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Thisisapedagogical introduction to the general technique of bosonization of one-dimensional systems starting
from scratch and assuming very little besides basic quantum mechanics and second quantization. The formalism
is developed in a self-contained fashion and applied to the spinless and spi n-% Luttinger models, working out
both single and two particle correlation functions. The implications of these results for the specific cases of
the (anisotropic) Heisenberg and the Hubbard models are discussed. Although everything in these notes can be
found in the published literature, detailed and explicit calculations of most of the results are given, which may
prove useful to beginning graduate students or researchersin this area.

| Introduction

These notes formed the basis of a series of lectures given
at the Brazilian Statistical Mechanics School, which took
place from February 18 to 29, 2002, at the Universidade
de S3o Paulo in Sdo Carlos. While writing them, | had in
mind abeginning graduate student in physics, already famil-
iar with basic Quantum Mechanics, including the formal-
ism of second quantization, but not with very much more.
| follow through the mathematical details necessary to es-
tablish the bosonization technique of one-dimensiona sys-
tems, which is by now a rigorous and mature method that
underlies much of our understanding of these systems. It
has found many applicationsin real quasi-one-dimensional
systems such as quantum wires [1], carbon nanotubes [2]
and edge states of the quantum Hall effect [3]. For the sake
of motivation, | focus on two models: the Hubbard model
of spi n—% fermions and the anisotropic (XXZ) Heisenberg
Spi n—% model. | should stressthat all the material coveredin
these lectures can be found in oneway or another in the pub-
lished literature, so thereisno claim of originality. However,
the detail and care with which some calculations are done
may be useful for the uninitiated, who are the main targets
of these notes.

The topic of bosonization is covered in many review ar-
ticles. Some of then are [4, 5, 6, 7, 8]. Some of the original
articlesare[9, 10, 11, 12, 13, 14, 15, 16]. | have drawn ex-
tensively from Haldane [15], von Delft and Schoeller [8],
Vait[7] and Affleck [6].

These notes are organized as follows. Section Il in-
troduces the two basic models. The fundamental tools of
bosonization are developed in Sections 111 to XIIl. Sec-
tion XIV focuses on the basic interacting model solved by
bosonization, the Luttinger model. This is then applied to

the XXZ model in Section XV. Section XVI is devoted to
the important Luttinger liquid conjecture by Haldane. The
case of spin—% fermionsis studied in Section XVII. We end
with a brief discussion of gaps and the sine-Gordon theory
in Section XVIII.

Il The Hubbard and the Heisenberg
models

Our aim will be to study strongly correlated systemsin one
spatial dimension. Thesearetypically systems of interacting
electrons but we will be interested in spin systems as well.

The prototypical interacting electron system is the Hub-
bard model. This is a lattice model whose Hamiltonian in
onedimensionis

Hyyp = —tz (c;r-chH(I + h.c.) + UZC}TCJ-TCLCN.
jo j

D
The first term describes the hopping process, in which an
electron can move from one site to the next with ampli-
tude ¢ while preserving its spin projection o (taken arbitrar-
ily aong the z-axis). The second term describes the local
Coulomb repulsion (U > 0) between opposite spin electrons
residing on the same site. This is the so-called Hubbard U
interaction term, named after one of the first people to work
on thismodel in a series of classic papers[17, 18, 19]. This
is one of the simplest interacting fermionic models one can
write and has been extensively studied.

The ¢;, operators are the usual annihilation operators
with anti-commutation relations
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Another important model is the spin -1/2 XXZ model,

Hxxz =17 (S{Sf +S]Si, +ASiSi). (4
j

Here, S¢ are spin- % operators with commutation relations

a = x,y,z orequivalently 1,2,3, (5)

+ 1). The symbol £2%¢ is the totally anti-symmetric Levi-Civitatensor

0 if therearerepeated indicesamong (a, b, c)
1 if (a,b,c) isan even permutationof (1,2,3) . (6)
2

—1 if (a,b,c) isanodd permutationof (1,2, 3)

J isthe exchange coupling and A the anisotropy parameter.
A specia important case of (4) isat A = 1, the so-called
isotropic Heisenberg model

Hyeis = JZ S;-Sjy1. (7)
J

Both models (1) and (4) can be solved exactly in one dimen-
sion (and only in one dimension) by means of the celebrated
Bethe Ansatz [20, 21]. However, though the Bethe Ansatz
can give the spectrum of eigenvalues and eigenvectors (plus
a bit more), there is still alot of important information that
it cannot give, such as correlation functions.

The technique of bosonization, specialy suited for one
spatia dimension, is a powerful field-theoretical tool that
enables one to calculate correlation functions. In fact, it
givesus avery great deal of insight into the physics of one-
dimensional systems by classifying them into “universality
classes” and by characterizing their spectrum of low-lying
excitations.

Getting ahead of ourselves, it consists of a systematic
mapping of a fermionic system (states, operators, Hamilto-
nians, etc.) into an auxiliary bosonic one. It turnsout that the
bosonic language is often more suited for the understanding
of the physics of the system, sometimes even allowing for
its exact solution, aswe will see.

We will embark on this construction taking the Hubbard
model asaguide and it will become clear how it can be gen-
eralized to other models.

Let us first look at the non-interacting limit (U = 0).
In this case, the Hamiltonian can be easily diagonalized by
means of Fourier transformation. Define (we work with the
lattice spacinga = 1)

L zk] 711»]

k= Z LN(:)CLJ—Z\/— (8)

and the inverse transformation

]U_Z

keBZ

zk]
c,w & Cjo = Z 9
\/_ keBZ \/_
Note that we have “put the system in abox (ring)”, which is
short for working on afinite lattice of L sites, with periodic
boundary conditions

711»]6 ikL i
PSR Nt g N 610)
keBZ
Thelast equality followsiif
. 2
el —1 = k= f”n (12)

where

n:O,il,i2,...,:t<£—1>,£. (12)
2 2
We take even values of L even for simplicity. Higher values
of n areredundant since, if k = 2% (£ + 1), then
eiki — ei%’“(%+1)] — el 22 (L-%+1)5 _ 67127(£71)J _ eik’j,
(13)
wherek’ = 2% [— (£ — 1)] and k is completely equivalent
tok'. The set (12) is called the first Brillouin zone (hence
thek € BZ). Notethat £ and —L are also equivalent (by
asimilar argument) and we keep only g Theinversetrans-
formationis now easily proved

71 kj —ikj zkl

= C

]o’ § : /_ ka’ z : / lo
keBZ keBZ

1 , ,
— E : Z ik(l—j) . _ .t
-7 e ( J)cla' - cja’

L

=1 keBZ

where we used (see Appendix A.1 for the proof)
> et = L. (14)

keBZ
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It is important to have the anti-commutation relations in k- {c,w, CL,U,} N (15b)
space
which are also easily proved.
Taking these expressionsinto the non-interacting Hamil -
{Chos Clior } = {cL(,, cz,a,} =0, (15a) tonian, we have
]
e—iki ei(i+1)
Hy = —tz c;f-acjﬂa +he) = —tz Z —cza Z ————Cpo +hoc.
jo ( ) keEBZ \/Z peEBZ \/Z
t L .
=-7 Z Ze”(p*’”)e’pczacm +h.c. =—t Z e‘kciack(I + h.c.
k,pEBZ jo kEBZ
= -2t Z cos (k) cLUcka = Z e (k) cLacko, (16)
keBZ keBZ
|
wherewe have used Appendix A.1. The Hamiltonian is now the fact that, in the thermodynamic limit (L — o)
diagonal in the k-basis and is easily solved,
Lz 2mn L (™
CLJC]“, = ny, = 0orl (foreacho andk). (17) Zf (k) = Z f (T) ~ %/ dk f (k)
k n=—L/2+1 -
(19)

The ground state for N electrons corresponds to filling up
all the states, from the lowest energy up, until the V lowest-
energy orbitals are filled up (with due care of spin degen-
eracy). The highest occupied level is the Fermi level, its
energy the Fermi energy E'r and its wave-vector the Fermi
wave-vector kr (see Fig. 1). The relation between N and
kr is

kr
N = L/ dk o — 2kl
kg 2T m
op = N 2r (18)
L T

Figure 1. The non-interacting Fermi sea.

The extrafactor of 2 comes from spin degeneracy. We used

where f (k) isageneral function of k. Inthe exampleabove,
f(k) = 0(kr —|k|), where 6 (z) is the usual Heaviside
theta-(step-)function.

