension
n� n representing the linear inversible transformation
A of one point X in a point X 0 of a n-dimensional vec-
tor space. In terms of coordinates one has

[X 0 ] = A[X] (14)

where [X ] = [x1;x2; :::; xn]
T and [X 0] =

[x01; x
0
2; :::; x

0
n]
T are column vectors in the coordinates

of X and X 0. One can construct (
n+r-1
r

) homoge-

neous products of degree r in the coordinates xi of X :

xr11 x
r2
2 :::x

rn
n ; ri � 0;

nX
i=1

ri = r: (15)

Each of those products transforms, under the trans-
formation A, into a linear combination of themselves.
De�ning a column vector [X ]r whose components are
those products enumerated in an arbitrary way, its
transformed under A can be written as

([X ]r)0 = A[r][X ]r; (16)

what de�nes a matrix A[r] called the r-induced matrix
of the matrix A . The elements of A[r] are clearly ho-
mogeneus polynomials of degree r in the components of
A.

Making the same operation with a nonsingular n�n
matrix B one obtains B[r] . If C = AB, then it can be
proved that

C [r] = (AB)[r] = A[r]B[r] (17)

what means that the set of matrices D[r](A) � A[r]

is a (
n+r-1
r

)-dimensional representation of the group

GL(n) of the nonsingular matrices of dimension n� n.

As example, one has for r = 2:

c

x 0
ix

0
j =

X
k;l

aikajlxkxl =
X
k

(aikajk)x
2
k +

X
k<l

(aikajl + ailajk)xkxl (18)

what implies in

A
[2]
(ij)(kk) = aikajk ; i � j; A

[2]
(ij)(kl) = aikajl + ailajk; i � j; k < l .

For n = 2 and choosing the ordering (x21; x1x2; x
2
2) one has

A[2] =

0@ a211 2a11a12 a212
a11a21 (a11a22 + a12a21) a12a22
a221 2a21a22 a222

1A ; n = 2 . (19)

It should be noticed that the trace of A[2] is

tr
�
A[2]

�
= a211 + a222 + a11a22 + a12a21 = �21 + �22 + �1�2 = h2 = f2g(�);

where f2g(�) is the Schur function f2g computed with the eigenvalues of A.
For any other nonsingular 2�2 matricesB;C;D; ::: one can construct their second induced matricesB[2]; C [2]; D[2]; :::

as the matrices whose components are the same polynomials of degree 2 of A in which now the variables are the
corresponding elements of matrices B;C;D; ::: . It is immediate to prove, by hand calculation, that

A[2]B[2] = (AB)[2]; 8 A;B; 2� 2

what agrees with Eq.(17). Let us take now r(< n) copies of the vector X and build the (
n
r

) determinants

d(e1e2:::ep) =

���������
x
(1)
e1 x

(2)
e1 ::: x

(r)
e1

x
(1)
e2 x

(2)
e2 ::: x

(r)
e2

::: ::: ::: :::

x
(1)
er x

(2)
er ::: x

(r)
er

���������
; 1 � e1 < e2 < ::: < er � n. (20)
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If each X(s) is transformed by the same transformation A, these determinants will transform linearly among
themselves by the relation

[d] 0 = A(r)[d] (21)

where [d] is the column vector whose components are the d(e1e2:::er) enumerated in an arbitrary way. Relation (21)

de�nes the matrix A[r], the rth compound matrix of A. It follows from this de�nition that the matrix elements of
A(r) are the minors of degree r of the original matrix A.

If C = AB, then one can also demonstrate that

C(r) = (AB)(r) = A(r)B(r). (22)

As example, for r = 2 one has

deiej
0 =

����� x(1)ei x
(2)
ei

x
(1)
ej x

(2)
ej

����� =
�����
P

k aeikx
(1)
k

P
k aeikx

(2)
kP

l aej lx
(1)
l

P
l aej lx

(2)
l

����� =
=

X
k;l

����� aeikx(1)k aeikx
(2)
k

aej lx
(1)
l aej lx

(2)
l

����� =X
k<l

���� aik ajk
ail ajl

���� dekel .
Then, for n = 2 one has

A(2) = a11a22 � a12a21 = det (A) , n = 2 . (23)

For n = 3, with the ordering d12; d13; d23 one has

A(2) =

0@ a11a22 � a12a21 a11a23 � a13a21 a11a23 � a13a23
a11a32 � a12a31 a11a33 � a13a31 a12a33 � a13a32
a21a32 � a22a31 a21a33 � a23a31 a22a33 � a23a32

1A ; n = 3. (24)

d

If C = AB then, again by hand calculation, one can
prove that

C(2) = (AB)(2) = A(2)B(2) . (25)

The r-induced and r-compound matrices are par-
ticular cases of invariant matrices whose de�nition are
given in the following.

Let T (A) be a matrix whose elements are polyno-
mials tij having as variables the matrix elements of A.
Let T (B) be a matrix built with the same polynomials
of T (A) now in the matrix elements of B. If

T (A)T (B) = T (AB) (26)

for any nonsingular n�n matrices A;B then the matrix
T (A) is called a invariant matrix of A.

It follows from (26) that, once the set of polynomi-
als tij is �xed, the set of matrices DT (A) � T (A) is a
representation of GL(n).

A trivial case is the 1-induced matrix. In this case
one has tij = aij and A[1] � A. As it is known, the
trace of A is the sum of its eigenvalues �i, that is,

tr(A) =
X
i

�i = a1(�) = f1g(�) (27)

where f1g(�) is the Schur function f1g calculated with
the eigenvalues of A. This will be, by de�nition, D[1].

Since the Kronecker product of two representations
is also a representation and the product of two polyno-
mials is also a polynomial, it follows that the kronecker
product of two invariant matrices is also an invariant
matrix.

Littlewood[1] showed that if the product of two in-
variant matrices is reducible, then it will be totally re-
ducible. This allows us to obtain new irreps by taking
multiple Kronecker products of the irrep D[1] and re-
ducting them by similarity transformations.

As a sake of example, let us take n = p = 2. In
this case one has A[2] and A(2) given by (19) and (23).
Writing A�A in the form

A�A =

0BB@
a11a11 a11a12 a12a11 a12a12
a11a21 a11a22 a12a21 a12a22
a21a11 a21a12 a22a11 a22a12
a21a21 a21a22 a22a21 a22a22

1CCA
one veri�es that
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c

M�1(A�A)M =

0BB@
a211 2a11a12 a212 0

a11a21 a11a22 + a12a21 a12a22 0
a221 2a21a22 a222 0
0 0 0 a11a22 � a12a21

1CCA
= A[2] +A(2)

d

with

M =

0BB@
1 0 0 0
0 1 0 �1
0 1 0 1
0 0 1 0

1CCA .

This shows that, for n = 2, A[1] �A[1] reduces into
A[2] +A(2).

For r = 2 and any n one has (
n+2-1
2

) + (
n
2

) =

n2. Since tr(A�A) = (tr(A))2 this drives us to suppose
that

A[1] �A[1] = A[2] +A(2)

for any n, what turns out to be true since the Kro-
necker product of two matrices can be decomposed in
a symmetric and an antisymmetric part relative to the
components of the �rst and second factor matrices.

An analogous analysis can be done for the r-
Kronecker product M �M � ::: �M . Based in this
analysis, Schur[4] demonstrated that \If A is an n� n
matrix, there are as many irreducible invariant matri-
ces of A of degree r as are the partitions of r with no
more than n parts and the trace of them are the Schur
functions of degree r in the eigenvalues of A."

Those irreducible matrices can then be labeled by
the possible partitions of r in no more than n parts. In
this notation one writes A(r) � A[1r]. Clearly, for r > n
only the irreps with up to n rows are realizable.

The details of the e�ective construction of an irre-
ducible invariant matrix corresponding to a given par-
tition can be found in Refs[8], [14].

Using the components of the Schur functions to la-
bel the GL(n) irreps, the above result shows that

\ The GL(n) irreps can be labeled by
[m1n;m2n; :::;mnn] where the min satisfy the relations
min � mi+1n ; 1 � i � n and the trace of each element
A of GL(n) is the Schur function fm1n;m2n; :::;mnng
evaluated with the eigenvalues of A ."

Since the GL(n) irreps do not reduce under the re-
striction GL(n)! U(n) the same result holds for U(n).

Let T 0 and T 00 be two representations of GL(n) by
invariant matrices. From (26) it follows that

T 00(T 0(AB)) = (T 00(T 0 (A))(T 00(T 0 (B)). (28)

Since the product of two polynomials is also a poly-
nomial, it follows that any invariant matrix of an in-
variant matrix is also an invariant matrix of the orig-
inal matrix and therefore can be expressed as a direct
sum of irreducible invariant matrices. This allows us to
write

[A[�]][�] =
X
�

����A
[�]: (29)

Let us denote by r�; r� e r� the degrees of [�]; [�] and
[�] . Since A[�] is obtained by the reduction of the r�-
ple Kronecker product of A and, by its turn, [A[�]][�] is
obtained reducing the r� -ple Kronecker product of A

[�]

it follows that the irreps that appear in the RHS of (29)
have degree r� = r�r� .

Since the trace of an irreducible invariant matrix is
equal to the Schur function of the correponding par-
tition, Eq.(29) allows us to stablish a correspondence
f�g 
 f�g between two Schur functions f�g of degrees
r� and r� with Schur functions f�g of degree r�r� given
by

f�g 
 f�g =
X
�

����f�g; (30)

where the coeÆcients ���� are given by (29).

This correspondence was descovered by
Littlewood[14] and later was named plethysm.

The plethysm operation has the properties[3],[2],

c

[14]

f�g 
 (f�g 
 f�g) = (f�g 
 f�g)
 f�g, (31)
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f�g 
 (f�g � f�g) = f�g 
 f�g � f�g 
 f�g, (32)

(f�g+ f�g)
 f�g =
X
�0�00

�(f�0gf�00g ! f�g)(f�g 
 f�0g) �

� (f�g 
 ff�00g). (33)

(f�g � f�g)
 f�g =
X
�0 �00

(�)r00�(f�0gf�00g ! f�g)(f�g 
 f�0g) �

�(f�g 
 f~�00g) (34)

f�g 
 (f�gf�g) = (f�g 
 f�g)(f�g 
 f�g) (35)

(f�gf�g)
 f�g =
X
�0 �00

�(f�0g � f�00g ! f�g)(f�g 
 f�0g) �

�(f�g 
 f�00g) (36)

(f�g 
 f�g)T =

(
fe�g 
 f�g; for r� even,

fe�g 
 fe�g; for r� odd.
(37)

The sum in Eq.(33) includes the cases f�0g = f0g � 1, f�00g = f�g and f�0g = f�g, f�00g = f0g � 1. Symilarly
in Eqs(34) and (36). Also, r 0 0 and r� are the degrees of f� 0 0g and f�g.

