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Comments on Resolution of Nonassociativity in SFT

- An Example from Axioms of BCFT -
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It is known that the associativity of the star product of the open string �eld theory may be broken
in the presence of the nontrivial closed string background. We give an argument that such an
anomaly may be resolved by including Chan-Paton factors starting from the axioms of the rational
conformal �eld theory.

I Introduction

When Witten has de�ned the bosonic open string �eld
theory [1], he de�ned the theory in terms of the non-
commutative but associative star product. The non-
commutativity is essential feature of the open string
�eld theory since it has two ends and it behaves as a
sort of matrix. On the other hand, the associativity
is essential to ensure the gauge invariance of Witten's
cubic action. These are the key features of the open
string �eld theory when we want to have a correspon-
dence with the noncommutative geometry.

In the explicit calculation of the open string �eld
theory, however, we often meet the nonassociativity of
the star product when we want to treat the singular
states in the open string Hilbert space. Such a structure
appears in the simpli�ed version of the theory, namely
treating the open string �elds as matrices [2]. The prod-
ucts of three in�nite size matrix may not be associative
(A � B) � C 6= A � (B � C) since it involves two in�nite
sums. While each sum may be absolutely convergent,
the double sum sometimes becomes only conditionally
convergent and it breaks the associativity [3, 4].

This appearance of the associativity anomaly may
look rather super�cial, namely one may need to be more
careful when we de�ne the state and we should rule out
the states which breaks the associativity. However, in
some situations, the nonassociativity arises from the
very nature of the nontrivial closed string background.

We illustrate this phenomena by using two exam-
ples.

In the �eld theory limit, the noncommutative geom-
etry of the string �eld theory reduces to that of the tar-
get space. In the simple situations such as the constant
B �eld in the 
at space, the noncommutative geometry
is described by the Moyal product which is obviously
associative. Even when the B �eld is not constant, if

it satis�es dB = 0, the target space becomes the Pois-
son manifold and one may use the Kontsevich's star
product to de�ne the associative product. The situa-
tion changes drastically when we proceed to de�ne the
noncommutative geometry when dB 6= 0. In such a
situation, Cornalba and Schiappa [5] observed that the
naive extension of Kontsevich's star product becomes
nonassociative,

f � (g � h)� (f � g) � h � (dB)ijk@if@jg@kh: (1)

At the level of the string �eld theory, Horowits and
Strominger [3] observed that the space-time translation
generator may be written in terms of the open string
variable as PLI where PL is the momentum density in-
tegrated over half string and I is the identity operator.
Such generators, however, break the associativity be-
cause they usually shift the midpoint of the open string.
On the other hand, in the conventional de�nition of the
star product, the position of the midpoint is preserved.
Strominger[6] later emphasized that such an associativ-
ity anomaly is the universal feature of the open string
algebra if we want to express the deformation of the
closed string background in terms of the open string
degree of freedom.

The existence of the associativity anomaly signals
that we can not use the conventional description of the
noncommutativity. For example, the vector bundle in
the commutative geometry is usually translated into the
projective module described by the projection operator
of the (matrix generalization of the) algebra. In physi-
cal terminology, it is described by the noncommutative
soliton [7]. However, such an operator does not have
any topological meaning once the algebra breaks the
associativity.

A possible cure for this problem comes from the
observation in the commutative side. When dB be-
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longs to the nontrivial element in the cohomology class
H3(X;Z), the gauge transformation generators fgijg
becomes not closed on the intersections of three coor-
dinate neighborhoods Ui \ Uj \ Uk,

gijgjkgki = ei�ijk 6= 1: (2)

It shows that the vector bundle becomes twisted and
ill-de�ned.

When [dB] represents a torsion element in
H3(X;Z), say Zn, e

i�ijk should satisfy ein�ijk = 1. In
this special situation, when we adjust the number of
D-brane to n, the adjoint vector bundle becomes con-
sistent since the phase factor belongs to the center of
the gauge group U(n) [8]. By a generalization of this
idea, Bouwknegt and Mathai [9] have argued that one
may de�ne well-de�ned adjoint bundle even for generic
element of H3(X;Z) when we have the in�nite number
of D-branes.

A lesson from these phenomena for the noncommu-
tative side is that one may recover the associativity once
we include the degree of freedom of D-branes (Chan-
Paton factor) to modify the originally nonassociative
algebra to an associative one. For the generic back-
ground, we need the in�nite number of D-branes for
the modi�cation of the algebra.

The necessity of the in�nite number of D-branes
suggest that we need a sort of the vacuum string �eld
theory[10]. Namely to express the algebra, we need
to employ an in�nite dimensional matrix generaliza-
tion of Witten's string �eld theory. If all of these D-
branes were physical, we have the in�nite energy to
create these D-branes. This is not the desired feature
of course. By using the vacuum string �eld theory, one
may push most of these D-branes in so called \closed
string vacuum". In such a situation, while they con-
tribute to make the algebra associative, they do not
cost any energy.