Il Linearized spectrum

Let us now look at the effect of interactions. If U < ¢ (per-
turbativeregion), it is natural to assumethat only low energy
states will be much affected. This is reasonable within sec-
ond order perturbation theory, where

0|Hy|n) (n|Hy|0)

AE(Q) < ) 20

0 n%éo Fo_ L, (20)
>y Hy|0)

Aloy® (n|Hy 21

where Hy is the interaction part of Eq. (1). It is clear that
the denominator suppresses corrections coming from higher
energies. We thus can reasonably focus on the low-energy
subspace.

Looking at the dispersion relation, it is reasonableto lin-
earize the spectrum around the two Fermi points (seeFig. 2),
if we are going to be concerned mostly with weakly excited
states. We will choosethe zero energy sothat £ = 0. Note
that the reduction of the Fermi sphere to two disconnected
“Fermi points’ is a feature specific to one dimension and
central to the upcoming developments.

Now, since the two dispersions, cosine and linear, differ
only at higher excitation energies, we will simply replace
one by the other. But remember that we are effectively re-
stricted to low energies if we want to say something about



the Hubbard model. Now we have two branches of excita-
tionsin the V-shaped spectrum of Fig. 2. Finally, we can ex-
tend each branch so that k runs from —oo to co, effectively
introducing an infinite number of states in each branch, the
so-called “positron” states, by analogy with the Dirac spec-
trum in one dimension. We therefore abandon for a mo-
ment the Hubbard model and focus on the “linear dispersion
model” of Fig. 3. Because we have an infinite number of
states in each branch, we will haveto introduce certain care-
ful “cut-off” procedures to correctly define the theory. We
will call the branches

E(K)=v(k-k)+E, ——>

g, (K)=—v, (k+k.)+E,

L(/

g(k)

-2 b

Figure 2. Linearization of the spectrum.

o B N W
T T T

g(k)

Figure 3. The linear dispersion model.

e(k) = wvr(k—kr) = Right moving branch,(22)
e (k) —vr (k + kr) = Left moving branch,
(23)

accordingto the signsof the velocities. Therelation between
this spectrum and the | attice one is given by
_ k)
T ok

= 2tsin (kp) . (24)
k=kp
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Let us for now focus on the right movers. We still want
towork “in abox” with periodic boundary conditions so

k=20 (25)

but now

n=0,+1,42,..., (26)

since the spectrum is not bounded. This is equivalent to
working in the continuum limit, where the lattice spacing
a — 0 and the Brillouin zone (—Z, ) — (—o0,00). The

a’ a

creation and annihilation operatorsstill satisfy Egs. (15). We

now define field operators + (), operator-valued functions
of the continuousvariable z € [— % , 5] which are the con-

tinuum limit analogs of ¢;, (we forget about spin for a mo-
ment)

¢ (x) = Z etk @27
k—foo

pt(z) = Z ekl (28)
k—foo

It is better to think of this as a definition. We will worry
about how to relate ¢ () to c; more precisely later. From

nowon Y, = Y7 . Notethat ¢ (z) is periodic with
period L

Ylz+L)=1(z). (29)
It follows that

{v(@), v} ={¢" @), 0" »}=0 (30

and

{UJ (m) ,w’r (y)} — % Zeikwe—ipy {Ck’C;r)}
k,p

13 ()

n=—oo

_l ik(z—y)
_sz:ek Y

+o00

Z d0(x—y—nlL), (31)

n=—oo

where we used Eq (362) of Appendix A.2. If (z,y) €
(L, L)y = {¢(z (y)} =6 (z — y) whichistheana

logue of {c], ;f } = 6]-,j, in the continuum. Furthermore

— L 5 —ikx
cr = i /_% dze Y (z) (32

is the inverse transformation.
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IV Hilbert space

In field theory, where we have an infinite number of degrees
of freedom, it is important to be specific about the Hilbert
space we are working with, as this is not always obvious
from the Hamiltonian. Let us do that for our linearized
branch.

First, let's imagine that kr = 0, for simplicity. Then
we start from a vacuum state |0),, which is the “ Dirac sea’
of an infinite number of fermions occupying all states with
k € (—o0,0] Or

n=0-1,-2,..., (33)

Figure 4. The vacuum state |0),, of the right moving branch.

Thus,
¢, 10)g =0, k>0, (34a)

¢k 0y, =0, k<O0. (34b)

The Hilbert space # is spanned by all the states that can be
generated by acting with afinite number of ¢, or cL on(0),,
see Fig. 5. It is useful to classify these states according to
the total number of fermions. Since thisis an infinite num-
ber, we use instead the difference between the total number
of fermions of the state and that of |0),, which is a finite
number. |n other words, we use the number operator

N:EZM%—Q%QJ, (35)
k

where (—), = ¢(0]|—|0),. It is aso customary to de-
fine the operation of normal-ordering a string of creation
and annihilation operators ABCD .. ., usualy denoted by
: ABCD ... :. It amountsto moving all operators that de-
stroy the vacuum (Eq. (34)) to the right by doing transpo-
sitions and multiplying by -1 each time. For example, if
k1 <0, ks >0, k3 >0, ks <0, then

AR A - i T
) cklckz ck3 ck4 T _ckz ck4ck1 ckg' (36)

It is equivalent to the above subtraction of the vacuum ex-
pectation value when there are only two operatorsinvolved

N:Z:cick:. (37)
k

Besides, the two operations are equivalent when taking av-
erages in the vacuum (though this is sometimes omitted),
since

(:ABCD...:), =0. (38)

Thus, we can group all states of 7 according to N,
eigenvalues of N. Itisclear that N € Z.. For fixed N,
the lowest-energy state, the one with no particle-hole ex-
citations, will be called the N-particle ground state (see
Fig. 5(a) for an example)

ehehoy-cll0)g = IN), (N >0), (39)
CN41CN42  C_1G|0)g = |N)y (N <0). (40)

The Hilbert space with fixed number of particles H s is
spanned by all numbers of particle-hole excitations on the
corresponding NV -particle ground state (see Fig. 5(b) for an
example). It follows that

H=HoDPHI PH2PD--- . (42)

Figure 5. Examples of states that generate the Hilbert space H.
(@) The four highest energy particles of |0), have been removed.
Thisis the —4-particle ground state |—4), ; (b) Two particle-hole
excitations have been created on |0),.

V Density operators

We now define an important linear combination of operators
that create particle-hole excitations, the density fluctuation
operators, or smply density operators, for ¢ # 0 only

p@) =) el (42)
k

Note that p (—q) = p' (¢) . The reason why they are called
density (fluctuation) operators becomes clear from
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1 )
. E:ﬂqz. t .
ck'_L e CChygCr
kq

N 1 »
711 Y e p(q). (43)
q#0

Inthelast step, we removed the normal-ordering sign in the first term, because it is redundant when the two fermion operators
have different k-indices. Let's calculate its commutators (we make use of [A, BC| = {A,B}C — B{A,C})

) p @) =3 [ehyyeuchyge]

kk’

— T T
= E :{ck’+p6k'7k+qck - Ck+qck'5k’+p,k}
kk!

Ifp# —q,
[p(P),p(q)]

If, however, p = —q,

[p(p zk: [ CrCr <ckck>0 -

We can now makethe shift £ — p — k within the normal or-
dering sign because it does not introduce infinite quantities.
The two terms cancel. We are left with

[p(p),p(-p)] = Z{<(;Lck>0—<cl,pck,p>o}
k
_ _%p (47)

Note theimportance of the presence of theinfinite Dirac sea.
Thus

Lp
[o (), p ()] = =5 —0p,—q- (48)
Thisis an example of a current algebra. It almost looks like
a bosonic commutation relation. We can make it precisely

that by defining
27

b, = L—qp(—q) (¢ >0), (49)
2T
bl = " (@ (@>0), (50)
]
P @Y = T
N
T L

=p(P+q)

§ : —zqz

\/1_ Z Va [e"7b, + e "b]] . (55)

T T
{c "4p [ck,,ck+qck] + [ck,+p,ck+qck] ck,}

[ck+p+qck Ck+qck p]' (44)
—p(p+q) =0. (45)
el ey = (e, |- (46)

|

such that
[bq,bq,] - [bg,b;] —0, (51)
[bq,bH = Gy (52)

These are bona fide bosonic creation and annihilation oper-
ators. We can write

2
FLbh qg>0,

(53)
LQ‘_glb—q q<0,

and

) + €% p(—q)] (54)
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Itis quite easy to show that

[bq,N] - [bz,,N] —0. (56)
Finaly, note that
b, IN) =0, Vq,N. (57)

Physically, this means that the N-particle ground state con-
tains no particle-hole excitations.

