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This is a short review of the derivation of the spectrum of the Dirac operator in QCD4 in a �nite
volume V by means of the replica trick. The derivation is nonperturbative in the QCD coupling
and it is in agreement with lattice results as well as chiral random matrix theory (ChRMT). Our
results hold in the energy scale where chiral symmetry is broken and the Pion wavelength is much
bigger than the size of the system (�� >>> V

1=4).

I Introduction and motivation

In this section we will recall some basic properties of the

spectrum of the Dirac operator in QCD4 and explain

why is it interesting to study such operator, for a review
paper see [1]. First, let us start from the partition func-

tion of QCD4 in Euclidean space which corresponds to

integrate over the gluons and Nf 
avors of quarks.

c
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Z
[dA]e�SYM

NfY
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D fD � f e
�
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�
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d

where SYM represents the Yang-Mills action for the

gluons and

/D = (@� + {A�)

�; A� = Aa� Ta ; a = 1; � � � ; N2

c � 1

The formulas in this section and in the next one hold for

arbitrary integer Nf and Nc . In Euclidean space all
gammamatrices can be chosen Hermitean and therefore

the Dirac operator is anti-Hermitean and its eigenval-

ues are pure imaginary numbers which show up in pairs

{�k and �{�k due to 
5 /D = � /D
5. That is,

/Dy = � /D

/D k = {�k k �k 2 <
/D(
5 k) = �{�k(
5 k)

The pairing across the origin �k = 0 guarantees the

de�nite-positiveness of the partition function which will

allow us to use the Va�a-Witten theorem [2] to derive

the chiral symmetry breaking pattern. Positiveness of

the partition function can be easily seen as follows,

ZNf =

Z
[dA]e�SYM [det( /D +m)]

Nf
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Z
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NY
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({�k +m)
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=

Z
[dA]e�SYM

NY
k=1

�
�2k +m2

�Nf

In D = 3 we do not have such a pairing of eigenvalues

since there is no 
5, consequently the partition function

for QCD3 does not have a de�nite sign in general [3, 4].

For even Nf one can choose half of the masses as parity
re
ected (negative sign) to the other half such that we

still have a de�nite sign for the partition function.
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>From the above we already see that the origin of

the spectrum plays a special role. Such zero eigenval-

ues are closely related to chiral symmetry which is the

main motivation to study the spectrum of the Dirac
operator. More precisely, one can �nd a direct relation

between spontaneous chiral symmetry breaking and the

density of zero eigenvalues. Before we get there we �rst

recall how spontaneous symmetry breaking can occur
in the simpler example of the 2D Ising model in a ex-

ternal magnetic �eld since the situation is very similar

to QCD.

The partition function of the Ising model is given

by a sum over all spin con�gurations on each site of the
lattice, i.e.,

ZIsing =
X
f�ig

e
J
P

<ij>
�i�j+H

P
N

i
�i (1)

Where J > 0 and H are constants and we have only

two possibilities for the spin on each site �i = �1.

Without magnetic �eld H = 0 we have a Z2 symme-

try �i ! ��i since the nearest neighbor interaction
is quadratic. Turning on the magnetic �eld we break

explicitly the Z2 symmetry however we expect that in

the limit H ! 0 we recover it. It turns out that this

is not the case and at low temperatures, even without

magnetic �eld, all the spins line up and the up/down Z2

symmetry is broken in the vacuum although the Hamil-

tonian is Z2 symmetric in the limit H ! 0. We can

measure the amount of spontaneous symmetry breaking
by computing the magnetization :

m = lim
H!0

1

N
@H logZIsing =

hNup �NdowniH!0

N
(2)

It is assumed that we �rst take the thermodynamic

limit N ! 1 then H ! 0. Whenever m 6= 0 the

Z2 symmetry is spontaneously broken. In QCD4 the
role of the magnetic �eld is played by the mass of the

quarks m whose term breaks the chiral symmetry ex-

plicitly. The role of the magnetization is played by the

chiral condensate < � f f > :

< � f f >QCD(m!0)= lim
m!0

1

NfV
@m logZNf (3)