In Eq.(37) we used the notation "X
i

aif�(i)g
#T

=
X
i

aife�(i)g; (38)

d

where ai are numerical factors, f�(i)g Schur functions

and fe�(i)g their conjugate.
There is also a dimension formula [2],[3],[33]

df�g
f�g �
X
�

�(f�g
f�g ! f�g)d[�] = (rs)!

(r!)ss!
(d[�])

sd[�] ,

(39)
where r and s are the degrees of [�] and [�] and d[�] is
the dimension of the irrep [�] of S(degree of [�]) .

Up to now we have seen plethysms of Schur func-
tions of GL(n). One can obtain plethysms of contin-
uous subgroups G of GL(n) simply by expressing the
irreducible characters of G in terms of Schur functions
and then computing the plethysm of Schur functions.
If necessary, the result can be re-expressed in terms of
the irreducible characters of G. This will be done when
we will consider the applications.

In the case of G = S(n), a �nite subgroup of GL(n)
of great importance in the study of systems of identi-
cal particles, this process involves the concept of inner
plethysm which we shall consider in the following.

As we have seen previously, the inner product
f�g � f�g of two Schur functions of the same degree
r corresponds to the Kronecker product of two irreps

[�] and [�] of S(r). The case f�g � f�g can be anal-
ysed in its symmetric and antisymmetric constituents.
The Kronecker product M �M of a matrix M by itself
decomposes as

M �M
:
=M [2] uM [12]: (40)

Taking by M the matrix that represents a given
permutation of S(n) in the irrep [�], correpondently,
the expression f�g � f�g can be analized in two parts,
denoted by f�g � f2g and f�g � f12g. The operation
denoted by the symbol � is called inner plethysm[13]
and will be de�ned in the following.

Let Mi be a matrix of a generic permutation Pi of
S(n) and �[�](Pi) its trace. Then the invariant matrix

of Mi associated to the partition [�], that is, M
[�]
i , also

represents the element Pi and its trace is a compound
character, say,

tr(M
[�]
i ) =

X
�

G����
[�](Pi) . (41)

One de�nes f�g � f�g, the inner plethysm of par-
titions f�g and f�g of degrees n and m, as a linear
combination of partitions f�g of degree n with coeÆ-
cients given by Eq.(41), that is,

c

f�g � f�g =
X
�

G���f�g : (42)
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Notice that although the degree of partitions [�] and [�] is n, there is no restriction concerning the degree of
partition [�] .

The inner plethysms have properties analogous to those of plethysms, roughly changing outer products of Schur
functions by inner products, that is,

(f�g � f�g)� f�g = f�g � (f�g � f�g) ;

f�g � (f�g+ f�g) = f�g � f�g+ f�g � f�g ;

(f�g+ f�g)� f�g =
X
��

�(f�gf�g ! f�g)(f�g � f�g)� (f�g � f�g) ,

f�g � (f�gf�g) = (f�g � f�g)� (f�g � f�g) ; (43)

(f�gf�g)� f�g =
X
��

�(f�g � f�g ! f�g)(f�g � f�g)� (f�g � f�g) .

III. Plethysms Calculation

In [3] one �nds the following expression for calculation of plethysm:

f�0g 
 f�00g =
X
(�00)

n00(�00)

r00!
�[�

00](�00)(S001 )
�001 (S002 )

�002 :::(S00
n00
)�

00

n00 , (44)

where
r0 and r00 are the f�0g and f�00g degrees, (�00) = (1�

00

1 ; 2�
00

2 ; :::) are the S(r00) classes and n00(�00) their number of
elements,

S00i =
X
[�]ir0

f�gin0
X
(�0)

n0(�0)

r0!
�[�

0](�0)�[�]ir0 (�0(�
0)) , (45)

�0(�
0) is the S(ir0) class with �01 cicles of length 1, �02 cicles of length 2, etc.

The Schur functions f�000g, having degree r000 = r0� r00 , which enter in the plethysm are obtained after reducing
the outer products of Schur functions inside the S00i . For small values of r000 it is possible to construct plethysms
tables with the same organization of the tables of outer products. One has, as an example, for r000 = 6 the table
below

f6g f51g f42g f412g f32g f321g f313g f23g
f2g
f3g 1 1 1 f12g 
 f3g
f2g
f21g 1 1 1 f12g 
 f21g
f2g
f13g 1 1 f12g 
 f13g
f3g
f2g 1 1 f13g 
 f12g
f3g
f12g 1 1 f13g 
 f2g
f21g
f2g 1 1 1 1 f21g
f12g

f16g f214g f2212g f313g f23g f321g f412g f32g

Table II: All plethysms that produce Schur functions of degree 6 .

In [3] one can �nd plethysms tables for r000 up to 10. Ibrahin [15],[16] published tables with r000 = 12; 14 and 15.
Notice that such tables exist only for r000 nonprime. Partial tables were published in [2] and [21].

For great values of r000 the use of (44) is unpractical, then the need for alternative formulas. For some particular
cases of f�0g and f�00g there exist explicit (or almost) formulas easy to use. They are the following:

f�g 
 f1g = f1g 
 f�g = f�g ; (46)

f�g 
 f0g = f0g; f0g 
 f�g = Æf�g;fr�gf0g; (47)

frg 
 f2g =

[r=2]X
i=0

f2r � 2i; 2ig , (48)
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frg 
 f12g =

[(r+1)=2]X
i=1

f2r � (2i� 1); (2i� 1)g ; (49)

f2g 
 frg =
X
�

f�geven ; (50)

f12g 
 frg =
X
�

^f�geven ; (51)

f1rg 
 f2g = f12rg+
[r=2]X
i=1

f22i; 12r�4ig , r even, (52)

f1rg 
 f12g = f12rg+
[r=2]X
i=1

f22i; 12r�4ig , r odd (53)

f1rg 
 f12g =

[(r+1)=2]X
i=1

f22i�1; 12r�2(2i�1)g , r even, (54)

f1rg 
 f2g =

[(r+1)=2]X
i=1

f22i�1; 12r�2(2i�1)g , r odd, (55)

d

Eq.(46) follows from plethysms de�nition while
Eq.(47) is set for consistency. In Eq.(50), f�geven
means partition of 2r with all lines even. Eqs.(54) and
(55) follow from Eqs.(48) and (49) by conjugation[ see
Eq.(37).].

In [21] there are formulas for the calculation of
plethysms f�g 
 f�g when both Schur functions are
symmetric or/and antisymmetric. To explain them we
need the following de�nition: a k-border strip of a given
Young diagram [�] is a sequence of k squares in which
the �rst of them is the last one of the �rst line of [�]

and the next square to a given one is the one below it,
if it exists, or the one to its left, otherwise.

For example, the 3-border strips of [412]; [321] and
[2212] are the squares with the symbol � in the �gures
below, respectively:

� � �

,
� �

� ,

�

� �
.

When f�g and f�g are both symmetric, one has

c

fng 
 fmg = 1

m

mX
k=1

fng(xk)(fng 
 fm� kg); m � 1; (56)

with

fng(xk) =
X
�

Cn;k;�f�g: (57)

In (57) the f�g are all Schur functions of degree nk. The coeÆcients Cn;k;� are obtained from the Young diagram
associated to f�g removing, in sequence, n k-border strips. If in all steps the resulting diagram be regular then

Cn;k;� = (�)l (58)

with l=(number of lines in the k-border strips) �n. If in any step the resulting diagram be not regular, then
Cn;k;� = 0. As example, from the �gures above one has

C2;3;f412g = (�)4�2 = 1; C2;3;f321g = (�)5�2 = �1; C2;3;f2212g = 0 .

The coeÆcient C2;3;f2212g is zero because after removing the �rst 3-border strip the resulting diagram corresponds
to f�0g = f1; 0; 12g, being therefore not regular.
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Eq.(56) allows one to relate the plethysm of two symmetric Schur functions with the plethysms of symmetric
Schur functions of smaller degrees. In this way, using fng 
 f1g � fng as starting point one computes all the
plethysms of type fng 
 fmg .

Using the result

f1mg = (�)m+1fmg+
m�1X
k=1

(�)k+1fkgf1m�kg; m � 1 (59)

and Eqs.(32) one obtains

fng 
 f1mg = (�)m+1fng 
 fmg+
m�1X
k=1

(�)k+1(fng 
 fkg)(fng 
 f1m�kg) (60)

f1ng 
 f1mg = (�)m+1f1ng 
 fmg+
m�1X
k=1

(�)k+1(f1ng 
 fkg)(f1ng 
 f1m�kg) (61)

For f1ng 
 fmg one uses
f1ng 
 fmg =

(
[fng 
 fmg]T ; for n even,

[fng 
 f1mg]T ; for n odd.
(62)

In this way, using (56) and (60)-(62) one computes plethysms with both Schur functions symmetric and/or
antisymmetric.

The cases in which f�gf�g has a closed and simple expression allow us to compute, using (32) and (35) relations
also closed for the corresponding plethysms. In this way, from

fpgfqg =
qX

i=0

fp+ q � i; ig; p � q (63)

one obtains fp; qg = fpgfqg � fp+ 1; q � 1g. From this equation, using (32), (35) and iterating one obtains

f�g 
 fp; qg =
qX

i=0

(�)i(f�g 
 fp+ ig)(f�g 
 fq � ig); (64)

what allows us to express a plethysm with a two-row Schur function at right in terms of plethysms with symmetric
Schur functions at right.

In an analogous way, from

f1pgf1qg =
qX

i=0

f2q�i; 1p�q+2ig; p � q; (65)

one obtains

f�g 
 f2q; 1p�qg = (f�g 
 f1pg)(f�g 
 f1qg � f�g 
 f1p+1g)(f�g 
 f1q�1g; (66)

what express a plethysm with a two-column Schur function at right in terms of plethysms with one-column Schur
functions at right.

An analogous procedure is used to compute plethysms with Schur functions at left with mixed symmetry using
(33), (35) and (36). Due to the more complex nature of these equations as compared with that for Schur functions
to the right the calculation is more complicated.

When the degree n of the Schur function at left is a compound integer one can use the tables of plethysms with
�nal degree n to obtain relations in general simpler than the one here exposed. As example, from f2g
f12g = f31g
one obtains

f31g
 f�g = (f2g 
 f12g)
 f�g = f2g 
 (f12g 
 f�g)
and also f212g 
 f�g by conjugation.

d
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A very common situation which arrises in applica-
tions is when one needs to compute plethysms of a same
Schur function by many (sometimes all) Schur functions
of a given degree to the right.[ This is the case of the
application that we will make in Section 4.] For such
cases we present the following algorithm that allows to
compute, in a build up way, all plethysms f�g 
 f�gm
with f�g a �xed Schur function and f�gm all Schur
functions of degree m, once the plethysms f�g 
 fmg

and f�g
f�gm0, with m0 < m have already been com-
puted :

1) Find all partitions of m and order them in de-
scending order of their components read from left to
right;

2) For each partition f�g = f�1; �2; :::; �t; 0; :::; 0g
perform the outer product
f�1; �2; :::; �t�1gf�tg, order the irreps in the reduction
as in item (1), then use Eqs.(32) to obtain the equation

c

f�g 
 f�g = (f�g 
 f�1; �2; :::; �t�1g)(f�g 
 f�tg)�X
f�0g�f�g

�(f�1; �2; :::; �t�1gf�tg ! f�0g)f�g 
 f�0g (67)

d

where the symbol � means preceding, following the or-
dering in item 1).