Normal ordering bosons (also denoted by : ABC'... :)
means transposing b,’s to the right and bg’sto the left, with
no accompanyingsign. Likewise, it isequivalent to subtract-
ing the vacuum expectation values (when taking averages
with respect to the vacuum state) and for two operators

:AB := AB — (AB), . (58)

VI Completeness of the bosonic rep-
resentation

There is an important theorem, due to Haldane [15], that
shows that the N -particle Hilbert space H r, spanned by al
possible particle-hole excitation of | V), is also spanned by
applying bi’son |N'), any number of times

FIOIINY,,  (59)

where we denoted ageneral ketin 7 - by |N) and f [{b}}]
is an general function of the bosonic creation operators.
Therefore, we have afaithful representation of 7{ - in terms
of bosons.

INY e Hy = |N) =

VIl Klen factors

Hilbert spaces with different numbers of particles, however,
cannot be connected with b1’s, b,'sor N. But, fermionic
creation and annihilation operators do just that. Therefore,
to complete the bosonic prescription we need to define new
operators, called Klein factors, that change N by one. We
will call it F, with the following defining properties

It follows that, for a general N-particle state |N) =

7 {0 1N,

FUIN) = f [{b)}] FTIN)o = F[{b}}] IN + 1), , (62)

FIN)=f[{bl}] FIN)y = f [{b}}] IN = 1)y. (62

In other words F'f |N) (F'|N)) contains the same particle-
hole excitations as | V'), but created on a different, (N + 1)-
((N — 1)-) particle ground state. It is clear from its defini-
tion that F' isunitary F~' = F'. Also,

[F, N] - F (63)

—Ft. (64)

1]

We can now, with the help of F, F'T, and b}'s, acting on |0),,
generate the whole Hilbert space H.

Fermionic creation and
annihilation operators

VIII

We now establish one of the most important building
blocks of the bosonization dictionary: the expression of the
fermionic annihilation operator ¢ () in terms of bosons, IV,
and Klein factors. For that, we first derive the commutators
of ¢ («) with the bosons

2
O Rt > S (R
o e
= — L_q \/Z ;ek Ck
= e, (©5)
2
b, v (@)] = \/7 Z " ck+qck’ p}

(i) [Fbl] = [Fb,] = [Ft,bi] = [Ft,b,] =0, B -
(id) = |J]V>0L|Nll>o[, | = \F V(@) (66)
(i11) FIN)y=IN —1),. . .
(60) Applying Eq. (65) on the N-particle ground state | V') ,
[
Byt @] VY = b (2) 1)y = = 9% 2) VD = g () () VD "

Thus, ¢ (z) |N), is an eigenstate of b,, with eigenvalue

aq (z), for any ¢ > 0. Eigenstates of bosonic annihilation
operators are called coherent states (See Appendix B, for a

brief discussion). Since v (z) |[N), € Hn-1

P () X exp [Z ag (z

q>0

bT] IN-1),, (68
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or We would like to generalize thisto any ket |N') € H . For
that, the result of Section VI comesin handy
¥ (z) [N), ) exp lz ag (z F|N>0 , (69)
= F NI 73
where A (z) isac-number. It can be determined by Ny =75 0
o (N Fy (2) |N)y = A(2), (N exp Zaq(:v)bll IN)y, Wehave
q>0 (70) T
and since exp [, 5 (2)B,] [N, = N), . the right- U @) IN) = () £ [{03}] 1N (74
hand sideis A (z). Theleft-hand side can be calculated
| E ) Using Eg. (66),
O(N_1|ﬁk;meikwck|zv>0:ﬁe%:A(x), + .
since only thevalue of k = 22N is|eft of the sum. Thus, =y (@) ()" = [bl-al@)] v@) (76
Fooese =@ f[{pl}] = FHb—oi@}]e @) .07
Y (z)|N), = ﬁe T exp L>ZO aq (z bfl IN)o
(72)  Then,
|
G |N)y = f{b]—ap @)} ¢ @)|N),
F o orge
= f [{bJr —al(z)}] —=e"T exp [ a, (z) bT] |N)
q q \/z (Dz(:) q 0
= %e i2afie exp [ZO ag (x ] {bJr ()} IN), (78)
q>
Making use of the identity 1 in Appendix C,
exp [— Z ay () bq] bz exp lz oy () bq] = bz —ay (z) (79)
q>0 q>0
= exp l— Za; (z) bq] f [b;] exp lz a (z) bq] = f [{bz - a; (:v)}] . (80)
q>0 q>0
Finally,
Y (z)|N) = ie 2afie exp [Z aq (x bT] exp l Za; (z) bq] f [b;] exp lz ay () bq] |N
\/f q>0 q>0 7>0
F 27rNa:
Y (z)|N) = ﬁe “L exp L; ag (x bT] exp l gaz (z) bq] |N (82)

Thisis one of the most important results of bosonization: the expression of the fermionic annihilation operator in terms of the
bosons, F and V. It is called the Mattis-Mandel stam formula, after some of its discoverers[11, 13, 22, 23].
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IX Bosonic field operators

It will prove useful to define bosonic field operators by

) elar
ox) = Z al (z)e 1%, = — Z —e*aq/%q (82)
q>0 q>0
(p’r () = atI/?bZ — *CWI/Qb:; (83)
q>0 q>0
i
$(z) = w@)+¢l (@) =-—=2 e [a; (2)b, — a, (z) b]]
V2r prt q q q
_ \/_ Z aq/2 zqzbq _ efiqzbz] ) (84)
q>0

The “converging factor” e —“4/2 is important in defining a proper bosonic theory in 1D. These equations should always be
viewed as having e —*%/? to ensure convergence at intermediate steps, but final results should be written taking e — 0 .
A useful result is

1 —aq iqx —iqz
O = —ﬁg\/&e /2[6 b, te bg]
S0l @@ = F =00 (85)
We |eave as exercises the following relations, where the ~ sign means we have taken the limit |z — y| < L.
[0 (2), 0 W] = [¢ (), ¢ ()] = 0. (86)
[ (z), 0" (v)] = —%ln{l—exp {% (x—y—}—ia)]} R~ —%ln{—%(w—y—l—za)} - %(w—y—l—za). (87)
_ 1 1—exp [t (z—y+ia)] | i T—y i
[¢($)7¢(y)] — _%ln{l_exp[ PES (x_y_la)]}rv;arctan <T>—z($—y)
29 %sgn(w—y)—%(m—y). (88)
fo] < o 1 R S
[p (2),0,0" (v)] = IT—en L yria)] ~2ro—y+ia 2L (89)
] = 2 1 O N
[61(‘0(1'),()0 (y)]_ Ll—exp[ 27”(1-—y+la)] - 27"35—y+ia 2L (90)
) 1 1 ) « i
[#(2), 00 )] = L{l—exp[ (m—y+za)]+1—exp[%(m—y—ia)]}N_;m+Z
syt (o1)
Prove also that, asa — 0T and for any |z — y|
[6(2),0,0(y)] = 7 —i Z d(z—y—nL). (92)
Using identity 2 of Appendix C, we can write Eq. (81) as
D) = e o [ivERe! ()] ex [<ivERe (o) (99
Vi) = o= e [-ivVERp @) (94
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Note that Eq. (93) is normal-ordered, whereas Eq. (94) is
\/21777 appearsin the lat-

ter.
As another exercise, prove that

a—0 i 1
T (@ +a)y (z) 5 o - \/—2—7raz'¢7 (95)

+

~ =

to first sub-leading order ina/L. If

A (24 a) 6 (o) o=

O (@ +a) ¢ (@)= (@' (2 + a) ¥ (2)),,

E. Miranda

X Hamiltonian with a linear disper-
sion

We saw that, for low energies, one can linearize the disper-

sion. For right-moverswe get ¢ (k) = vpk so that

HOZUFZk:chk:. (97)
k

The normal ordering sign ensures the subtraction of the di-
verging ground state energy. We would like to find an ex-
pression for Hy in terms of bosons. There is a quick and
physically transparent way of arriving at thefinal result [15].