Once again we take V ! 1 before m ! 0. If

< � f f >6= 0 the chiral symmetry is broken spon-
taneously. Next we derive a direct relation between the

chiral condensate and the spectral density of the Dirac

operator in QCD4. As a �rst step we derive the parti-

tion function w.r.t. the quark mass,

c

1
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Now using the following representation of Dirac�s delta

function,

Æ(x) =
1

2�
lim
m!0

�
1

�{x+m
+

1

{x+m

�

=
1

�
lim
m!0

m

x2 +m2
(4)

and the de�nition of the average macroscopic spectral

density �(�) :

�(�) =

*
NX
k=1

Æ(�+ �k)

+
QCD(m)

(5)

It is a simple exercise to prove the following direct re-

lation between spontaneous chiral symmetry breaking

and the spectrum of the Dirac operator [5] :

lim
m!0

j < � f f > j =
�

V
�(0) (6)

From (6 ) we see that in order to have spontaneous chi-

ral symmetry breaking we must have a non-vanishing

average spectral density at the origin of the spectrum.

Henceforth we will be interested in calculating the spec-
tral density of the Dirac operator close to the origin of

the spectrum in order to compare with similar results

obtained in lattice [7] QCD and through ChRMT [1]].

II Partial quenching

As a �rst step it is convenient to write the average spec-

tral density as a discontinuity equation as in (4), i.e.,
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Notice that the probe mass z in the last equation is

di�erent from the original quark masses m. The mass

z is called valence quark mass. In order to obtain the

spectral density we just have to calculate �(z) de�ned

below

�(z) =

�
Tr

1

/D + z

�
m

(7)

Now the question is: How do we obtain �(z) ? By using

the mathematical identity:

Tr
1

/D + z
=

1

det ( /D + z)
@z det ( /D + z) ; (8)

there are at least three di�erent ways to proceed by

introducing extra vallence quarks as we explain in the

next three subsections.

II.1 Supersymmetric Method

Introducing two extra vallence quarks of opposite statis-
tics in the partition function:

c

ZNf+1;1 =

Z
dA e�SYM [A]det( /D + z + J)

det( /D + z)
[det( /D +m)]Nf

d

we can obtain �(z) using (8),

�(z) =

�
Tr

1

/D + z

�
mf

= lim
J!0

@J logZNf+1;1

Each method has its own advantages and prob-

lems and they all depend on a convenient choice of

parametrization of the manifold of the relevant degrees

of freedom. The supersymmetric method becomes cum-
bersome for higher point spectral densities and requires

an extension of the chiral symmetry breaking pattern

to the supersymmetric case but it furnishes [6] nonper-

turbative results (in the valence quark mass z ) which

are in full agreement with lattice [7] simulations and the
ChRMT (see [1]). To learn more about this method see

the book [8].

II.2 Bosonic replicas

In this case we introduce an arbitrary number of ex-
tra bosonic quarks with the same mass z, called replicas

[9, 10] , as follows :

ZNf ;n =

Z
[dA] e�SYM [A] [det( /D +m)]Nf

det( /D + z)n
:

And obtain �(z) by means of the replica limit n! 0 :

�(z) =

�
Tr

1

/D + z

�
mf

= lim
n!0

1

�n
@z logZNf ;n

II.3 Fermionic replicas

This case is similar to the last one, but instead of

bosonic replicas we now add an arbitrary number of
fermionic quark replicas,

Zn+Nf =

Z
dA e�SYM [A]det( /D + z)n[det( /D +m)]Nf

and take again the replica limit,
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�
Tr

1

/D + z

�
mf

= lim
n!0

1

n
@z logZn+Nf (9)

Both replica methods can only be used, in general,
perturbatively in the vallence quark mass z. It turns

out that bosonic replicas do not work [11]. Mathemat-

ically, the reason for the failure is the lack of a replica

symmetry breaking saddle point to expand around.
From now on we will concentrate on the use of fermionic

replicas. From (9) we see that all we need is the ex-

tended partition function Zn+Nf (z;m) . We need to

know the partition function at low energies where chi-

ral symmetry is broken. This is the subject of the next
section.