Since f�1; �2; :::; �t�1g and f�tg have smaller degree
than f�g, the plethysms f�g 
 f�1; �2; :::; �t�1g and
f�g
f�tg have already been computed in the induction
process. On the other hand, the plethysms f�g 
 f�0g

also have been computed since f�0g precedes f�g.
As an example of the procedure suggested above,

we list below the sequence of equations [obtained from
Table I] that allows us to compute f�g 
 f�g for all
Schur functions f�g with degree 5, once f�g
 f5g and
the plethysms with total degree less than 5r� be known.

c

f�g 
 f5g = input,

f�g 
 f41g = (f�g 
 f4g)f�g � f�g 
 f5g;
f�g 
 f32g = (f�g 
 f3g)(f�g 
 f2g)� f�g 
 f5g � f�g 
 f41g;
f�g 
 f312g = (f�g 
 f31g)f�g� f�g 
 f41g � f�g 
 f32g;
f�g 
 f221g = (f�g 
 f22g)f�g � f�g 
 f32g; (68)

f�g 
 f213g = (f�g 
 f12g(f�g 
 f2g)� f�g 
 f312g;
f�g 
 f15g = (f�g 
 f13g)(f�g 
 f12g � f�g 
 f213g � f�g 
 f221g:

d

Since fng 
 f5g one obtains from (56), we use it to
obtain all the plethysms fng 
 f�g of degree nm. For
security sake, we recommend to make a dimension test
using (39) for all new plethysm obtained.

IV. Applications

In applications of group theory to problems of nu-
clear and atomic spectroscopy we are frequently led to
consider the decomposition of characters of irreps of a
group that acts over an n-dimensional vector space into

those of one of its subgroup. The subgroup can also act
over a n-dimensional vector space but in a restricted
way. It can also be the direct product of two groups
that act over n1- and n2- dimensional vector subspaces
of the original space. As example, Sp(4` + 2) !
SU(2) � R(2` + 1); R(2` + 1) ! R(3); R(6) ! R(5)
and GL(2)! R(3) have many applications in the the-
ory of complex spectra [ We will use the notation U for
unitary, O for orthogonal, R = O+ = SO for unimodu-
lar orthogonal or rotation, Sp for symplectic and GL for
general linear groups.]. The algebra of plethysms give
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a simple and complete solution to this problem.
This solution is based in the theorem[2]
If under the restriction G ! H the character [�1 ]�

of group G decomposes as

[�1 ]� = (� � )�+ (� � )�+:::+ (� ! )� (69)

then the character [�� ]� of G decomposes into the char-
acters (�� )� of H according to the characters contained
in the plethysm

[ (� � )�+ (� � )�+:::+ (� ! )� ]
 [�� ]� : (70)

This plethysm can be obtained expressing the char-
acters of G and H in terms of characters of GL(n),
computing the resulting plethysms of GL(n) characters
and re-expressing the result in terms of characters of H
in order to obtain the �nal result.

Using the association irrep $ character this theo-
rem gives us the coeÆcients of the reduction of the irrep
[�� ]� of G in the direct sum of irreps (�� )� of H .

Let us consider now some illustrative examples of
the appplications of the theorem. To this end we list
below the decomposition of the character [�1]� of G in
terms of characters[2] (�� )� of H :

c

U(n) ! U(n-1): f1g=f1g+f0g;
U(4`+ 2) ! SU(2)�O+(2`+ 1) : f1g=[ 12 ]0(1);
O+(8`+ 4) ! SU(2)�Sp(4`+ 2) : (1)=[ 12 ]

0 < 1 >;
Sp(4`+ 2) ! SU(2)�R(2`+ 1) : < 1 >= [ 12 ]

0(1);
O+(2`+ 1) ! O+(3) : (1)=(`);
O+(6) ! O+(5) : (1)=(1)+(0);
GL(2) ! O+(3) : f1g=(3);
U(n) ! O(n): f1g=(1);
UST (6) ! US(3) � UT (3): f1g=f1gS f0gT +f0gS f1gT ;
U(nm) ! U(n)�U(m) f1g=f1g0f1g00:

(71)

By the above theorem and the �rst line of (71), in order to obtain the U(n � 1) irreps contained in the U(n)
irrep f�g we must evaluate the plethysm

(f1g+ f0g)
 f�g =
X
�0�00

�(f�0gf�00g ! f�g)(f1g 
 f�0g)(f0g 
 f�00g

=
X
�0n00

�(f�0gfn00g ! f�g)f�0g (72)

d
where use was made of (33),(46) and (47). From Little-
wood's rules, the Schur functions f�0g that can couple
with some symmetric Schur function fn00g to give f�g
are the ones that satisfy

�1 � �01 � :::: � �n�1 � �0n�1 � �n: (73)

Using this result in Eq.(72) one sees that under the
restriction U(n) � U(n� 1) one has the reduction

f�g =
X
�0

f�0g (74)

in which the f�0g are all the U(n� 1) irreps satisfying
Eq.(73).

These are the well known in-betweeness conditions
introduced by Gelfand[34] in the labeling of basis states
of U(n) irreps.

In the last line of (71) one has the case of a reduction
of an irrep of a unitary group into irreps of its subgroup
which is a direct product of one group acting in a set
of variables by another that acts in the remaining ones.
In this case one has the plethysm

c

(f1g0f1g00)
 f�g =
X
�0�00

�(f�0g � f�00g ! f�g)(f1g0 
 f�0g)(f1g00 
 f�00g =X
�0�00

�(f�0g � f�00g ! f�g)f�0gf�00g : (75)
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The inner product f�0g�f�00g in the RHS of (75) re-
quires that the irreps f�0g and f�00g that appear in the
reduction of f�g have both the same degree as the one
of f�g. This result has an important role in application
to Nuclear Physics in the treatment of the spin-isopin
part of a system of nucleons. In this case the basis

functions are labeled by the chain of subgroups

U(4) � U(2)spin � U(2)isospin .

Using (75) it follows that the reduction of an irrep
f�g of U(4) into irreps f�gf�g of U(2)� U(2) is given
by

c

f�g =
�X
� �

�(f�g � f �g ! f�g)f�gspinf �gisospin . (76)

The correspondence with total spin and isospin is given by

S =
1

2
(�1 � �2); T =

1

2
(�1 � �2); �1 + �2 = �1 + �2 = n . (77)

In the treatment of systems of identical particles, in (75) one uses f�g = fng for bosons and f�g = f1ng for
fermions. For these case one has

(f1g0f1g00)
 fng =
X
�

f�g0f�g00;

(f1g0f1g00)
 f1ng =
X
�

f�g0fe�g00;
from what follows the reduction

fng !
X
�

f�g0f�g00; r�0 = r�00 = n; (78)

f1ng !
X
�

f�g0fe�g00; r�0 = r�00 = n; (79)

where we have used the notation f�g0 and f�g00 to denote partitions with no more than n0 and n00 rows, respectively.
Consider, as another example, the reduction of the irrep f1ng U(4`+2) into irreps of SU(2)�O+(2`+1). Using

(70) and (71) one should �rst compute the plethysm ([1=2]0(1))
f1ng. Using the isomorphism between SU(2) and
GL(2) we take [1=2]0 = f1g . Using ( 34 ),

�(f�0g � f�00g ! fng) = Æf�00g;f�0g , �(f�0g � f�00g ! f1ng) = Æ
f�00g;fe�0g (80)

and (46 ), it follows that

(f1g0f1g)
 f1ng =
X
�0�00

�(f�g0 � f�g00 ! f1ng)(f1g0 
 f�g0) �

�(f1g 
 f�g00) =
X
�

f�g0fe�g00 , (81)

where f�g are partitions of n . Since f�g must be expressed in terms of GL(2) irreps, only the irreps f�g of type
fp; qg with p+ q = n contribute. Such irreps are expressed in terms of SU(2) irreps as [(p� q)=2] . One has then,

f1ng !
hn
2

i
f1pg+

X
p>q�1; p+q=n

�
1

2
(p� q)

�
f2q; 1p�qg (82)

where f1pg and f2q; 1p�qg must be expressed in terms of O+(7) irreps. As an example, for n = 3, one has

f13g !
�
3

2

�0
f111g+

�
1

2

�0
f210g =

�
3

2

�0
[111] +

�
1

2

�0
([21] + [1]) (83)
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where use is made of (84) [given below] to express the
U(7) irreps in terms of the ones of O+(7).

In cases in which [�1 ]� = (�1 )�, due to property
(46), the theorem gives a trivial identity being of no
use. It is what happens, for example, in the reduc-
tion U(n) ! O(n). For this case one has the known
result[1, 2, 3]:

\ The character f�g of U(n) decomposes into O(n)
characters (�00) by the relation

f�g =
X
�00

"X
�0

�(f�0gf�00g ! f�g)
#
(�00) (84)

where the sum is made in the irreps f�0g with even
components. " For example,

f0g = (0); f1g = (1); f2g = (2) + (0);

f311g = (311) + (21) + (111):

Using a table of reduction U(n)! O(n) [ One such
a table can be found, for instance, in Ref.[3]. ] one
can obtain the inverse result: to express the characters
of an O(n) irrep (�) in terms of U(n) irreps f�g. A
general procedure to express the characters of O(n) in
terms of those of U(n) is given in Ref.[9]

The plethysm technique can be applied in the var-
ious versions of the Interacting Boson Model(IBM)
which have a very rich algebraic structure. For exam-
ple, in IBM-4 one needs the branching rule for the re-
duction of irreps f�g of UST (6) into irreps f�gf�g of the
semi-direct product US(t) � UT (3) of US(t) by UT (3).
This reduction is obtained using the 9th line of Eq.(71).
Proceeding symilarly to the case U(nm) � U(n)�U(m)
one obtains for this reduction the result

f�gST =
X

f�gSf�gT

�(f�gSf�gT ! f�gST )f�gSf�gT ;

(85)
f�gS and f�gT being U(3) irreps.

IV.1 Aplication in Nuclear Structure

In the traditional nonrelativistic treatment the nu-
cleus is considered as a system of A fermions, the nu-
cleons, with spin and isospin 1=2 and 3 spatial de-
grees of freedom interacting through one- and two-body
forces. The bound states of such system are described
by totally antisymmetric wave functions since its con-
stituents are fermions.