(96) First, welook at the V-particle ground state | V) . Itisclear
then we recover Eq. (85). that it is an eigenvector of H with eigenvalue EJ(\?)
]
O Ziﬁgfrﬂ = ¥Y,n = NI+ for N>,
N _ for N = 0, (98)
v K
" Zi ];Z/LL = -F 25:1” = NN +1) for N<O,
= ZN (N+1). (99)

Itisclear that Hy conservesthe number of particles, so we cantry to find its action within agiven . From the commutators

] - Zﬂ/ﬁ [ chen s ohracs] (100)

RSN ISR | _ | f t
[' CrC "cp+qcp] = [Ckck’cerqcp]

of Hy with the bosons

However,

_ .t 1 A
=C [Ck’cp+qcp] + [Ck’cp+qcp] Ck,

Therefore,

— T
= Okp+qCiCp 5k,pcp+q

[ ] Zk\/ (6’”71””102 Cp 5’~7P0p+q )
2
= Z P+ V p+q Cp Zp\/ p+q Cp = CIZ \/ LZ L+q Cp = qbz' (101)
»

If [N, En) isaneigenstate of H, with eigenenergy E v, then
from Eq. (101), b! |N, Ex) is aso an eigenstate with

Hob! IN,En) = (En +vrq) bl IN,Ex).  (102)

In other words, the bosonic quanta added by bg have ener-
giesvrqg. Now, by actingwith b;’son |N), we can generate
the N-particle Hilbert space H n aswe saw

INY = £ [{bI}]IN), - (103)

Thus, the only possible form for Hy is

Hy =vp qu;bq + %UFN (N + 1) ) (104)

q>0

The term in Tvp N /L is often dropped in the thermody-
namic limit. In position space, we can also write, using
Eq. (27), (28), and (84)

L/2
Hy = vp/ dz T (x) (—id,) ¢ (z) -, (105)

-L/2
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vp L2 s T g
Ho =4 /L/2da: (0:0)° : +7orN (N+1),
(106)
which we leave as an exercise. Prove aso that Eq. (106) can
be obtained directly from Eg. (105) by using the bosoniza-
tion formula, Eq. (93). But be careful: you will haveto find
first o (2 + a) (—i8.) ¢ (x), norma-order it, expand to
sub-leading order in a (why?), subtract the vacuum expecta-
tion value and integrate, just likeyou did for: ¢t (z) ¢ (z) :
before. Also, if you want to get the sub-leading term of or-
der N/L in Eq. (106), you will have to work to sub-leading
orderin1/L. Thisisapretty long calculation.

Xl From the lattice to the linearized
model

We now want to make contact with the | attice model defined
in the introduction. If we continue to forget about spin we

]

1bphys

=Yty ra = Y

k>0 k<0 k=—kr

zkz
= eihre Z \/—Ck—i-kp + ¢ thre
k=—kr

k=—oc0

where we introduced physical field operators for right- and
left-movers.

We now make the jump of identifying the lattice model,
at low energies, with the linearized dispersion model of Sec-
tionlll. Thefirst thingtodoistolet £ — oo in both terms
above. We then have two branches of fermions, labeled 1
and 2, corresponding to each termin Eq. (109), and we make
the identification

1 — R
2 — L.

The first operation (1 — R) is quite straightforward. We
define the species 1 of fermions by

Ck = Chike (110)
W (.T) =Yr (SC) - ¢R—phys (.T) )

(111)

ezkx

27Tk

where, in the last equation, we dropped the “phys’ label to
show when we are working with the linear dispersion model.
The second term above needs more care because, if we de-
finep = k+kr, then, for p > 0 the states arefilled, whereas
for p < 0, the states are empty in the ground state. Thisis
reversed when compared with our previous definition. So

13

have

=y Ch- (107)
keBZ \/Z

First note that the continuum limit (e — 0, where a is the
lattice spacing we set to 1) extends the Brillouin zone to
(—o0 00) . We can then identify the continuous variable =
with aj, x — aj, to have the physical field fermionic oper-
ator

ezkw

:zk:ﬁ

wphys (l‘) Ck. (108)

By “physical” we mean that it relatesto the long-wavelength
part of the original fermions of, say, the Hubbard model. We
can split this sum in two parts, correspondingto & > 0 and
k < 0, and then shift each sum by £k , respectively, so
that £ = 0 correspondsto the Fermi points

i(k+kr)z kr

Nis ———Cltkp + Z

k=—00

ilk—kr)z

Tck—kp

zkz

Z \/—ck kp) = elkFI'(/}R phys( ) + 72sz¢L—phys (.T) 7(109)

we define instead

—  filled

_ k<
k__(k+kF):>{k> —  empty

Then
—ikz

ik
Z\’/_ka kr 1> Ze\/z C_k—kp-

k

We define a second species (2) of fermions such that

G = Cohokp (112)
—zkw

Y2 (—2) = Z Tk = 1 (@) = Yoy (2).

(113)

Note the change of sign of = for going from the 2-fermions
to theleft-moving fermions. Thetwo kinds of fermions have
the same dispersion

er (k) =
€L(k') =

because of the definitions (110) and (112). We thus see that
both 1 and 2 fermions are bona fide right-movers! We must
attach thelabel L or R, or 1 or 2 to each operator now. But,
because of the sign change x — —x when 2 — L, we

UF (k - kF) — €1 (k) =vpk, (114)
—vp (k+ kp) — e2 (k) = vrk, (115)
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must make the same sign change in previous definitions if R and L, with the appropriatechangesand labels (¢} — cf).
we want towork with R and L, instead of 1 and 2 (whichwe Note that only the expressions that contain = are modified,
do). Sowelist al the previousimportant formulas, for both sincein k-space, both species are right-movers.
|
brp(@) = Yt (116)
R,L - - \/E ko
Yre @), re )} = {vho @ vk} =0, (117)
+00
{tre @ how} = X d@-y-nL), (118)
pro(@) = Y eiledt, (119)
k
Lq pRLt
= q>0,
PRL(7) = il ‘qRL (120)
SApT g <0,
. . ‘ '
b (@) gy (@) = E’L +7 > €T pr .1 (9) + €5 pr 1 (—q)] (121)
q>0
NR L Z j:z z1R,L igr R, LT
= : = V4 [eFTl 4 eTrmplb i (122)
L q>0
F 2nNp 1,
Ypp (@) = %eil Tt exp [Z ag () bf’”] exp l— Za; (xx) bf’L ] , (123)
q>0 q>0
CR.L (x) = o Za (£2) e~ e/2pR L Z _O‘q/QbR’L , (124)
q>0 ’ \/_ q>0 !
Fiqe
t _ —aq/2pRLt _ _ € o—4/2pR, Lt
oho(@ = = Z a, (£z)e b > — bRt (125)
q>0 \/_q>0 \/_
SR (@) = @gp () +ek,( —oa/2 [ (k) bIE — o (22) BIET] (126)
l1>0
— \/_ Z —aq/2 j:iqxb;{,L _ e$iqmb;{,LT] , (127)
q>0
F 27Np L . A
Ypop(T) = %ei’ I "exp |:—'L\/ 27r<p}%,L (CU)] exp [—z\/ 21 1, (w)] , (128)
— FR7L +1i 2‘"]\1}%’1’ x s
Vni (@) = e exp [~iv2r6n,1 (2)] (129)
; Nepr _ 1
Wpp (@) Ypp (@) =~ F —maxﬁbR,La (130)
Hy = vp Z Z qb;beI’ + %UFNU (Nl, + 1) , (131)
¢>0 y=R,L
L/2
Ho = ve [ ol [ PR @) v @) 0] @) 0w, 03] (132)
—L/2
L/2 o
H = F / dz : (Dudy)? : += N, (N,, n 1) (133)
2 e L

The commutation relations of the bosonic field operators are (where &~ means that we consider |z — y| < L)
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ons @) onn @] = [ehr @0k @] =0, (134)
[ch,L (a:),cpkL (y)] = —%ln{l — exp {ﬂ:@ (a:—yj:za)}} (135)
1 27 . ) .
~ —ﬁln{:FT(w—yiza)}:Fﬁ(a:—yj:za), (136)
1 1 —exp [£2 (z —y L ia)]
= ——1 137
[¢r. (), 0r.L (Y)] 9 { T —oxp [F22 (v — y 7 ia)] (137)
~ j:i arctan (—) F % (x —y) (138)
=+ sgu(z —y) F 7 (& -y), (139)
i i 1 .11 i
[rs @0k, W) ITow [ (c_ytio)] ~ 2ro—ytia 2L’ (140)
f _ ! O S
[&c‘ﬂR,L (w),soR,L(y)} = l—exp = x—yj:ia)] N Forr g tia T oL (141)
1
[br,L (2),0ybR,L (y)] = { |~ o 722 (a: —yTia)] 1 oxp (22 (7 — y £ 7a)] } (142)
i
¥ Tr (fv y) +o? G_ptar T (143)
2 Fis(z—vy ):i:z. (144)

Klein factors for more than one
species

X1

There is one small modification we have to make in the de-
velopments of Sections 111 to X if we want to work with
more than one species of fermions. That has to do with
the Klein factors. The other operators, namely b’s and N,
(v = R, L) all commute between different branches so, for
instance