III Low-energy QCD

When a continuum symmetry G is broken down to a

subgroup H spontaneously, then Goldstone theorem

establishes that massless bosons would appear in the

spectrum and the number of such bosons is the same

number of generators of the algebra of the coset G=H .

On the other hand, it is believed that chiral symmetry
is broken spontaneously in QCD at low-energy. Since

at low-energy (large distances) we expect the lightest

particles to play a major role, it is natural from the

above to expect that the Goldstone bosons are the rel-
evant degrees of freedom in low-energy QCD. In prac-

tice however we should take into account that chiral

symmetry is only an approximate symmetry of QCD

because the quarks are massive so the low-energy the-

ory should also depend on the quark masses and in
a way that it reproduces the covariance properties of

the QCD partition function under changes of the mass

matrix. Assuming also Lorentz covariance and the ex-

istence of the theta vacuum one can arrive at the chiral
e�ective Lagrangian below ( see [12, 13]) at leading or-

der in a derivative expansion,

c

Lchiral =
F 2

4
Tr(@� ~U@� ~U

y)�
�

2
Tr(e

{�
Nf My ~U + e

�{�
Nf M ~U y)

d

Where ~U 2 G=H , the quantity F is the pion decay con-

stant and �� is the in�nite volume limit of the chiral

condensate. The quark mass matrix M is in princi-

ple, without replicas, a Nf � Nf matrix. The coset

G=H depends on the fermion representation and on

the number of colours, For instance, for fermions in

the fundamental representation and Nc � 3 , i.e., for

the Dyson index � = 2 , the QCD action in the chi-

ral limit m ! 0 is invariant under independent global

rotations of left and right-handed fermions which leads

to a UL(Nf ) � UR(Nf ), however when all the angles

of the rotation are equal we have a U(1) transfor-

mation which is known to be broken by the chiral

anomaly, thus reducing the quantum axial symmetry

to SUL(Nf ) � SUR(Nf ). If the chiral condensate is

nonvanishing the chiral symmetry is broken down to

the subgroup of rotations which are equal to left and

right-handed fermions, i.e., vector SU(Nf ) since those

cannot be broken spontaneously according to the Vafa-

Witten theorem. Therefore we end up with the coset

(SUL(Nf )�SUR(Nf ))=SU(Nf ) which is equivalent to

G=H = SU(Nf ). The other cases � = 1; 4 can be

similarly derived (see [13] for a clear derivation ).

The e�ective Lagrangian Lchiral is a good approx-

imation when distances are large enough (low-energy),

i.e., V 1=4 >> 1=�QCD and the quark masses are small.

The regime where we are interested in corresponds to

further assume that the typical pion wavelength is much

bigger than the size of the system, i.e., 1=m� = �� >>

V 1=4 In this speci�c domain the pion wave function is

like a constant inside the box and the zero momentum

mode U0 dominates, such that we can neglect the ki-

netic term in Lchiral. We can write ~U = �UU0 and the in-

tegral over the nonzero modes �U will become, in the in-

�nite volume limit, an overall factor to the integral over

the constant mode U0 henceforth called simply U . For

� = 2 we should have an integral over SU(Nf ), however

in the sector of �xed topological charge � (number of

instantons minus the number of anti-instantons) we can

enlarge it to an integral over U(Nf ) as follows. First,

one can obtain the partition function in the sector of

�xed topological charge Z
(Nf )
� from the partition func-

tion with �xed theta angle through a Fourier transform:
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c
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dU e
1
2
Tr(e

�{�
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Z
(Nf )
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Z
U(Nf )

dU (detU)
�
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Notice that we have combined d�dU(SU(Nf )) !

dU(U(Nf )) and M = mV �� .