The introduction of Jacobi vectors

c

�!� i =
1p

i(i+ 1)

0@ iX
j=1

�!r j � i�!r i+1

1A ; i = 1; 2; :::; A� 1 , (86)

�!� A =
1p
A

AX
j=1

�!r j (87)

allows us to remove the center of mass and focus attention only to the relative motion described by the translationally
invariant Jacoby vectors �!� 1;

�!� 2; :::;
�!� A�1 .

To describe the bound states of such system we will use as basis the basis functions of irrep [17(A�1)] of U(7(A�
1)) � U (r)(3(A� 1))� U (s)(4(A� 1)): The spin-isospin part is described using the chain

U (s)(4(A� 1)) � U (ST )(4) � U (s)(A� 1)
[ [
U (S)(2)� U (T )(2) O(s)(A� 1)

[
S(s)(A)

(88)

while the space part is described by

U(r)(3(A� 1) � U(3) � U(r)(A� 1)
[ [
O+(3) O(r)(A� 1)

[
S(r)(A) :

(89)
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It follows then the interest in studying the branch-
ing rules of irreps of chains of kind

U(A� 1) � O(A � 1) � S(A): (90)

This notation is a bit misleading since it may raise
the question:how is it possible that the permutation
group of A objects may be a subgroup of a transfor-
mation group of a smaller number A � 1 of objects?
The answer is that the objects are not the same. In
U(A � 1) and O(A � 1) we consider the radial com-
ponents of the A � 1 translationally invariant Jacobi
vectors (86) while in S(r)(A) the objects are the radial
components of the position vectors �!r i. A permutation
of the position vectors �!r i turns out to be a orthogonal

transformation of the translationally invariant Jacobi
vector and therefore one has O(r)(A� 1) � S(r)(A).

Since the basis functions of the irrep f�g of
U (r)(3(A� 1)) are functions only of the coordinates of
the �rst A�1 Jacobi vectors, f�g has to be symmetric.
We then write f�g = fEg . Since the wave functions
of the p-dimensional harmonic oscillator carry the irrep
fEg of U(p), it is usual to associate E to the con�gu-
ration energy of the nuclear states whose space part is
described by wave functions labeled by the chain (89).

This association allows us to stablish a link with
the harmonic oscillator shell model. The basis func-
tions of the irrep fEg could alternatively be labeled by
the chain of subroups

c

U(3(A� 1)) � U (1)(3)� U (2)(3)� :::� U (A�1)(3) (91)

d

in which each link U (i)(3) acts only in the 3 coordinates
of the Jacoby vector �!� i. In this case the irreps asso-
ciated to those U (i)(3) would be all symmetric [E(i)]
and their basis functions would be eigenstates of har-
monic oscillators with energy E(i) = (E(i)+3=2)~! and
it would result

E =

A�1X
i=1

E(i): (92)

The number of linearly independent wave functions
of the 3-dimensional harmonic oscillator with energy

E = (E + 3=2)~! is equal to the dimension of the irrep
fEg of U(3) given by

dimfEg =
1

2
(E + 1)(E + 2) . (93)

In this way, by Pauli principle, in the E shell one can
put at most 4dimfEg = 2(E +1)(E +2) nucleons. The
minimal con�guration energy is obtained by �lling the
shells E = 0(s); E = 1(p); E = 2(s� d); :::; E0 � 1 and
putting the remaining n0 nucleons in the �rst partially
�lled shell E0. The �llled shells(core) will contain

c

ncore(E0) =

E0�1X
E=0

2(E + 1)(E + 2) =
2

3
E0(E0 + 1)(E0 + 2) (94)

nucleons. This equation allows one to �nd, for a given A, the value of E0 as the one for which ncore(E0) � A �
ncore(E0 + 1). Then we will have

Emin =

E0�1X
E=0

4EdimfEg + E0(A�Acore(E0)) = E0A� 1

6
E0(E0 + 1)(E0 + 2)(E0 + 3) . (95)

d

Our aim is to label the states of a system of A nu-
cleons with minimal con�guration energy E = Emin
with the labels given by the unitary chain (89). This
labelling has been extensively used in our applications
of the Restricted Dynamics Model[39].

The U(3(A � 1)) irreps are labeled by E . For
1 � A � 4 one has E0 = 0 and E = 0. For A � 5
we put E = Emin obtained by use of Eqs.(94) and
(95).

The U(3) irreps are labeled by 3 integers
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fE1; E2; E3g that, according to (78) must satisfy

E1 +E2 +E3 = E . (96)

Also, for (78), the U (r)(A � 1) irreps are the same
of U(3), that is, fE1; E2; E3g . Eq.(84) give us the
O(r)(A � 1) irreps contained in the U (r)(A � 1) ir-
rep fE1; E2; E3g. One of them is by sure (E1; E2; E3)
and only this corresponds to states of minimal con�g-
uration energy. This �x us the O(r)(A � 1) irrep as
that of U (r)(A � 1) . It still remains the restriction
O(r)(A� 1)! S(r)(A) .

The U (r)(A� 1) irreps fE1; E2; E3g are all the ones
that satisfy (96) . The Pauli principle, however, im-
poses an additional restriction. The treatment of the
spin-isospin part by the Wigner supermultiplet model
implies that the S(s)(A) irrep [e�] must have at most 4

lines, that is,

[~�] = [~�1; ~�2; ~�3; ~�4] : (97)

Therefore the S(r)(A) irrep [�], being its conjugate,
must have at most 4 columns.

We will see in the following the branching rules in
the chain U(A� 1) � S(A). The reduction of irreps in
the chain O(A�1) � S(A) is obtained by �rst express-
ing the O(A�1) characters in terms of those of U(A�1)
and , after, making the reduction U(A� 1)! S(A) of
the resulting U(A� 1) irreps.

The S(A) irreps contained in the reduction of the
U(A � 1) irrep f�0g are given by the expansion of the
inner plethysm fA�1; 1g�f�0g in terms of S(A) irreps
[Refs.[13, 38]]:

c

fA� 1; 1g � f�0g =
X
�00

V�0�00 [A� r00; �001 ; �
00
2 ; :::; �

00
A�1] (98)

where r00 =
P

i �
00
i is the degree of U(A� 1) irrep f�00g.

To obtain the multiplicity coeÆcients V�0�00 that appear in (98) one needs �rst to de�ne the operators bD and bD
which act on U(A� 1) irreps

The operator bD(f�g) is de�ned by its action over an irrep f�0g:

bD(f�g)f�0g =X
�00

�(f�gf�00g ! f�0g)f�00g . (99)

As example, bD(f2g)f31g = f2g+ f12g .
From the properties of the outer product of Schur functions, it follows that the operators bD satisfy the relations:

bD(f�0g) bD(f�00g) = bD(f�0gf�00g) , (100)bD(f�0g) + bD(f�00g) = bD(f�0g+ f�00g) . (101)

The operator bD is de�ned in term of bD by

bD =
1X

t2=0

X
�t2

1X
t3=0

X
�t3

:::
1X

j2=0

1X
j3=0

:::(f�gt2f�gt3 :::)( bD(f2g 
 f�gt2) �
�( bD(f3g 
 f�t3g):::( bD(f2g 
 fj2g)( bD(f3g 
 fj3g)::: . (102)

The fj2g; fj3g; ::: are symmetric Schur functions and the f�gt2 ; f�gt3 ; ::: are general Schur functions of degrees
t2; t3; ::: .

Denoting by r; r0 and r00 the degrees of f�g; f�0g and f�00g one sees from (99) that the Schur functions f�00g
produced by bD(f�g) when acting in f�0g have degrees r00 = r0 � r . Since r00 must be nonnegative , this limits the

sums in t2; t3; ::: when bD acts in an irrep f�0g .
By property (101) it follows that

bD(fkg 
 f�gtk) = bD X
�00

�(fkg 
 f�gtk ! f�00g)f�00g
!
=X

�00

�(fkg 
 f�gtk ! f�00g) bD(f�00g)
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for each plethysm that appears in (102) . After, by use of (100), the product of bD 's is converted into a single bD
with argument equal to the product of the Schur functions of each factor. Making the outer product of these Schur
functions and using again (101) one can rewrite bD in a form linearized in the bD 's and in the Schur functions:

bD =
X
�0 �00

C�0 �00f�0g bD(f�00g) (103)

the C�0 �00 being only numerical coeÆcients.
In the linearized form of bD one can gather the terms whose bD 's arguments have the same degree, that is,

bD =

1X
i=0

24X
f�gi

 X
�00

C �00f�gif�00g
! bD(f�gi)

35 �
1X
i=0

Æi . (104)

When bD acts over f�0g one obtains

bDf�0g = 1X
i=0

Æif�0g =
1X
i=0

24X
f�gi

 X
�00

C �00f�gif�00g
! bD(f�gi)f�0g

35 . (105)

d

Using (99), performing the outer products, and col-
lecting similar terms one obtains a linear expression in
the Schur functions

bDf�0g =X
�00

V�0 �00f�00g . (106)

This �nal reduction gives us the irreps f�00g and
the numerical coeÆcients V�0 �00 which appear in (98).
The f�00g 's give the S(A) irreps [A� r00; �001 ; �

00
2 ; :::; �

00
A]

present in the reduction of U(A� 1) irrep f�0g and the
V 's are their multiplicities.

From the procedure described above, to obtain the
Æ1 's given in (104) the only tk and jk in (102) that con-
tribute for Æi are the solutions by nonnegative integers
of the equation

1X
k=2

k(tk + jk) = i . (107)

For i = 0 only one solution exists, tk = jk = 0, and
therefore, Æ1 = 0 . For i = 1 there is no solution, then
Æ1 = 0 . For i = 2; 3 and 4 the following results follow:

c

Æ2 = (f0g+ f1g) bD(f2g) , Æ3 = (f0g+ f1g) bD(f3g) ,
Æ4 = (2f0g+ 2f1g+ f2g) bD(f4g) + (f1g+ f12g) bD(f31g) +

+(f0g+ f1g+ f2g) bD(f22g) .
From the de�nition of the bD 0s it follows that Æif�0g = 0 when the degree of f�0g is less than i and, therefore,

it results that

bDf�0gr = (Æ0 + Æ1 + :::+ Ær)f�0gr (108)

for a Schur function of degree r. With the Æ 's listed above one can compute the reduction U(n � 1) ! S(n) for
irreps of degree less or equal to 4:

f0g = [n] ,

f1g = [n� 1; 1] ,

f2g = [n� 2; 2] + [n� 1; 1] + [n] ,

f12g = [n� 2; 12] ,

f3g = [n� 3; 3] + [n� 2; 2] + [n� 2; 12] + 2[n� 1; 1] + [n] ,

f21g = [n� 3; 2; 1] + [n� 2; 2] + [n� 2; 12] + [n� 1; 1] ,
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f13g = [n� 3; 13] , (109)

f4g = 2[n] + 3[n� 1; 1] + 3[n� 2; 2] + [n� 2; 12] + [n� 3; 3]

+[n� 3; 2; 1] + [n� 4; 4] ,

f31g = 2[n� 1; 1] + 2[n� 2; 2] + 3[n� 2; 12] + [n� 3; 3] + [n� 3; 2; 1]

+[n� 3; 13] + [n� 4; 3; 1] ,

f22g = [n] + [n� 1; 1] + 2[n� 2; 2] + [n� 3; 3] + [n� 3; 2; 1; ] + [n� 4; 22] ,

f212g = [n� 2; 12] + [n� 3; 2; 1] + [n� 3; 13] + [n� 4; 2; 12] ,

f14g = [n� 4; 14] .

d
Using a table of reduction U(n) � O(n) [Ref.[3]],

one can express, by subtractions, the characters of O(n)
in terms of those of U(n).