[bg,bg’f] N (145)
[N,,,NU,} = G (146)
]

INR, NL)o = [NR)o ® INL)o = cit et

= CNrCNr-1 "€

Remember how the Klein factorswere defined. When acting
on the N-particle ground state | V') ,, we have

F|N),
FYIN),

|N_ 1>0,
IN + 1),

(147)
(148)

But, if there are two species of fermions, the correspond-
ing (Ng, Np,)-particle ground states are tensor products (as-
suming Nr and Ny, are both positive, the other caseis anal-
ogous)

11100 @ et erd 1 -t [0}y - (149)

Thus, to preserve the “fermionic” character of the annihilation/creation operators that makes them anti-commute between
species, we have to define F, so that it picks up the sign coming from anti-commuting it past the right-moving fermionic

operators

Fy|Nr,Ni)y = (=)™ [Nr)o ® [N = 1), (150)

F}|Ngp,N)y = (=) |Ng), ® |Np, + 1), (151)
If there are more than two, say M, species, then one must define a particular order for the species (N 1, Na, - -+, Nas) such
that

|N1,N2a"'aNM>OE|N1>0®|N2>0® "|NM>0 (152)
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and pick up the total sign change from the preceding fermionic operators
Fy|Ni,Noyoo  Nar)y = (=1)Z0=1 M Ny Ny, oo Ny = 1, Nag)y (153)
Ff Ny, Nayo Nag)y = (~D)Z5 N N Ny, N, 41, Nagy (154)

This situation is common when we add spin (M = 4). Naturaly, the Klein factors till commute with ?’s. The main
conseguence of definitions (153) and (154) is that the Klein factors anti-commute with one another

s F,] = [wtE] = (o Bl = [ F ] =0, (155)
{FJ, } = 20, (156)
{F } - {FJ,FJ,}:(), (if v # )™ (157)
Ny = 6P, (158)
[FJ,NU,] = —8,,F}. (159)

| draw attention to the starred equation above. Klein factors are not like fermionic creation/annihilation operators: their
repeated action is not zero!

XI1l  Thedual fields

It is also very common in the field theory literature to define new so-called dual fields, even and odd combinationsof ¢ 1,

¢ % (61 — 9r) ¢r = % (0 —9)

g \/% (br+dr) — or = \/L; (0 + ¢) (160)
such that
YrL (z) = %eii%iﬂl T exp [—z\/7_r 0(z)Fo (1‘)]] , (161)
U @)U (@) = R 0,07 200, (162)
PPhtg iy, = M + %8@, (163)
b= gly, s = —%aza, (164)
0@ .0 = B@).00)]=0, (165)
6@.,00)] = —ssen@—y)+1@=y), (166)
[6(@),0,0@)] = i@x—y) - 1. (167)
% . \

Hy = = o d [ (0.0)% : + : (8:0) ] —UF _ER:L (N ¥ 1) (168)

Note the similarity of the second to last equation (when L — oo) with a canonical commutation relation. Because of this, and
because each of ¢ and § commutes with itself at any = and y, we define a canonical momentum field conjugate to ¢ (z)

II(z) = 90,0 (z) . (169)
The Hamiltonian can now be written in the canonical form
L/2
_VF ) 2., . 2, ™ T (N
Hy [T (x) 6 (a)] = /W dz [ ()2 : + : (8.0) ] + Zur U§LNV (N,,+1). (170)
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It is interesting to consider the Mattis-Mandelstam for-
mula in terms of the dual fields (161). The exponential of
0 (z) can be written

e—iﬁffwg dyl'[(y), (172)

which, in light of the behavior of TI (z) as a canonical mo-
mentum, can be viewed as a displacement operator for the
¢ field. In other words, it shifts the ¢-field configuration
by afixed amount of /7 from —L/2 to z. Thisis a kink
configuration. It is clear that the = derivative of the kink
is a delta function of strength /7 at =, which is consistent
with the expression (163) of the fermionic density in terms
of 8,¢. Now, the other exponential in (161), e=V7™¢(@) js
simply responsible for the transmutation of statistics. With-
out it, (171) is a bosonic operator and commutes with itself
at different spatial points. The exponential e*iV7¢(*) en-
sures, through (167), that the combination anti-commutes at
different locations, as can be easily checked.

L/2
Hoi= [ ar|%
7L/2 2

]

v

Note that we have to normal-order after multiplying two
normal-ordered operators. Thisoperationwill not beusually
indicated in what follows but is always implied. The inter-
acting Hamiltonian (174) is known as the Luttinger model.
Luttinger was the first to propose and solve it, abeit incor-
rectly [9]. Mattis and Lieb gave the correct solution shortly

17

X1V An interacting spinless model

X1V.1 The model and its solution

We would now like to apply these ideas to a specific
case. First recall that the fermionic operator iswritten as

UJ (l‘) - t'3“91:szfphys (l‘) + eiiszwaphys (l‘) (172)

~ efrep (2) + e Ry (z) .
A general loca electron-electron interaction ety
will generate terms like ¢hypvhvn, iy, vie,,
VRV UL, e T R Php, and e R Pyl ki,
and their Hermitian conjugates. Terms that contain oscillat-
ing exponentias, called Umklapp terms, average to zero
and are usualy neglected (unless kr commensurates with
the underlying lattice and the exponential disappears; these
cases will be dealt with later). We therefore focus on a
“bare-bones’ model that contains only the following inter-
action part

(173)

S Gult, ) e (svhtn vl ) ] : (174)

afterwards [10]. The nomenclaturein terms of g and g4 is
standard in the literature and is amusingly called “g-ology”

[5, 4]. The Hamiltonian (174) assumes a delta-function type
of interaction. A more general longer range interaction can

be used, but we will not do it here (see Ref. [15]). Interms
of the bosonic field operators

]
Hi = Hjy, +Hpy, (175)
o Lrga (o 72 S
Hiy = 7|5 (Nh+82)+0:Nal], (176)
L/Q dx
H? = i : w,,Q:— 1 (0 . . 177
/_L/Q%[Z; (0e00)* - ~02* (0u0m) (2.0r) a7
Thetermslinear in 9, ¢, integrate to zero. The non-interacting part is
H —”—F/L/de2~(a¢)2-+@21§ﬂ (178)
’ 2 —L/2 v . o . L v .
We immediately see, in bosonic language, that the g 4-term only renormalizes the Fermi velocity
H=Hy+Hyp = 1)—F(1+)/L/2d:” > (0ph) -2 2 (9,6r) (9:01)
= Hp int = 2 94 i . c\OzQv) (1+g4)- PR xPL) -
TUR _ &9 g2 N
+ — 1+ N; +2————NgNy|, 179
I ( ) 2,,: 1+ ga) R L] (179)




18 E. Miranda
where
B o= 5 (180)
TUR
g1 = 294 . (181)
TUR
In k-space the Hamiltonian reads
H = H, + Hy, (182a)
Hy=vr(1+91) ) q lz butby + A (bFTbET +Hoc) |, (182b)
q>0 v
™ ~ A A
Hy = TF (1+34) XV:NB +2ANgNL |, (182¢)

where \ (13‘?—%4). The astonishing feature of one-
dimensional systems is the fact that the interacting Hamil-
tonian (182) can be diagonalized exactly! Thisis achieved
by the so-caled Bogoliubov transformation. We will just
state the results and | eave the details for the Appendix D. In
terms of new bosonic operators (we will use indices 1 and
2 instead of R and L for the new fields; not to be confused
with the labelsin Section X1)

then Hamiltonian (182b) becomes

Hy=vp (1+gs) vV1—X\2 Z qugfd;’ + const.

v=1,2 ¢>0
(188)
The constant above is actually infinite but is subtracted out
by normal ordering. It is convenient to define

= N
g4 T g2
d = h bE + sinh v bLT 183 _ - -
dQ? C.Osh vb; ; SmhyquT, E184; u = vp(14+g) V1=K =op\/(1+54)" - g3.
p sinh -y b,” + coshy b, (190)
b¥ = coshyd, —sinhvyd2', (185) _ _
quT _ —sinh’yd; +coshfyd3T, (186) In the literature, one aso finds K = g. It follows that
_ vt v
such that Hy=u)_ quq dv, (191)
v oq
1 1
tanh2y = A= v = 1 In <£> , (187) and
]
A = 1[<i+\/§) bR+<i—\/§> b”} (192)
q 2 g q \/g q ?
1 1 1
& = 5 [(G-va)ue (55 +va) ], (199)
Theinversetransformationis
1 1 1
bR = _[_+ )d1—<—— )dQ'f], (194)
q 2 g \/§ q \/g \/g q
it = Ll g a s (gt (195)
q 2 \/g q \/g q