IV Spectral density via replicas

Now that we know the partition function for an arbi-

trary quark mass matrix we can return to our fermionic
replicas formula:

�
Tr

1

/D + z

�
QCD(�)

= lim
n!0

1

n
@z logZ

(Nf+n)
�

and instead of the original quark mass matrix we have

extra n masses z:

M = diag(m1; � � � ;mNf ; z; � � � ; z)

As a further simpli�cation we restrict ourselves to the

quenched (Nf = 0) case where the quark mass matrix

only contains the replicas masses:

M = z 1n�n (11)

.

With the corresponding partition function:

Z(n)
� (z) =

Z
U(n)

dU (detU)
�
e
z
2
Tr(U+Uy) (12)

It is very fortunate that there is an exact formula

for Z
(n)
� (z), at least for integer number of replicas n ,

we have up to an overall constant [14] :

Z(n)
� (z) = det (I�+i�j(z)) ; i; j = 1; � � � ; n (13)

With I�(z) being a modi�ed Bessel function of �rst
kind. For example, for n = 1 and n = 2 replicas we

have

Z(n=1)
� = I�(z)

Z(n=2)
� = I2� (z)� I�+1(z)I��1(z)

Although formula (13) is exact it is only true for inte-

ger number of replicas, but in order to take the replica

limit n ! 0 we need to know the partition function

Z
(n)
� for arbitrary complex number of replicas. That

is, we need to continue the partition function to non-

integer number of replicas which is the most diÆcult

technical problem in replica calculations. We still do

not know how to do it for arbitrary �nite mass z but

one can either do perturbations for z ! 0 (Taylor ex-
pansions) or take z ! 1 (saddle point calculations ).

It turns out that, in general, the �rst approximation

can not be analytically continued to arbitrary num-

ber of replicas due to the presence of the so called
t'Hooft - De Wit poles. On the other hand the sad-

dle point approximation is much more suitable. For

large z the integral (12) is localized around the saddle

points which are solutions of the saddle point equa-

tions Æ(U + U y) = 0 which imply U2 = 1. Those
equations have in�nite solutions which can divided in

n + 1 classes labelled by an integer p = 0; 1; � � � ; n.

Each class of solution is represented by its diagonal el-

ement Up = diag(1; 1; � � � ; 1;�1; � � � ;�1) where the
label p counts the number of entries �1 in the diagonal

and consequently n � p entries +1. For a given value

of p we have

e
z
2
Tr(Up+U

y
p) = e(n�2p)z (14)

Therefore it is clear that for z ! +1 the solution p = 0
(replica symmetric) dominates and all other solutions

are exponentially suppressed. However, there comes

an important subtlety. Namely, we are actually inter-

ested in the spectral density which will be calculated
from a discontinuity equation at z = i�+ �, thus large

masses means in fact z ! +{1 + � and in this case
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all solutions are almost equally important. If, for in-

stance, � > 0 (assumed here) the solutions with smaller

p give the largest contributions but since the di�erence

between them is in�nitesimally small all saddle point
classes should in principle be taken into account. Thus,

we should sum over all of them,

Z(n)
� (z) =

nX
p=0

Vol

�
U(n)

U(n� p)� U(p)

�

�

Z
dVp (detVp)

�
e
z
2
Tr(Vp+V

y
p) (15)

where we have used the decomposition

U = U0VpU
y
0 ; U0 2

U(n)

U(n� p)� U(p)

and factored out the volume of redundant solutions in

each of the n + 1 classes. The unitary matrix Vp is

n � n and block-diagonal. It is convenient to write
Vp in terms of matrices H and h which are Hermitean

(n � p) � (n � p) and p � p respectively, such that

the expansion around the diagonal saddle points means

H;h! 0, i.e.,

Vp =

 
1+iH=2
1�iH=2

� 1+ih=2
1�ih=2

!
n�n

=

0
@
�
1� H2

2 + � � �
�

�
�1+ h2

2 + � � �
�
1
A ;

The integral over dVp now reduces to integrals over

Hermitean matrices which can be easily evaluated and

continued to non-integer number of replicas. Typically,
for instance for p = 0, we have for z !1,



Tr(H4)

�
=

R
dHn�n e

�(z=2)Tr(H2)Tr(H4)R
dHe�(z=2)Tr(H2)