II BCFT Axioms and Associa-

tivity

In the axiomatic approach to the Boundary Conformal
Field Theory (BCFT) [11], the boundary primary �eld
is characterized by four labels a; b 2 V , i 2 E , and
� = 1; � � � ; nabi . Here V represents the possible bound-
ary conditions for the given closed string background.
We have two labels a; b because we have two bound-
aries on the given open string. E is the set of the chiral
primary �elds. nabi represents the number of channels
for the primary �eld i when the boundaries are spec-
i�ed by a; b. If we represent Cardy state in terms of

Ishibashi state as jai =
P
i2E

 ai
Si1

jiii, we have the rela-
tion between them,

nabi =
X
j2E

Sij

S1j
 aj 

b�
j (3)

which is an analogue of Verlinde formula. By chang-
ing Saj (the modular transformation matrices of the
character) to  aj , one may represent CFT for the o�-
diagonal modular invariant.

We represent the open string Hilbert space with
given boundaries a; b as Hab. We write 	abi� (z) for the
boundary primary �eld and ji; a; b; �i the corresponding
highest weight state. Then Hab can be represented as

Hab =
�
L�n1 � � �L�n` ji; a; b; �i j i 2 V ; � = 1; � � � ; nabi

	
(4)

The star product which we want to de�ne is the map-
ping,

? : Hab 
Hbc ! Hac: (5)

Equivalently, one may de�ne the star product by using
the tri-linear mapping,

V3 : Hab 
Hbc 
Hca ! C: (6)

In the CFT type de�nition of the three string vertex
[12], the three string vertex operator is de�ned by the
three point function,

hV3jjAijBijCi = hh1 ÆA; h2 ÆB; h3 Æ Ci : (7)

The conformal transformations hi are de�ned by

h`(z) = e
2�i(`�1)

3

�
1 + iz

1� iz

�2=3

; ` = 1; 2; 3: (8)

which maps the upper half planes into each piece which
divides the unit disk into three. We note that the right
hand of (7) depends only on the conformal property of
three �elds A;B;C. Since the conformal weight of the
boundary primary �elds come only from the label for
the primary �elds i and not from the boundary indices
V , one may calculate the star product from the index
i 2 E for the primary �eld and the operator product
expansion for the chiral primary �elds,

�i(z)�j(w) �
X
k2E

Ckij

(z � w)hi+hj�hk
�k(w)+(descendants) :

(9)
We note that we do not restrict the conformal dimen-
sion to be one since we consider the o�-shell vertex.
The descendants parts of OPE can be deduced from
Ckij and the conformal property alone.

Combining these ideas, one arrives at the conclu-
sion that the star product can be in principle de�ned
without using the indices of the boundary. We use the
symbol � to denote this de�nition,

ji; Ii � jj; Ji =
X
k;K

C

�
i j k

I J K

�
jk;Ki ; (10)

where i; j; k 2 E represent the indices for the primary
�elds and I; J;K are multi-indices for the conformal
descendants.
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The particular form of Witten's vertex operator is
re
ected by the in�nite linear relations among the com-
ponents of the structure constant C. It can be derived
from the Ward identity for the three string vertex [13]

hV3j(L
(1)
vn + L(2)

vn + L(3)
vn ) = 0 ; (11)

for the vector �elds which are holomorphic in the world
sheet of the three string vertex. This relation can be
translated into the relations among C,

ÆnC

�
i j k

I J K

�
= 0 : (12)

These identities are supposed to be suÆcient to deter-

mine C

�
i j k

I J K

�
from the OPE coeÆcient Ckij for

the primary �elds.

The fact that the chiral primary �elds enjoy the non-
trivial monodromy implies that the � product which we
de�ned is not associative. In particular, the transfor-
mation rule for the chiral block function implies that
the structure constant C satis�es,

c

X
P

C

�
i j p

I J P

�
C

�
p k l

P K L

�

=
X
q;Q

Fpq

�
j k

i l

�
C

�
j k q

J K Q

�
C

�
i q l

I Q L

�
(13)

The coeÆcients F is called 6j-symbol for the chiral primary �elds and satis�es the unitarity condition,

F �F = 1 : (14)

The consistency condition for 6j-symbol was determined as,

FF = FFF (15)

which is called the pentagon identity [14]. Eq.(13) implies the associativity anomaly it implies that