It is sometimes convenient to realize that the above transformation can be generated canonically with the unitary operator

Up = exp [’yz (AR bfbg)l , (196)
q>0
Uzt = UL, (197)
1/ 1 1
UpbiUg" = 3 K% + \/§> by — <% - \/§> b?] ; (198)
_ 1 1 1
vy = 5 |- (G5 - va) e (G v ] (199
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After the canonical transformation, we must identify bf*L — d;vQ to make contact with Egs. (183-195). Besides, the fact that
the transformation is canonical guarantees that the new operators d;; obey bosonic commutation relations. It is convenient to
define new bosonic field operators (though we still use  and ¢, theindices 1 and 2 will distinguish them from the onesrelated

to b1,
i eﬂ:iqz .
Prp(@) = NG Z 76 “2dp (200)
q>0
7 eFiax Cw
ol (z) = VL Z WG 2yt (201)
q>0
br2(@) = @)+, (@) (202)
= % > %eaw [eXiaral? — eFiarql2t] (203)
q>0
For future use, take note of the following commutators, analogousto (134-136)
12 @), 012 @) = [elo @) 0l )] =0, (204)
1 271 .
pa@ela )] = —gin{i-en £ 6oy sio) | (205)
1 2T [}
~ —ﬁln :FT(w—yj:za) :Fﬁ(w—yj:za) (206)

From (183) and (184),
¢1,2 (x) = coshy dr,L — sinhyr R, (207)

and in terms of the canonical pair ¢ and 6, by using (192)
and (193)

L[t

bz = ﬁ{ﬂe(w \@}, (208)
0(r) = \/%—g[% () + e (@)],  (209)
b (2) @ @ - @]. (210

In terms of these new fields, the diagonalized Hamiltonian
is

/
H, = u Z /L : dz : (8x¢y)2 : (211)

2 v=1,27 ~L/2
L/2
= E/ dx {g - (0,0)” : —l—l - (0,0 :}
2 —L/2 g
(212)
Now, the reason for calling ¢ and 6 as dua fields be-
comes transparent. The pairs [¢ (z) , 11, (y) = 9,6 (y)] and

[0 (z),y (y) = 0y (y)] are both canonicaly conjugate
and give equivaent, ¢- or #-representations of (212), like

the z- and p-representations in quantum mechanics. If we
define the coefficient of the squared derivative of thefield in
agiven representation as the “ coupling constant” (1/¢ inthe
¢-representation, for example), then aweak coupling theory
in one representation is “dual” (equivalent) to a strong cou-
pling theory in the other and vice-versa. From (189), we see
that ¢ < 1 corresponds to repulsive interactionsand g > 1
to attractive ones, ¢ = 1 being the non-interacting point.
Thus, the above duality links repulsive and attractive cases
and the non-interactive theory is self-dual.
Finally, the H y part is diagonalized by defining

A

()

|
=
H
S

(213)

Hy = %(1+g4)[(1+>\)N2+(1—>\)j2]
- %\/i_}@[(lJﬂ)N%(l—A)ﬁ]

T [u -~ A
= ﬂ{§N2+ugJ2}. (214)

XIV.2 Correlation functions of the spinless
model

We will now cal culate some important correlation func-
tions of Hamiltonian (179) at T = 0. We start with the
smooth part of the density (charge)
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A NR + NL 1
Oca:::fa: z):+ ot (2 r): = + o r) — 0y T
(#) =Yg (2) g (2) ¥p, ()¢, (2) T \/2—[ oL (2) — Or¢r ()]
= T L e (@)~ e ()] = 3 VATl e ) e (6] + )] 219
L 2m L 2 L
where we used the inverse of Eq. (207). If we focus on the fluctuation part (second term), we write
D.(w,y) = (60.(2)60.(v)) (216)
g — —i(qz— i(qr—
= 37 3 Vpgem Pt/ [e (dr=pw) (22t 4 dltdL) + eam=Py) (212 4 dédm}
p,q
- 9 —aq [ ,—ia(z—y) -9
9] Z qe [e +c. c.] 27 (r y)2 . (217)
q
|
We stress a few aspects of the above result. First, the ex- function. This will not occur in general, as we will see.
pectation value is calculated with respect to the interact- Finaly, the interactions only change the pre-factor of the
ing ground state of Hamiltonian (191). Second, the crossed power law. Thisactually givesthe g — 0 limit of the Fourier
terms are obviously zero and only ¢ = p terms survive. transform of the D . corrélation function, which is related to
Besides, we see that the power law decay of the correla the compressibility of the system.
tion function occurs with exponent 2, which is also the non-
interacting value. Therefore, there is no renormalization by We now focus on a different correlation function. The
interactions of the power-law exponent of this correlation staggered part of the density is
|
—i2% Npa ot —i2ZNpz
Ocpw () = e2ibra® = "Lnlie (VIR (VIR (@) o~ iVETOL () V2T (2)
L
S T
— e—2ikpxe—i2f"(NR+NL+1)x FRFL ei 2#[&,0;2(.?)—&,02 (x)]ez QW[LpR(.T)—LpL (x)] (218)
L )

which is now normal-ordered. We want to cal culate the expectation value in the interacting ground state
Depw (@ = y) = (Ocpw (#) Ofpy (4) + Hoc.) (219)
The non-fluctuating part (Klein and number factors) is
o~ 2ikr (z—y) <e f"(NR+NL+1)wFTF FTF o2 (Nr+N+1)y > — o 2ikr(z—y) <e—i2f"(NR+NL+1)(x—y)>

— g 2ikr(2—y) <e—i2T"(N+1)(z—y)> Li;o e—Qikp(x—y), (220)

where we assumed the number eigenvalueis not extensive. If we define ¢ (z) = V27 [¢r (z) — L (z)], we can simplify the
notation to (we will suppress the oscillating exponential in intermediate steps)

~ ~ 1 .. L L .
Ocpw (@) Ok pw (v) = ﬁew*(z)eww)e—w*(y)ew(y)_ (221)

Using identity 2 of Appendix C, we can normal-order this expression

¢i9(2) =51 (1) — o=i¢" (1) i(x) oC (222)

C=p@),¢' W) = 21n{ = } : (223)
o2m\/ (x — y)° + a2
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_ 7261'[@(z)fw(y)]ei[@(z)*@(y)]_
4n? (z — y)

= OCDW (z) OATCDW (y)

We now use the following strategy. By definition,

- .27 1 , »
p(x)=1 fzﬁe ag/2 (ezqmbf_e zqzbg),

q>0

= . 1271- 1 —a iqx —igx
cpf(l')zl 72%6 q/2(€qb51—6 Qbff)

q>0

In terms of the d,,** bosons we have

2 1 . .

= iy fﬂ- Z %e_“qﬂ ("% (coshyd, — sinhyd2T) — e™%* (—sinhyd, + coshy d})]
q>0

= coshy((z) —sinhy ¢ (),

= coshy (' () —sinhvy ¢ (),

where, by analogy with Egs. (225), we defined

C(,’L‘) =4/ 2% Z \/Laeaq/Q (eiqmdé _ efiqzdg) ,

g>0
T z) =i 2_71' iefaq/Q eiqz 2t efiqz 11
¢M(z) = \/ngggg\/a (e d? dit).
We definenow V' (z,y) = ¢ (z) — ¢ (y) and find
p(x)—p(y) = coshy [((z) = (y)]—sinhy [(T(2) - (T (y)]

Inserting into Eq

where

= coshyV (z,y) —sinhy VT (z,y).

. (224),
OCDW (CU) OM(r]DW (y) — ; 1 2ei[cosh'yVT—sinh'yV]ei[cosh'yV—sinh'yVT]
4m? (z — y)
_ 1 ei[(cosh y—sinh~) V4 (cosh y—sinh v) V]e—X/z
4n? (z — y)? ’
X = [coshy V! —sinhyV,coshyV —sinhy V] = - [V, VT].

We can normal order (230)

with

1 i(cosh y—sinh~v) VT eilcoshy—sinhy) V ,—Y/2 ,—X/2
)

: Ocpw (@) Obpw (y) = me

Y = (coshy — sinh~y)? [V, VT] .

Since X and Y are c-numbers

X +Y = (cosh2y —sinh2y — 1) [V, V] = (¢ — 1) [V, VT].