In Refs.[3, 38] there is a table of the reduction
O(n � 1) � S(n) for (�0) of degree no more than 7
and with no more than 3 rows.

The expansion (104) of bD in terms of Æi allows us
to compute all the S(A) irreps [�00] contained in the
U(A�1) irrep f�0g. For great values of r�0 this process
is too much laborious.

In applications in Nuclear Physics one has that the
U(A � 1) irreps of interest are, according to (96), the
ones with no more than 3 rows, that is, those of the
form f�0g = fE1; E2; E3g . Besides, Pauli principle im-
poses that the only physically acceptable S(A) irreps
are those of the form

[�] = [4k4 ; 3k3 ; 2k2 ; 1k1 ] (110)

with

4k4 + 3k3 + 2k2 + k1 = A . (111)

The ki are interpreted[36] as the number of space
levels occupyed by 1; 2; 3; and 4 nucleons, respectively.

From now on we will restrict ourselves to the cases of
interest in Nuclear Physics, that is, the ones in which
the U(A � 1) irreps f�0g are also U(3) irreps satisfy-
ing Eq.(96) and the S(A) irreps [�] satisfy (110) This
means that f�0g has at most 3 rows and [�] at most
4 columns. These restrictions, as will be seen below,
simplify enormously the calculations.

Having in mind these restrictions, let us �nd which
tk's and jk's in Eq.(102) may give a contribution. When

applying the linearized form [Eq.(103)] of bD to a Schur

function f�g(A)
E of U(A � 1) one has, using Eqs. (99)

and (103),

c

bDf�g(A)
E =

X
�0 �00

C�0 �00

X
�

�(f�00gf�g ! f�g(A)
E )

X
�000

�(f�0gf�g ! f�000g)f�000g

(112)

By Eq.(98) the Schur functions f�000g will give S(A) irreps

[�] = [A� r�000 ; �
000
1 ; �

000
2 ; :::; �

000
A�1] . (113)

[Here we recall that r� denotes the degree of a general Schur function f�g.]
Since f�g(A)

E has at most 3 rows, the outer product f�00gf�g gives a nonzero contribution only when both f�00g
and f�g have at most 3 rows, i.e.

f�00g = f�001 ; �002 ; �003g and f�g = f�1; �2; �3g . (114)

Since f�00g is a component of the reduction

(f2g 
 f�gt2)(f2g 
 fj2g)(f3g 
 f�gt3)(f3g 
 fj3g)::: ,
only contribute the components in fkg 
 f�gtk and fkg 
 fjkg with no more than 3 rows.

We then introduce the notation fmg _
f�g to denote what we call a reduced plethysm:

fmg _
f�g = only terms of fmg 
 f�g with no more than 3 rows. (115)
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In our applications to Nuclear Physics the only
plethysms that one needs to compute are the reduced
ones. These have much less components than the com-
plete plethysms, what makes the computer calculations
feasible.

The rules of outer product are such that if one of its
factors has more than p rows, the same occurs with all

the Schur functions in its reduction. Due to that, all
the plethysms properties here presented, but Eq.(39),
apply to reduced plethysms.

Computer calculations using Eq.(60) show that

fkg _
f1mg = 0; for m > (k + 1)(k + 2)=2 . (116)

From this result one proves that

c

fkg _
f�g = 0 for Schur functions f�g with more than

m = (k + 1)(k + 2)=2 rows. (117)

d

In order to produce a physically acceptable contri-
bution, the Schur functions f�0g in Eq.(112) when outer
multiplyed by f�g must give, by Eq.(98) and (110), in
its reduction a Schur function with at most 4 columns.
By the rules of outer product, it follows that both f�0g
and f�g must have this property:

f~�0g = f��01; ��02; ��03; ��04g; f~�g = f��1; ��2; ��3; ��4g: (118)

Since f�0g is a term of the reduction of f�t2gf�t3g:::,
it follows that also the f�gtk must have this property.

This implies that among the reduced plethysms
fkg _
f�gtk that appear in Eq(102), only those in which
the length of the f�gtk 's rows do not exceed 4 must be
considered.

The analysis of degrees of the Schur functions in
Eq.(112) gives further informations:

r�00 + r� = E; r�0 + r� = r�000 . (119)

From Eq.(113) and (110) one has

A� r�000 � 4 . (120)

Combining Eq.(119) and (120) it follows that

i � r�00 � r�0 � E �A+ 4 (121)

what sets an upper bound in i:

imax = E �A+ 4 . (122)

From Eq.(114) and (118) one concludes that

r� � 12 . (123)

This result together with the �rst of Eqs.(119) implies
that

r�00 � E � 12 . (124)

Combining Eq.(102) and (103) one has

r�0 =
X
k=2

tk; r�00 =
X
k=2

k(tk + jk) (125)

and therefore

i =
X
k=2

[k(tk + jk)� tk] = t2 +
X
k=2

k(tk+1 + jk): (126)

From these equations one concludes that

i �
X
k=2

tk (127)

and

i =
X
k=2

tk )
�

t2 = i; t3 = t4 = ::: = 0;
j2 = j3 = ::: = 0:

(128)

Eq.(127), combined with Eq.(125) and (124) gives

E � 12 � r�00 � 2i (129)

from which one concludes that

2i � E � 12 . (130)

This gives a lower bound to i:

imin =

�
E + 1

2

�
� 6 . (131)

Summarizing: given E and A, the tk 's and jk 's in

Eq.(102) applied to f�g(A)
E that may give physically ac-

ceptable S(A) irreps are obtained following the 2 steps:
1) take i in the range�

E + 1

2

�
� 6 � i � E �A+ 4; (132)
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2) for each i in this range, �nd the nonnegative in-
tegers jk and tk that satisfy

t2 +
P

k=2 k(tk+1 + jk) = i ,P
k=2 k(tk + jk) = r�00 ,

(133)

where r�00 must be in the range given by Eq.(129).
These conditions reduces drastically the number of

jk 's and jk 's that may contribute and also their values,
being valid for any value of A and E � Emin.

Once the tk 's and jk 's that have a chance to
contribute are determined, one computes the reduced
plethysms associated to them and continues the calcu-
lations.

In any physical application one starts by examin-
ing �rst the case E = Emin, so it deserves a special
attention.

For p�nuclei (5 � A � 16) one has E0 = 1 and, ac-
cording to Eq.( 95), Emin = A�4. In this case Eq.(132)
gives only the value 0 for i, and by Eq.(133) one has

t2 = t3 = ::: = 0; j2 = j3 = ::: = 0 (p� nuclei) .
(134)

Therefore

bDf�g(A)
A�4 $ f�g(A)

A�4 (135)

where here, and in the following, the symbol $ means
that one considers in the RHS only those Schur func-
tions that produce physically acceptable S(A) irreps.

Then, by Eq(98), for p-nuclei in ground con�gura-
tion, one has the U(A� 1) � S(A) reduction

f�g(A)
A�4 $ [4; �1; �2; �3] p� nuclei (136)

with

�1 + �2 + �3 = A� 4 and �i � 4 . (137)

In Appendix A one lists the reduction U(A � 1) �
S(A) for p�nuclei in ground con�guration. One ob-
serves that the results present the symmetry under
particle-hole exchange in the open shell:

c

A $ A = ncore + n0 �A; (138)

(p � E1 �E2; q � E2 �E3)$ (p; q) = (q; p): (139)

For this shell these symmetry relations read as

A $ A = 20�A

[�] �
h
4; �

(0)
1 ; �

(0)
2 ; �

(0)
3

i
! �

��
�
=
h
4; 4� �

(0)
3 ; 4� �

(0)
2 ; 4� �

(0)
1

i
. (140)

For (s� d)-nuclei (17 � A � 40), E0 = 2 and Emin = 2A� 20 . Eq.(132) gives again only one solution for i:

i = imin = imax = A� 16 . (s� d)-nuclei (141)

Since i = imax , by Eq.(128) one has the result

t2 = A� 16; t3 = t4 = ::: = 0; j2 = j3 = ::: = 0 (s� d)� nuclei (142)

and therefore

bDf�g(A)
2A�20 $

X
f�gA�16

f�gA�16 bD(f2g _
f�gA�16)f�g(A)
2A�20 =

X
f�gA�16

f�gA�16
X

f�g2(A�16)

�(f2g _
f�gA�16 ! f�g2(A�16)) bD(f�g2(A�16))f�g(A)
2A�20; (143)

for (s� d)�nuclei.
The only reduced plethysms that one needs to compute, for the whole shell, are f2g _
f�gm with m = 1; 2; :::; 24.
As seen previously,only contribute the Schur functions f�gA�16 with no more than (2 + 1)(2 + 2)=2 = 6 rows

and no more than 4 columns.
When acting on f�g(A)

2A�20 , the operator
bD(f�g2(A�16)) gives, by Eqs.(114) ,(123)

bD(f�g2(A�16))f�g(A)
2A�20 $ �(f�g2(A�16)f43g ! f�g(A)

2A�20)f43g . (144)
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The outer product of f�g2(A�16) by f43g gives only one Schur function with 3 rows f43g + f�g2(A�16) (with
multiplicity 1), and must be equal to f�g2(A�20) . This �xes f�g2(A�16) as f�g2(A�16) = f�g(A)

2A�20 � f43g:
On the other hand, the outer product f�gA�16f43g has only one component with up to 4 columns, viz.

f43; f�gA�16g.
Finally, one obtains

bD f�g(A)
2A�20 $

X
f�gA�16

�(f2g _
f�gA�16g ! f�g2(A�16) =

f�g(A)
2A�20 � f43g) f43; f�gA�16g (s� d)� nuclei . (145)

The Schur functions f43; f�gA�16g will produce, by Eq.(98), S(A) irreps

[A� (4� 3 +A� 16); 43; f�gA�16] = [44; f�gA�16] . (146)

Eqs.(145),(146) allow us to obtain the reduction U(A � 1) � S(A) for (s � d)�nuclei in ground con�guration
directly from the tables of multiplicities of Schur functions f�g2(A�16) in the reduced plethysm f2g _
f�gA�16 . The
column associated to a given Schur function f�g2(A�16) corresponds to the U(A � 1) irrep f43g+ f�g2(A�16). Its
entries, in each line labelled by f2g 
 f�gA�16 , give the multiplicity of S(A) irrep [44; f�gA�16] in the reduction.