=
n+ 2n3

z2
(16)

The result on the r.h.s. of (16) is an analytic function
of the number of replicas and so will be the integral

over dVp in (15). Still we have to continue the sum

and the volume factor in (15) to arbitrary number of

replicas. Fortunately, the same volume factor appears

in [17], plugging back their continuation in our results
it amounts to take into account only p = 0 and p = 1

saddle points while the other saddle points drop out in

the replica limit. Consequently,

c

�
Tr

1

/D + z

�
�

=

�
Tr

1

/D + z

�
�;p=0

+

�
Tr

1

/D + z

�
�;p=1

Besides the real contribution of the p = 0 saddle point calculated in [15, 16] the chiral condensate �(z) gets an
imaginary part comming from the nontrivial p = 1 saddle point [11] :

�
Tr

1

/D + z

�
�

= 1�
i(�1)�e�2z

2z

+
(4�2 � 1)(1� i(�1)�e�2z)

8z2
+ � � �

From the discontinuity equation we �nally obtain the microscopic spectral density of the Dirac operator in the

quenched case (Nf ! 0):

�s(�) =
1

2�

"�
Tr

1

/D + z

�
z={�+�

+

�
Tr

1

/D + z

�
z=�{�+�

#
�;Nf=0

�s(�) =
1

�

h
1�

cos(2�� ��)

2�
+

1� 4�2

8�2
(1� sin(2�� ��)

+ (4�2 � 1)(4�2 � 9)
cos(2�� ��)

64�3
+

+ (4�2 � 1)(4�2 � 9)
(�6 + (19� 4�2) sin(2�� ��))

273!�4
+ � � �

i
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Our results hold for arbitrary topological charge � and

the oscillating terms all came from the nontrivial saddle

point p = 1. Using asymptotic expressions for Bessel

functions we found full agreement with the correspond-
ing ChRMT analytical result:

�ChRMT
s (�) =

j�j

2

�
J�(�)

2 � J�+1(�)J��1(�)
�

until the order 1=�4 where we stopped our calculation.

It is remarkable that for half-integer values of � the

large mass expansion terminates and the replica result
becomes exact .

V Conclusions and perspectives

We have been able to calculate the microscopic spectral

density �S(�) of the QCD Dirac operator close to the
origin of the spectrum by means of fermionic replicas

of quarks. Our results are perturbative and hold for

large arguments � ! 1 . In this region they overlap

previous results obtained via ChRMT , lattice simula-

tions and the supersymmetric method. Contributions
of all saddle points is crucial for the correct result. We

have assumed the continuation to arbitrary number of

replicas of the work [17] which has not yet been proven

to be unique. For instance, as commented in [18], we
could add to our partition function, de�ned for inte-

ger number of replicas, an arbitrary extra factor which

vanishes for integer number of replicas but gives a non-

trivial contribution in the replica limit like, e.g.,

lim
n!0

1

n

�
Z(n)
� + a sinn�

�
= lim
n!0

1

n
Z(n)
� + a�

since the extra term is arbitrary so it is the replica re-
sult. Clearly we might try to �nd relations between

the partition function for di�erent number of 
avors

and topological charges to avoid the addition of such

arbitrary terms however we still do not have a proof of
uniqueness of our replica result.

The opposite limit z ! 0 can not be continued in n

in general, though we found for the special case � = 0

that �(z) = z=2 + � � � . This is a very nontrivial result

[11] which is also in agreement with other non-replica
calculations (see [1, 6]).

Concerning future calculations we should mention

that we have assumed Nc � 3 and fermions in the

fundamental representation (� = 2) but there are
other cases Nc = 2 (� = 1) and adjoint fermions

(� = 4) which might be explored as well in D = 4 and

D = 3. Besides, inclusion of chemical potential � 6= 0

is phenomenologically and mathematically interesting

(see[1, 19]). The use of Virasoro constraints around
nontrivial (replica nonsymmetric) saddle points is also

of interest if we want to understand local correlators as

�xed by the Virasoro constraints [20].
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