21

(224)

(225a)

(225b)

(226)
(227)

(228a)

(228b)

(229)

(230)

(231)

(232)

(233)

(234)
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Now

V.V = [C@) - C).¢Ha) - )]
= [C (LL‘) 7CT (l‘)] + [C (y) ,CT (y)] - [C (l‘) 7CT (y)] - [C (y) ,CT (LL‘)]

4ln<i>—4ln( L ) —4In
2o 2
2my/(

x—y) +a?

x_y‘. (235)
(0%

We made use of the fact that the commutator of ¢ (z) isthe same as the commutator of @ (), Eq. (223). Findly, inserting into
Eqg. (234) and Eq. (232), we have

~ ~ 1 a 2(9-1) . . . .
. OCDW (LL‘) OI}DW (y) . = o= (m - y)2 — ez(cosh ~y—sinh ) erz(cosh y—sinhvy) V/
1 a |, hy—sinhy) V1 _i(cosh y—sinh~) V
— yremel ; ez(cos ~y—sinh 7) ez(cos ~y—sinh v) (236)
T —

Since the expression is now normal ordered, its vacuum expectation valueis 1. Putting back in the oscillating exponential and
adding the Hermitian conjugate
cos (2kpz)
E.
Herethereisanon-trivial renormalization of the power law exponent by interactions. Half the exponent is called the anomalous
dimension of the operator O¢pw . It is anomal ous because dimensional analysis would lead to the value of 2, as can be seen
from the prefactor o —2 of Eq. (236).
We leave as an exercise the cal cul ation of the following correlation functions, which correspondto 4k  density oscillations
and pairing (superconducting) correlations

cos (4kpzx)

Oupy = _4ZkwaR1/}L1/}RwL = <O4kF (x) Oikp () + H.c.> x L (238)
. . 1
0, =0y, = <0,, () O}, («) +H.c.> < (239)

It is actually more convenient to set up the Mattis-Mandelstam formula directly in terms of the “new” bosons. Thus, prove
first that

1
F 2n N, 9 1(1+9)
Up(x) = TRL imgka [ 2TO exp {—i\/27r [cosh'ygo{ , (z) +sinh~ ol | (:n)] } X

’ 2o L ) s
exp {—i\/ 27 [coshpr2 (z) +sinhy ¢y 4 (a:)} } . (240)

Also, calculate the single-particle Green’s function

T T ) .f xr )
iG (2,03, ty) = (TY (2, ) (y,ty)>05{ —<1<i/}(f éifiﬁﬁ’z)?% ifiiii : (241)

The time dependence is introduced by means of the evolution operator O (t) = e?#tOe~H*, The time dependence of the
“new” bosonsis obtained easily

1 _ iugtdrtdr g1 —iugtdlTdl _ —iugt g1
() = e % g em e e = T M, (242)
2 _ —iugqt 32

d,(t) = e "d,. (243)

It follows that the “new” bosonic field operators depend on time in avery special manner

izqz

ualon) = St
\/_ q>0
izq(x$ut 5 19
\/_ Z q —aQ/ dq7 =19 (.7; F u,t) =10 (wi) . (244)

q>0



Brazilian Journal of Physics, vol. 33, no. 1, March, 2003

23

We thus see that the complete time dependence of the bosonic operators can be introduced by making x — = 4 inthe“1”
bosonand z — z_ inthe“2” boson. Itisaso quite clear why they are called chiral: they correspond to right- and left-moving
waves, respectively. The Klein factors also acquire a time dependence, because the Hamiltonian contains number operators.
They can be conveniently written together with the number phases as

ethFR,Lei%NR'”e_th = Fpexp {ﬂ:% [N <a: F %t) +J (zF ugt)} } . (245)

Finally, by using the fact that

(¥ (@, ta) ¥ (4,0)) = €707 (g () W (1)) + 757 (Y (@t 0] (1)) o (246)

since the cross-term is zero, show that G (z,t,;y,t,) = G (z —

thermodynamic limit)

y,t. — t,), where (neglecting the number eigenvaluesin the

eikpm efzkpm

G (1) = <2ﬂ'(x—ut) B

We give a derivation of (247) for the more general case of
electrons with spin in Appendix E. Two immediate and im-
portant consequences of Eq. (247) are the form of the local
density of states and the momentum distribution of a one-
dimensional system

— > dt zwt —
Plocal (w) = /_Oo 27‘(’ G(l’ 0 t)
Codt el 1
_ pwwt v 24

x [m 5-¢ X (248)

L/2 L
ngr(k) = / dre "G (z,t=0")

—L/2

1 _
~ E—ngn(k—kp)|k—kp|" '(249)

where C isaconstant, v = 1 (g + %) > 1, and the equal-
ity holds at the non-interacting point g = 1. We see that the
local density of states is suppressed to zero asw — 0, a
result peculiar to one dimension. Also, the momentum dis-
tribution function does not have ajump at &k as it does in
higher dimensions, but shows a power law non-anayticity
at the Fermi wave-vector.

XV The anisotropic
(XXZ) model

The XXZ spm-— Hamiltonian has already appeared in
Eq. (4) of Section Il. We will set J = 1 asthe energy scale.
Thereis a clever trick, due to Jordan and Wigner [24], that
maps spin-1 operators to spinless fermions (it only works
for S = 1). We introduce fermionic operators ¢ ; and c},
with the usual anti-commutation relations

{cj,cl} = {c},c}}zo, (250)
{cj,c;r} = - (251)

Heisenberg

ik o2 1(5+9-2)
27 (z + ut)) <w2 - u2t2> ' (247)

If we focus on one site only, then we can make the following
mapping (n; = cle;

. 1
S; -5, (252a)
+— ¢z 4 ; T
Sf =87 +is! - df, (2520)
Sy =87 —iS} — ¢, (252¢)

for it reproduces the usual spin-3 commutation relations

(5,831 =-S5, (253a)
[57,8:] =57, (253b)
[SF,87] =253, (253¢)

and ), (S]‘?)2 = 2, as can be readily checked. However,
we run into trouble if we try to directly generalize (252) to
different sites because, whereas spin operators belonging to
different sites commute, fermionic operators anti-commute.
We can curethat by attaching a string operator that changes

the statistics! We write

. 1
S; = nj— 5 (254a)
S§ = cletmos, (254b)

S, = cje*”‘z’j, (254c¢)

j—1
¢ = . (254d)
=1

Obvioudly, the string operators|eave (253) unchanged, since
they introduce number operators of different sites. For the
same reason, Egs. (253a) and (253b) are immediately gen-
eralized to different sites
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[SF,8F] = =057, (255)
[S7,87] = 6,8;. (256)
|

[Sf,Sf] = ctei”d’fe*i”d”cl — cle*”‘z”ei”d’fc

J

E. Miranda

The generalization of Eq. (253c) depends crucialy on the
string operators

F= % (e ed) e =0 (£, (257)

where the upper (lower) sign occursif I > j (I < 7). The string operators are able to introduce the appropriate sign change
that turns a commutator into an anti-commutator, thus correcting for the different statistics.
We can now use the mapping (254) in the Hamiltonian (4). The XY part is

xr xr ]‘ — —
SjSie + 575t =5 (7S5 +8; ST

1 Y oind: —inds IR n
5 (cj6“7¢16 “T¢J+lcj+1 +Cj€ iTP; e”"d’]Jrlchrl)

. o 1 1
_ 5 (c;r.e i n]Cj-i-l +cje’ n; c;f.+1) = 3 (c;f.cj_i_1 — cjc;f.ﬂ) = 3 (c;f.cj_H —+-H.c.) , (258)
whereweused ¢;¢i™ = —c; and clei™ = cl. Thisislike a hopping term. Thus,

1
Hxxz = 3 Z (c;r.ch + H.c.)

+AY <nj - %) <nj+1 - %) . (259)
J

If we use periodic boundary conditions, we must identify S ;. with S;. The end term will be

757 1 - - 1 im —iT
SESTe1 + 51511 = 3 (SEsy+Spsy) = B} (CTLe PLey +epe ¢’LcJ{)

exp (iﬂ' ZlL;; nl)

n

= 2 (CL ¢ — €

where N is the total humber of fermions. A phaseis there-
fore left at the chain end. It is aso convenient to transform
the hopping term by doing a gauge transformation

c; — ei™i Cjs (261)
L
cy  — Z e*i(k*”)jcj = Ct_n, (262)
j=1
such that
cle. — clemmiginlitle. = _cle. (263)
J+lL J J+1 Ji+1

cEc1 — cEe*i”Lei”cl:eiﬁ(l*L)cTLcl. (264)

The effect of the transformation is to change the sign of
the hopping term while shifting the momenta by =. The
chain end hopping has a phase ¢ " (N —L) . Consequently, the
physics of the model is invariant if we change the sign of
the hopping term, which correspondsto J — —J, A —
—A in the original model (up to a momentum shift of ).
Physically, this corresponds to a rotation of the spins by =
around the z-axis at every other site. The above choice of
a negative sign is convenient because then the dispersion is
e (k) = —cosk, likewe had in Section I of these lectures.

pim(N+1) (

5 cTLc1 + CJ{CL) , (260)

Note that the total z-axis magnetizationis

M:ZS.:N—

Jj=1

133

|t

(265)

(S

We will mostly be workingin sector M = 0, where N = %
The end phaseis then e™*/2 and we choose L even, so that
the phase disappears. The Fermi wave vector is

kp=m =2, (266)
which correspondsto a half-filled band. The Fermi velocity
will beUF =sinkpr = 1.