As an example, for A = 19, one has Emin = 18, imin = imax = 3 and, from the plethysms f2g 
 f�g3 given in
table II, one obtains

f10; 42g $ [443]; f724g $ [4413];
f954g $ [4421]; f765g $ [4421];
f864g $ [443] + [4421]; f63g $ [443];
f852g $ [4413]:

(147)

Making all reductions one observes that the results also present the symmetry under particle-hole exchange in
the open shell [ Eqs.(138),( 139) ] that for this shell reads as

A ! A = 16 + (40�A) = 56�A , (148)

[�] � [44; �
(0)
1 ; �

(0)
2 ; :::; �

(0)
6 ]! [��] = [44; 4� �

(0)
6 ; 4� �

(0)
5 ; :::; 4� �

(0)
1 ] .

In Appendix B one gives the reduction U(A� 1) � S(A) for the �rst half of the shell. To obtain the reduction
for the second half one uses again symmetry relations Eqs.(138),(139). The case A = 40 is not covered by the
symmetry . For A = 40 only one U(39) irrep has physically acceptable A(40) irreps:

f203g $ [410] . (149)

For (p � f)�nuclei (41 � A � 80) , E0 = 3 and Emin = 3A� 60: One easily veri�es that for those values of A
and E one solution of Eqs.(132),(133) is

t2 = 24; t3 = A� 40; t4 = t5 = 0; j2 = j3 = ::: = 0 . (150)

Computer calculations show that indeed this is the only solution. Therefore one has

bDf�g(A)
3A�60 $

X
f�g24

f�g24f�gA�40 bD(f2g _
f�g24) bD(f3g _
f�gA�40)f�g(A)
3A�60 (151)

and we need to compute, for the whole shell, only the reduced plethysms f3g _
f�gm with m = 1; 2; :::; 40 . As seen
previously, only those reduced plethysms in which f�gm has up to 10 lines and 4 columns contribute.

Since only contribute Schur functions f�g24 with up to 6 lines and 4 columns, one has only one possible value,
f�g24 = f46g . Using this result and f2g _
f46g = f163g , Eq.(151) becomes

bDf�g(A)
3A�60

X
f�gA�40

f46; f�gA�40g bD(f163g) bD(f3g _
f�gA�40)f�g(A)
3A�60 . (152)

Now, linearizing the product of bD s and taking into account that only arguments of bD with up to 3 rows
contribute, one obtains
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bDf�g(A)
3A�60 $

X
f�gA�40

f46; f�gA�40g
X

f�g3(A�40)

�(f3g _
f�gA�40 ! f�g3(A�40)) �

� bD(f163g+ f�g3(A�40))f�g(A)
3A�60 . (153)

When acting on f�gf(A)
3A�60 , the operator bD(f163g + f�g3A�40) will produce Schur functions f�g with up to 3

lines and 4 columns of degree 12 what �xes f�g = f43g and f�g3(A�40) = f�g3A�60�f203g . Therefore one obtains
the �nal result

bDf�g(A)
3A�60 $

X
f�gA�40

�(f3g _
f�gA�40 !

f�g3(A�40) = f�g3A�60 � f203g) f49; f�gA�40g . (154)

The Schur functions f49; f�gA�40g will produce, by Eq.( 98) S(A) irreps

[A� (4� 9 +A� 40); 49; f�gA�40] = [410; f�gA�40] . (155)

Analogously to case E0 = 1 and 2 , Eqs.(154),(155) allow us to read the reduction U(A� 1) � S(A) for nuclei
in the ground con�guration of this shell directly form the table of multiplicities of Schur functions f�g3(A�40) in
the reduced plethysms f3g _
f�gA�40. The column associated to a given Schur function f�g3(A�40) corresponds to
the U(A� 1) irrep f203g+ f�g3(A�40) . Its entries, in each line labelled by f3g 
 f�gA�40 give the multiplicity of
S(A) irrep [410; f�gA�40] in the reduction.

The results for the whole shell present the particle-hole exchange symmetry Eqs.(138),(139) that for this shell
reads as

A$ A = 120�A;

[�] � [410; �
(0)
1 ; �

(0)
2 ; :::; �

(0)
10 ]! [��] = [410; 4� �

(0)
10 ; 4� �

(0)
9 ; :::; 4� �

(0)
1 ] .

(156)

For (s; d; g)�nuclei (81 � A � 140) , E0 = 4 and Emin = 4A � 140 . One easily verify that, for given A and
E = Emin , one solution for Eqs.(132),133) is

t2 = 24; t3 = 40; t4 = A� 80; t5 = t6 = ::: = 0;
j2 = j3 = :::: = 0 .

(157)

Again, computer calculations show that this is the only solution. Therefore one has

bDf�g(A)
4A�140 $

X
f�g24

f�g24 bD(f2g _
f�g24) X
f�g40

f�g40 bD(f3g _
ff�g40):
X

f�gA�80

f�gA�80 bD(f4g _
f�gA�80)f�g(A)
4A�140 . (158)

Using arguments similar to those used in cases E0 = 2; 3 and the result f3g _
f410g = f403g one deduces that

bDf�g(A)
4A�140 $

X
f�gA�80

f419; f�gA�80g�(f4g _
f�gA�80 ! f�g4(A�80) =

f�g(A)
4A�140 � f603g) (159)

and the Schur functions f419; f�gA�80g will produce S(A) irreps [420; f�gA�80] .
As seen in the previous cases, the reduction U(A � 1) � S(A) can be read from the table of multiplicities os

Schur functions f�g4(A�80) in the reduced plethysm f4g _
f�gA�80 . The column of f�g4(A�80) is associated to the
U(A� 1) irrep f603g+ f�g4(A�80) . Its entries give the multiplicities of [420; f�gA�80] in the reduction.

From the cases studied, one pattern emerges:
1) The tk 's and jk 's that contribute are
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tk = 2(k + 1)(k + 2); k = 2; 3; :::; E0 � 1; tE0 = n0 � A� ncore; (160)

2)The �nal result is

bDf�g(A)
Emin

$
X
f�gn0

f4ncore=4�1; f�gn0g�(fE0g _
f�gn0 ! f�gE0n0 =

f�g(A)
Emin

� f(ncore � 2E0(E0 + 1))3g) (161)

and the Schur functions f4ncore=4�1; f�gn0g will produce S(A) ireps
[4ncore=4; f�gn0 ].

d
V. Final Comments

According to the subgroup chain Eq.(89) we need
to classify the basis states by the chain U (r)(A � 1) �
O(r)(A � 1) � S(r)(A) but up to now we obtained the
reduction by the chain U (r)(A� 1) � S(r)(A).

For con�guration energies E = Emin and Emin+1,
a given U (r)(A � 1) irrep fE1; E2; E3g gives only one
O(r)(A � 1) irrep (!) = (E1; E2; E3) . Therefore our
classi�cation of ground state con�guration states is
complete.

For con�guration energies E � Emin + 2 one needs
�rst to express, the O(r)(A � 1) irrep (!) in terms of
U (r)(A�1) irreps fE0g and then perform the reductions
fE0g ! [f ].

In application to a de�nite nucleus with Z protons
and N = A � Z neutrons, the isospin counterpart im-
poses one selection rule

k3 + 2k2 + k1
2

� jTZ j =
����Z �N

2

���� (162)

that may forbid some con�gurations in the reduction.

Appendix A. Classi�cation of the Lowest Energy

States for p-Nuclei

This classi�cation was obtained using Eqs.(136) and
(137). In the third column we have put the SU(3) la-
bels in Elliott notation: p = E1 � E2; q = E2 � E3.
Observe that there is a symmetry under the inter-
change of particles and holes in the open p shell, that
is, the labels associated to A are related to those of
�A = 4 + (16 � A) = 20 � A. For the SU(3) labels
the association is �p = q; �q = p. For the S(A) la-

bels, writing [�] = [4; �
(0)
1 ; �

(0)
2 ; �

(0)
3 ] , the S( �A) become

[��] = [4; 4� �
(0)
3 ; 4� �

(0)
2 ; 4� �

(0)
1 ].

A fEg (pq) [�] A fEg (pq) [�]
5 f1g (10) [41] 11 f43g (13) [423]
6 f2g (20) [42] f421g (21) [4221]

f12g (01) [412] f321g (02) [4321]
7 f3g (30) [43] f322g (10) [4322]

f21g (11) [421] 12 f42g (04) [43]
f13g (00) [413] f431g (12) [4231]

8 f4g (40) [42] f422g (20) [4222]
f31g (21) [431] f322g (01) [4322]
f22g (02) [422] 13 f421g (03) [431]
f212g (10) [4212] f432g (11) [4232]

9 f41g (31) [421] f33g (00) [433]
f32g (12) [432] 14 f422g (02) [432]
f312g (20) [4312] f432g (10) [4232]
f221g (01) [4221] 15 f423g (01) [433]

10 f42g (22) [422] 16 f43g (00) [44]
f412g (30) [4212]
f32g (03) [432]
f321g (11) [4321]
f23g (00) [423]
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Appendix B. Classi�cation of the Lowest Energy States for (s� d)-Nuclei
s� d(17 � A � 40)

This classi�cation was obtained from the table of plethysms f2g _
f�gimax
with imax = A� 16, according to the

text in Section 4. For the second half of the shell we used the particle-hole symmetry for this shell. By it, to a given
A we associate a �A = 16+ (40�A) = 56�A. Again, for the SU(3) labels this simmetry gives �p = q and �q = p. To

the S(A) label [�] = [44; �
(0)
1 ; �

(0)
2 ; :::; �

(0)
6 ] we associate the S( �A) label [��] = [4� �

(0)
6 ; 4� �

(0)
5 ; :::; 4� �

(0)
1 ] .