(ji; Ii � jj; Ji) � jk;Ki =
X
p;P

C

�
i j p

I J P

�
jp; P i � jk;Ki

=
X
p;P;l;L

C

�
i j p

I J P

�
C

�
p k l

P K L

�
jl; Li (16)

ji; Ii � (jj; Ji � jk;Ki) =
X
q;Q

C

�
j k q

J K Q

�
ji; Ii � jq;Qi

=
X

q;Q;l;L

C

�
j k q

J K Q

�
C

�
i q l

I Q L

�
jl; Li (17)

The existence of the monodromy factor F then suggest the � product is not associative,

(ji; Ii � jj; Ji) � jk;Ki 6= ji; Ii � (jj; Ji � jk;Ki): (18)

In the axioms of the boundary conformal �eld theory, such an anomaly is absorbed in the boundary Chan-Paton
index as follows. We include the boundary labels in the de�nition of the state ji; Ii ! ji; I; a; bi. We then de�ne
the ? product by using the c-number coeÆcients (3j-symbol) as follows,

ji; I; a; bi ? jj; J; b; ci =
X
k;K

(1)Fbp

�
a c

i j

�
C

�
i j k

I J K

�
jk;K; a; ci (19)

The boundary 3j-symbol (1)F is required to satisfy,

(1)Fbp

�
a c

i j

�
(1)Fdp

�
a c

l k

�

=
X
q

Fpq

�
i j

k l

�
(1)Faq

�
b d

i l

�
(1)Fcq

�
b d

j k

�
(20)
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The star product becomes associative because of the
unitarity of 6j-symbol.

III Some comments

We give some comments and conjectures to be con-
�rmed in the future work in this section.

1. We note that the use of Chan-Paton degree of
freedom to describe the associative star product
is related to the global anomaly cancellation of the
world volume theory on the D-brane [8]. Namely
only when we have the appropriate number of D-
branes to cancel anomaly on the world volume.
It is interesting to see that this fact is related to
the purely algebraic constraint of the associativity
anomaly.

2. It is interesting to study this anomaly cancella-
tion mechanism can be applied to the Horowitz-
Strominger anomaly [3]. One possibility to
answer this problem may be the following.
Horowitz-Strominger anomaly arises when we
need to describe the space-time reparametrization
(namely the gauge degree of freedom of the closed
string). In CFT language, it amounts to the
marginal deformation of the closed string back-
ground. Such a deformation of the theory induces
the rede�nition of the primary �elds and at the
same time their OPE relations. In the conven-
tional operator formalism, there is no explicit de-
pendence of Chan-Paton factors and one arrives
at anomaly because of nontrivial 6-j symbol in
this background.

3. As we commented in the introduction, the frame-
work of the vacuum string �eld theory (VSFT) is
necessary to make our discussion consistent. The
VSFT conjecture may be summarized as follows.
When the open string tachyon is condensed, we
are supposed to arrive at the \closed string" vac-
uum. The description of such a state is given
by changing the conventional BRST charge Q to
the background independent one Q which is de-
scribed only in terms of the ghost �eld. This oper-
atorQ should not have physical spectrum since in
the \closed string" vacuum there is no D-branes.
When D-brane is excited from the vacuum, the
string �eld is shifted,

	! 	0 + Æ	 (21)

and expansion around this new vacuum gives a
new BRST charge,

Q = eK(Q+ [	0; ]?)e
�K (22)

with an appropriate \unitary transformation" K.
	0 is described by the projection operator of ?

product and Q should have nontrivial physical
states which lives on the created D-brane. Due to
the nonzero shift 	0, the vacuum energy is shifted
by the value of the action S(	0) which can be in-
terpreted to give the tension of the D-brane.

In our discussion, when the closed string back-
ground is generic, the monodromy matrix F can
be canceled only when we introduce the in�nite
number of D-branes. If all of these D-branes
should be physical, we su�er from the in�nite con-
tribution of the D-brane tension. This is incon-
sistent. So if we only have the open string �eld
theory of physical D-branes, we can not de�ne the
open string degree of freedom at all. However, if
we deform the closed string background to more
trivial one such as 
at space, the existence of the
�nite number of the D-branes becomes possible
and we need the open string �eld theory which
describe them. In this sense, the behavior of the
open string �eld theory heavily depends on the
closed string background which can be continu-
ously deformed. It implies that we have a discon-
tinuity of the description of the open string degree
of freedom in the moduli space of the closed string
background.

If we use the VSFT scenario, however, one may
keep the in�nite number of D-branes hidden
in the background without consuming energy.
When background changes, the open string al-
gebra changes continuously and at some speci�c
points, one may construct the projection operator
of ? product. Therefore in this framework, there
is no discontinuity of the description of the open
string. The discontinuity depending on the back-
ground comes from the consistency of the con-
struction of the projection operator, which looks
more natural to work with. One possible strat-
egy to de�ne VSFT with Chan-Paton factor is
discussed in [15].
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