A= 17
f6; 42g $ [441]

A= 18
f8; 42g $ [442]
f7; 5; 4g $ [4412]
f62; 4g $ [442]

A= 19
f10; 42g $ [443]
f9; 5; 4g $ [4421]
f8; 6; 4g $ [4421] + [443]
f8; 52g $ [4413]
f72; 4g $ [4413]
f7; 6; 5g $ [4421]
f63g $ [443]

A= 20
f12; 42g $ [45]
f11; 5; 4g$ [4431]
f10; 6; 4g$ [4422] + [4431] + [45]
f10; 52g $ [44212]
f9; 7; 4g $ [44212] + [4431]
f82; 4g $ [4422] + [45]
f9; 6; 5g $ [44212] + [4422] + [4431]
f8; 7; 5g $ [4414] + [44212] + [4431]
f8; 62g $ [4422] + [4431] + [45]
f72; 6g $ [44212]

A= 21
f13; 5; 4g$ [451]
f12; 6; 4g$ [4432] + [451]
f12; 52g $ [44312]
f11; 7; 4g$ [44312] + [4432] + [451]
f11; 6; 5g$ [44221] + [44312] + [4432] + [451]
f10; 8; 4g$ [44221] + [4432] + [451]
f92; 4g $ [44312]
f10; 7; 5g$ [44213] + [44221] + 2[44312] + [4432] + [451]
f10; 62g $ [44221] + 2[4432] + [451]
f9; 8; 5g $ [44213] + [44221] + [44312] + [4432] + [451]
f9; 7; 6g $ [44213] + [44221] + 2[44312] + [4432] + [451]
f82; 6g $ [4415] + [44221] + [4432] + [451]
f8; 72g $ [44213] + [44312]

A= 22
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f14; 6; 4g$ [452]
f14; 52g $ [4512]
f13; 7; 4g$ [4512] + [4432] + [452]
f13; 6; 5g$ [44321] + [4512] + [452]
f12; 8; 4g$ [44321] + 2[452]
f12; 7; 5g$ [44313] + 2[44321] + 2[4512] + [4432] + [452]
f11; 9; 4g$ [44321] + [4512] + [4432]
f12; 62g $ [4423] + [44321] + [4432] + 2[452]
f102; 4g $ [4423] + [452]
f11; 8; 5g$ [442212] + [44313] + [4423] + 2[44321] + 2[4512] + [4432] + 2[452]
f11; 7; 6g$ [442212] + [44313] + 3[44321] + 2[4512] + [4432] + 2[452]
f10; 9; 5g$ [442212] + [44313] + 2[44321] + [4512] + [452]
f10; 8; 6g$ [44214] + [442212] + [44313] + 2[4423] + 3[44321] + [4512] + [4432]+
3[452]
f10; 72g $ [442212] + 2[44313] + [44321] + 2[4512] + [4432]
f92; 6g $ [442212] + [44313] + [44321] + 2[4512] + [4432]
f9; 8; 7g $ [44214] + [442212] + [44313] + 2[44321] + [4512] + [452]
f83g $ [4416] + [4423] + [452]

A= 23
f15; 7; 4g$ [453]
f15; 6; 5g$ [4521]
f14; 8; 4g$ [4521] + [453]
f14; 7; 5g$ [4513] + [44321] + 2[4521] + [453]
f14; 62g $ [44322] + [4521] + [453]
f13; 9; 4g$ [44321] + [4521] + [453]
f12; 10; 4g$ [44322] + [4521] + [453]
f13; 8; 5g$ [443212] + [4513] + [44322] + [44321] + 3[4521] + 2[453]
f112; 4g $ [44321]
f13; 7; 6g$ [443212] + [4513] + [44322] + 2[44321] + 3[4521] + 2[453]
f12; 9; 5g$ 2[443212] + [4513] + [44322] + 2[44321] + 3[4521] + [453]
f11; 10; 5g$ [44231] + [443212] + [4513] + [44322] + [44321] + 2[4521] + [453]
f12; 8; 6g$ [44314] + [44231] + 2[443212] + [4513] + 3[44322] + 2[44321]+
5[4521] + 3[453]
f12; 72g $ 2[443212] + 2[4513] + 2[44321] + 2[4521] + [453]
f11; 9; 6g$ [442213] + [44231] + 3[443212] + 2[4513] + 2[44322] + 3[44321]+
4[4521] + 2[453]
f102; 6g $ [44314] + [44231] + [443212] + 2[44322] + 2[4521] + [453]
f11; 8; 7g$ [442213] + [44314] + [44231] + 3[443212] + 2[4513] + 2[44322]+
2[44321] + 4[4521] + 2[453]
f10; 9; 7g$ [442213] + [44314] + [44231] + 3[443212] + 2[4513] + [44322]+
2[44321] + 3[4521] + [453]
f10; 82g $ [44215] + [44314] + [44231] + [443212] + 2[44322] + 2[4521] + [453]
f92; 8g $ [442213] + [443212] + [4513] + [44321] + [4521]

A= 24
f16; 8; 4g$ [46]
f16; 7; 5g$ [4531]
f16; 62g $ [4522]
f15; 9; 4g$ [4531]
f15; 8; 5g$ [45212] + [4522] + 2[4531] + [46]
f14; 10; 4g$ [4522] + [4531] + [46]
f15; 7; 6g$ [45212] + [44322] + [4522] + 2[4531] + [46]
f13; 11; 4g$ [44322] + [4531]
f14; 9; 5g$ [443212] + 2[45212] + [44322] + [4522] + 3[4531] + [46]
f122; 4g $ [4522] + [46]
f14; 8; 6g$ [4514] + [443221] + [443212] + 2[45212] + [44322] + 4[4522]+
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4[4531] + 2[46]
f13; 10; 5g$ [443221] + [443212] + 2[45212] + [44322] + 2[4522] + 3[4531] + [46]
f14; 72g $ [443212] + 2[45212] + [44322] + 3[4531]
f12; 11; 5g$ [443221] + [443212] + [45212] + [44322] + [4522] + 2[4531]
f13; 9; 6g$ [443213] + 2[443221] + 2[443212] + 4[45212] + 3[44322] + 3[4522]+
6[4531] + [46]
f13; 8; 7g$ [443213] + [4514] + 2[443221] + 2[443212] + 4[45212] + 2[44322]+
3[4522] + 5[4531] + 2[46]
f12; 10; 6g$ [443213] + [4514] + [4424] + 3[443221] + 2[443212] + 3[45212]+
2[44322] + 5[4522] + 4[4531] + 2[46]
f112; 6g $ [442312] + [443221] + [443212] + 2[45212] + 2[44322] + 2[4531]
f12; 9; 7g$ [442312] + 2[443213] + [4514] + 3[443221] + 4[443212] + 6[45212]+
3[44322] + 3[4522] + 6[4531] + [46]
f12; 82g $ [44315] + [443213] + [4514] + [4424] + 2[443221] + [443212]+
2[45212] + [44322] + 4[4522] + 2[4531] + 2[46]
f11; 10; 7g$ [442312] + 2[443213] + [4514] + [4424] + 3[443221] + 2[443212]+
4[45212] + 2[44322] + 3[4522] + 4[4531] + [46]
f11; 9; 8g$ [442214] + [442312] + 2[443213] + [4514] + 3[443221] + 2[443212]+
4[45212] + 2[44322] + 2[4522] + 4[4531]
f102; 8g $ [44315] + [443213] + [4514] + [4424] + 2[443221] + [443212] + [45212]+
3[4522] + [4531] + [46]
f10; 92g $ [442312] + [443213] + [443212] + 2[45212] + [44322] + [4531]

A= 25
f17; 8; 5g$ [461]
f17; 7; 6g$ [4532]
f16; 10; 4g$ [461]
f16; 9; 5g$ [45312] + [4532] + [461]
f15; 11; 4g$ [4532]
f16; 8; 6g$ [45221] + [45312] + 2[4532] + 2[461]
f14; 12; 4g$ [4532] + [461]
f16; 72g $ [45312] + [4433] + [4532] + [461]
f132; 4g $ [4433]
f15; 10; 5g$ [45221] + 2[45312] + 2[4532] + 2[461]
f15; 9; 6g$ [45213] + [443221] + 2[45221] + 3[45312] + [4433] + 4[4532] + 3[461]
f14; 11; 5g$ [443221] + [45221] + 2[45312] + [4433] + 2[4532] + 2[461]
f15; 8; 7g$ [45213] + [443221] + 2[45221] + 3[45312] + 4[4532] + 3[461]
f13; 12; 5g$ [443221] + [45221] + [45312] + 2[4532] + [461]
f14; 10; 6g$ [443213] + [45213] + [44323] + 2[443221] + 4[45221] + 4[45312]+
6[4532] + 4[461]
f14; 9; 7g$ [4432212] + [443213] + 2[45213] + 3[443221] + 4[45221] + 7[45312]+
2[4433] + 6[4532] + 4[461]
f13; 11; 6g$ [4432212] + [45213] + [44323] + 3[443221] + 3[45221] + 4[45312]+
2[4433] + 5[4532] + 2[461]
f14; 82g $ [4515] + [443213] + [45213] + [44323] + [443221] + 3[45221]+
2[45312] + 3[4532] + 3[461]
f122; 6g $ [443213] + [44323] + [443221] + 2[45221] + [45312] + 2[4532] + 2[461]
f13; 10; 7g$ 2[4432212] + 2[443213] + 3[45213] + 2[44323] + 4[443221]+
6[45221] + 7[45312] + 2[4433] + 7[4532] + 5[461]
f13; 9; 8g$ [443214] + 2[4432212] + [443213] + 3[45213] + [44323] + 4[443221]+
5[45221] + 6[45312] + [4433] + 6[4532] + 3[461]
f12; 11; 7g$ [44241] + 2[4432212] + [443213] + 2[45213] + [44323] + 4[443221]+
4[45221] + 5[45312] + [4433] + 5[4532] + 2[461]
f12; 10; 8g$ [443214] + [4515] + [44241] + 2[4432212] + 3[443213] + 3[45213]+
3[44323] + 4[443221] + 7[45221] + 5[45312] + 6[4532] + 4[461]
f12; 92g $ [442313] + 2[4432212] + [443213] + 2[45213] + 2[443221] + 2[45221]+
4[45312] + 2[4433] + 2[4532] + [461]
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f112; 8g $ [442313] + 2[4432212] + 2[45213] + [44323] + 2[443221] + 2[45221]+
3[45312] + 2[4433] + 2[4532] + [461]
f11; 10; 9g$ [443214] + [44241] + 2[4432212] + [443213] + 2[45213] + [44323]+
2[443221] + 3[45221] + 3[45312] + 3[4532] + [461]
f103g $ [4515] + [443213] + [44323] + [45221] + [461]

A= 26
f18; 8; 6g$ [462]
f18; 72g $ [4532]
f16; 12; 4g$ [462]
f17; 10; 5g$ [4612] + [462]
f15; 13; 4g$ [4532]
f17; 9; 6g$ [45321] + [4612] + [4532] + [462]
f142; 4g $ [462]
f16; 11; 5g$ [45321] + [4612] + [4532] + [462]
f17; 8; 7g$ [45321] + [4612] + [4532] + 2[462]
f15; 12; 5g$ 2[45321] + [4612] + [4532] + 2[462]
f16; 10; 6g$ [45313] + [4523] + 3[45321] + 2[4612] + [4532] + 4[462]
f14; 13; 5g$ [44331] + [45321] + [4612] + [4532] + [462]
f16; 9; 7g$ [452212] + [45313] + [44331] + 4[45321] + 3[4612] + 3[4532] + 3[462]
f15; 11; 6g$ [452212] + [45313] + [443222] + [4523] + [44331] + 5[45321]+
3[4612] + 3[4532] + 3[462]
f16; 82g $ [45313] + [4523] + 2[45321] + [4612] + 3[462]
f14; 12; 6g$ [4432212] + [45313] + [443222] + 2[4523] + [44331] + 5[45321]+
2[4612] + 2[4532] + 5[462]
f15; 10; 7g$ [4432212] + 2[452212] + 3[45313] + [443222] + 2[4523] + [44331]+
8[45321] + 5[4612] + 4[4532] + 6[462]
f132; 6g $ [452212] + [443222] + [44331] + 2[45321] + [4612] + 2[4532]
f15; 9; 8g$ [45214] + [4432212] + 2[452212] + 2[45313] + [443222] + [4523]+
[44331] + 7[45321] + 4[4612] + 3[4532] + 4[462]
f14; 11; 7g$ [443231] + 2[4432212] + 3[452212] + 3[45313] + 2[443222]+
2[4523] + 3[44331] + 10[45321] + 5[4612] + 5[4532] + 5[462]
f13; 12; 7g$ [443231] + 2[4432212] + 2[452212] + 2[45313] + 2[443222]+
2[4523] + 2[44331] + 7[45321] + 3[4612] + 3[4532] + 4[462]
f14; 10; 8g$ [443214] + [45214] + [443231] + 3[4432212] + 3[452212] + 5[45313]+
2[443222] + 5[4523] + 2[44331] + 11[45321] + 5[4612] + 3[4532] + 8[462]
f14; 92g $ [4432213] + [4432212] + 3[452212] + 2[45313] + [443222] + 2[44331]+
5[45321] + 3[4612] + 3[4532] + [462]
f13; 11; 8g$ [4432213] + [45214] + 2[443231] + 3[4432212] + 5[452212]+
4[45313] + 4[443222] + 3[4523] + 3[44331] + 11[45321] + 5[4612] + 5[4532]+
4[462]
f122; 8g $ [443214] + [4425] + [443231] + 2[4432212] + [452212] + 2[45313]+
[443222] + 3[4523] + [44331] + 5[45321] + [4612] + 4[462]
f13; 10; 9g$ [4432213] + [443214] + [45214] + 2[443231] + 3[4432212]+
4[452212] + 4[45313] + 2[443222] + 3[4523] + 2[44331] + 9[45321] + 4[4612]+
3[4532] + 4[462]
f12; 11; 9g$ [442412] + [4432213] + [45214] + 2[443231] + 3[4432212]+
4[452212] + 3[45313] + 2[443222] + 2[4523] + 2[44331] + 7[45321] + 3[4612]+
3[4532] + 2[462]
f12; 102g $ [443214] + [45214] + [4425] + [443231] + 2[4432212] + [452212]+
2[45313] + [443222] + 3[4523] + 3[45321] + [4612] + 3[462]
f112; 10g $ [4432213] + [443231] + 2[452212] + [45313] + [443222] + [44331]+
2[45321] + [4612] + [4532]

A= 27
f19; 8; 7g$ [463]
f16; 14; 4g$ [463]
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f18; 10; 6g$ [4621] + [463]
f17; 12; 5g$ [4621] + [463]
f18; 9; 7g$ [45321] + [4621] + [463]
f16; 13; 5g$ [45321] + [4621] + [463]
f18; 82g $ [4621] + [463]
f17; 11; 6g$ [4613] + [45322] + [45321] + 2[4621] + [463]
f15; 14; 5g$ [45321] + [4621] + [463]
f17; 10; 7g$ [453212] + [4613] + [45322] + 2[45321] + 4[4621] + 3[463]
f16; 12; 6g$ [453212] + 2[45322] + 2[45321] + 4[4621] + 3[463]
f17; 9; 8g$ [453212] + [4613] + [45322] + 2[45321] + 3[4621] + 2[463]
f15; 13; 6g$ [453212] + [4613] + [44332] + 2[45322] + 3[45321] + 3[4621] + 2[463]
f16; 11; 7g$ [45231] + 3[453212] + 2[4613] + [44332] + 3[45322] + 5[45321]+
6[4621] + 4[463]
f142; 6g $ [443312] + [45322] + [45321] + 2[4621] + 2[463]
f16; 10; 8g$ [45314] + [45231] + [443312] + 4[453212] + 2[4613] + 4[45322]+
4[45321] + 8[4621] + 5[463]
f15; 12; 7g$ [4432221] + [45231] + [443312] + 4[453212] + 2[4613] + [44332]+
5[45322] + 6[45321] + 8[4621] + 5[463]
f16; 92g $ [452213] + 2[453212] + [4613] + [44332] + [45322] + 3[45321]+
3[4621] + [463]
f14; 13; 7g$ [4432221] + [45231] + [443312] + 3[453212] + [4613] + 2[44332]+
3[45322] + 5[45321] + 5[4621] + 3[463]
f15; 11; 8g$ [452213] + [45314] + 2[4432221] + 2[45231] + [443312] + 7[453212]+
4[4613] + 2[44332] + 7[45322] + 8[45321] + 10[4621] + 5[463]
f15; 10; 9g$ [4432213] + [452213] + [45314] + [4432221] + 2[45231] + [443312]+
6[453212] + 3[4613] + [44332] + 5[45322] + 6[45321] + 8[4621] + 4[463]
f14; 12; 8g$ [4432213] + [45314] + [44324] + 2[4432221] + 3[45231] + 3[443312]+
7[453212] + 2[4613] + 2[44332] + 8[45322] + 7[45321] + 10[4621] + 6[463]
f132; 8g $ [452213] + 2[4432221] + [45231] + 3[453212] + 2[4613] + 2[44332]+
3[45322] + 4[45321] + 3[4621] + [463]
f14; 11; 9g$ [4432312] + [4432213] + 2[452213] + [45314] + 3[4432221]+
4[45231] + 2[443312] + 9[453212] + 4[4613] + 3[44332] + 7[45322] + 9[45321]+
9[4621] + 4[463]
f14; 102g $ [4432213] + 2[45314] + [44324] + [4432221] + 2[45231] + 2[443312]+
4[453212] + [4613] + 4[45322] + 2[45321] + 5[4621] + 3[463]
f13; 12; 9g$ [4432312] + [4432213] + [452213] + [45314] + [44324] + 3[4432221]+
3[45231] + 2[443312] + 7[453212] + 2[4613] + 2[44332] + 6[45322] + 6[45321]+
7[4621] + 3[463]
f13; 11; 10g$ [4432312] + [4432213] + 2[452213] + [45314] + [44324] + 3[4432221]+
3[45231] + [443312] + 6[453212] + 3[4613] + 2[44332] + 5[45322] + 5[45321]+
5[4621] + 2[463]
f122; 10g $ [44251] + [4432213] + [45314] + [44324] + [4432221] + 2[45231]+
2[443312] + 3[453212] + 3[45322] + [45321] + 3[4621] + 2[463]
f12; 112g $ [4432312] + [452213] + [4432221] + [45231] + 2[453212] + [4613]+
[44332] + [45322] + 2[45321] + [4621]

A= 28
f20; 82g $ [47]
f162; 4g $ [47]
f19; 10; 7g$ [4631] + [47]
f17; 14; 5g$ [4631] + [47]
f18; 12; 6g$ [4622] + [4631] + [47]
f19; 9; 8g$ [4631]
f16; 15; 5g$ [4631]
f18; 11; 7g$ [46212] + [45322] + [4622] + 2[4631]
f17; 13; 6g$ [46212] + [45322] + [4622] + 2[4631]
f18; 10; 8g$ [453212] + [46212] + 2[4622] + 3[4631] + 2[47]
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f16; 14; 6g$ [453212] + [45322] + 2[4622] + 3[4631] + 2[47]
f18; 92g $ [46212] + [45322] + [4631]
f152; 6g $ [46212] + [45322] + [4631]
f17; 12; 7g$ [453221] + [453212] + 2[46212] + 2[45322] + 3[4622] + 5[4631] + 2[47]
f17; 11; 8g$ [4614] + 2[453221] + 2[453212] + 4[46212] + 3[45322] + 3[4622]+
6[4631] + 2[47]
f16; 13; 7g$ 2[453221] + 2[453212] + 3[46212] + [4434] + 4[45322] + 3[4622]+
6[4631] + 2[47]
f17; 10; 9g$ [453213] + [453221] + 2[453212] + 3[46212] + 2[45322] + 3[4622]+
5[4631] + [47]
f15; 14; 7g$ [443321] + [453221] + 2[453212] + 2[46212] + 3[45322] + 3[4622]+
5[4631] + [47]
f16; 12; 8g$ [453213] + [4524] + [443321] + 4[453221] + 5[453212] + 5[46212]+
5[45322] + 8[4622] + 9[4631] + 4[47]
f16; 11; 9g$ [452312] + 2[453213] + [4614] + [443321] + 5[453221] + 4[453212]+
7[46212] + [4434] + 6[45322] + 5[4622] + 9[4631] + [47]
f15; 13; 8g$ [453213] + [4614] + [443223] + 2[443321] + 5[453221] + 4[453212]+
6[46212] + [4434] + 7[45322] + 5[4622] + 9[4631] + [47]
f16; 102g $ [443313] + [453213] + [4614] + [4524] + 2[453221] + 3[453212]+
2[46212] + [45322] + 4[4622] + 4[4631] + 3[47]
f142; 8g $ [443313] + [4524] + [443321] + 2[453221] + 3[453212] + [46212]+
[4434] + 2[45322] + 4[4622] + 4[4631] + 3[47]
f15; 12; 9g$ [44322212] + [452312] + [443313] + 2[453213] + [4614] + [443223]+
[4524] + 2[443321] + 8[453221] + 7[453212] + 8[46212] + [4434] + 8[45322]+
8[4622] + 11[4631] + 3[47]
f15; 11; 10g$ [44322212] + [452312] + 3[453213] + [4614] + [443223] + [4524]+
2[443321] + 6[453221] + 5[453212] + 7[46212] + 6[45322] + 5[4622]+ 7[4631] + [47]
f14; 13; 9g$ [44322212] + [452312] + 2[453213] + [443223] + [4524] + 3[443321]+
6[453221] + 5[453212] + 6[46212] + [4434] + 7[45322] + 5[4622] + 7[4631]+
[47]
f14; 12; 10g$ [443241] + [44322212] + [452312] + 2[443313] + 3[453213]+
[4614] + [443223] + 3[4524] + 3[443321] + 8[453221] + 7[453212] + 5[46212]+
[4434] + 5[45322] + 8[4622] + 8[4631] + 3[47]
f14; 112g $ [44322212] + 2[452312] + [453213] + [4614] + [443223] + [443321]+
4[453221] + 2[453212] + 4[46212] + [4434] + 4[45322] + [4622] + 3[4631]
f132; 10g $ [44322212] + [452312] + [453213] + [4614] + 2[443223] + [443321]+
4[453221] + 2[453212] + 4[46212] + [4434] + 4[45322] + [4622] + 3[4631]
f13; 12; 11g$ [443241] + [44322212] + [452312] + 2[453213] + [443223] + [4524]+
2[443321] + 4[453221] + 3[453212] + 3[46212] + 3[45322] + 3[4622] + 3[4631]
f123g $ [4426] + [443313] + [4524] + [453221] + [453212] + [4622] + 2[47]
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