The first thing we notice is that the model at A = 0 is
trivially solved by the Jordan-Wigner transformation, since
we end up with non-interacting fermions. This is the so-
caled XY model. We will not dwell further on it. When
A # 0, we get an interacting fermionic system.

We are now in a position to apply the bosonization tech-
niqueto attack themodel at A # 0. Wefirst linearize around
+kp to get two branches of fermionswhich we let run from
—oo 10 co. The fermionic field operator is

Y (z) ~ e*r2ip (z) + e Ry (). (267)
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The XY part is by now familiar

HXY %Zk‘:czycky ::/

kv —L/2

L/2

da [ 0 (2) (=i02) g (@) 2 + : 0] (&) (100) vy, () 3] (268)

In order to bosonize the interaction, we need an expressionfor S 7 = c;r-cj - % First note that in the zero magnetization sector
(nj), = 1/2, sothat
S;m ot (2) 0 (2) - (269)
Using Eqg. (267),
Sim Y 19 (2) 9, (2) s e TRl () ¢y (2) + Hec (270)
The crucial thing to noticeisthat S7 has asmooth and arapidly oscillating part. The latter oscillates like
e~ 2ikrz _ o—imz _ (—l)j ) (271)
Theinteraction termis (p,, (z) =: ¢} (x) 1, (x) 3)
CHCHEES [pR +pr + (=1 phy, + H c.] [pR +pr+ (1) ply, +Hoe.
2
(pr +p1)” = Ul 0l v — vl oo — (Vhey) +He

2
= Pt i +apmpr — (ko) +Tc (272)

The first two terms correspond to the kind of interaction we dealt with before. The last term is an Umklapp term and we will
ignoreit for now. Thus, we get an effective model which isjust the Luttinger model. The g-ology is

ga = 4A, (273)
g1 = 2A. (274)

Remembering the whole procedureis only valid when A <« 1, we get

T+g1—g 1+4 28 2A
g Ll Sk Y B S SO (275)
14+gs+ 792 1+2 4= 7r

A
u = \/(1+g4)2—g§w1+;. (276)

In order to calculate correlation functions we also need an expression for S Ji , which means we have to bosonize the string
operator

277)

)

j_l x 1
o ~ ot L4z
b; ;:1 ny [ e dy l% ) () ¥, (y) +3

where we have neglected the rapidly oscillating term in theintegration. Using the expression of the density in terms of bosonic
field operators, we obtain

1
b — Ty —¢ (x) + const. =

1
_|_ J—
2 Jr V2T
whichis conveniently local. We will neglect the constant asit is aboundary effect that goes away in the thermodynamic limit.
By symmetrizing the string operator to make it hermitian and remembering k r = 7

[¢1, (x) — ¢Rr (x)] + const, (278)

NN

S; =~ [eik*‘"””sz (z) + e krey, (:U)] [e”’”%‘ig(m_qﬁm + H. c.]
~ I:eiszFRefi\/ﬂcﬁR + efiszFLefi\/ﬂd)L] I:efikpze—i\/g(GﬁL—GﬁR) +H. C']

Fr [efi\/g(mwm) +e2im67i\/§(3¢mf¢n] +Fy {e—iﬁ(wm) +672im67i\/§(3¢ﬁ¢n)]

Q

Q

eV g 14+ (<1)7 V7] By (14 (<1) eVl L (279)
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where we have been cavalier about normalization factors which do not affect the long distance physics.
We will simply state the results of and leave as an exercise the calculation of the following correlation functions[12]

(S* (z,t) 8% (0 0))0, (280)
(ST (z,1)

,0)), . (281)

Each one consists of a smooth and arapidly oscillating part. Let usstart by G ..,

G..(z,1) =

Collecting everything
G:; (SE, t) =

% (020 (z,) 026 (0,0)) +

(=17 (wh, @1, (2, ) 0] (0,0) 5 (0,0))

GJr* (l‘, t) =

We note in passing that restoring the initial sign of the XY
Hamiltonian results in multiplying Eq. (279) by (—

+ (1) (¥} (. 8) v (2, 1) 0 (0,0) 5, (0,0)) . (282)
We have dready calculated the static limit of the first term. Its dynamic generalization is straightforward and gives
1 1
Gl (x,1) = —-L n 283
= (@0 =~ [(m —ut)®  (z+ ut)’ (283)
The second term was also calculated in the static limit when we found D ¢ pw () . The dynamical result is
> (-1’
GZZ (Zlf,t) X W (284)
g 1 1 (-1)’
— + + const.—————— 285
42 l(w —ut)®  (z+ut)’ [x? —u?t?® 2%
The transverse part also has two contributions due to the smooth and oscillating parts of S * (Eq. (279)) given by
const. (—1)? const. 1 1
|l'2 _u2t2|1/4g |l'2 _u2t2|(71+g+1/4g) l(x_ut)Z + (:L'—+-ut)2 . (286)
|
, the exact solution that [12]
1)? and T
g= (287)

the consequent transfer of the same factor from the second
to the first term of Eq. (286).

XVI Haldan€e's Luttinger liquid con-

jecture

Everything we have said is valid perturbatively A <« 1.
Haldane has conjectured [15, 16], based on renormalization
group arguments, that the Luttinger model Hamiltonian we
analyzed in the Section X1V is valid even away from the
perturbative region, although the values of the interaction
constants g, and g4 have a different expression in terms of
A. Infact, his conjecture should be valid for just about any
one-dimensional interacting gapless system. Thisis ailmost
universally believed to be true and has been checked for sev-
eral models. In the case of the XXZ model in Eq. (4), the
system is gapless for —1 < A < 1 and the conjecture is
believed to hold in thisinterval. Actualy, it is known from

2 (m — arccos A)

It reduces to the perturbative result (275) when A < 1.
Haldane's conjecture is actually a bit more predictive since
the low energy effective model involves three parameters,
namely the velocitiesu, vy = ﬁ andvy = ug,

Hepp =uy Y qdyidy + 57 [oxN* +0,0%| | (288)
v >0

but the bosoni zation produced only two parameters« and g.
Thus, the three velocities bear afixed relation

u? = vnvy. (289)

Conversely, the correlation exponent g can be obtained if the
velocities are known

g =L (290)

UN

One-dimensional gapless systems whose low-energy prop-
erties can be described by the Hamiltonian (288) such that
(289) holdsare called Luttinger liquids. Thisis becausethey
bear arelation with the Luttinger model that is analogousto
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the one between the free Fermi gas and Landau’'s Fermi lig-
uid theory [25, 26, 27] of a higher dimensiona (D > 1)
interacting fermionic system.

It is interesting to note that the isotropic point A = 1
corresponds to ¢ = 1/2, where the two correlation func-
tions (285) and (286) coincide (after transferring the (—1)’
from the second to the first term of (286)), as they should.

]
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XVIl  An interacting model of spin-1
fermions

XVII1.1 The model and its solution

We now want to generalize what we have been doing to
electronswith spin S = % . With the knowledge that we have
accumulated the task is quite straightforward. We introduce
the following interacting Hamiltonian

Hip = / " {% > {(94||5w' + 91100, -0)  (: Vlothye ) (: ho g :) :]

L2

voo'

oo’

where o, ¢’ = + now label spin projections along an arbi-
trary z-axis and we have for generality introduced different

+ Z (92\\500’ + 92J—‘50,*0’) : (: U’LawRa - 1/’20'1%0' 3) 3} ) (291)

then we can define charge and spin combinations

coupling constants for parallel (||) and anti-parallel (L) spin pL = 1 (pos + po—), (293)
interactions. The SU(2) symmetric model has g;; = gi. - V2
This is a Luttinger model for spin-% electrons. It can be 0 = L (s — pv_) (294)
solved by bosonization. Onesimply introducesbosonsb ., v V2 ’
number operators N2, and Klein factors Fi 1, with ad- such that
ditional spin indices, but with completely analogous defini- 1, s 205
tions and properties (see Sections 111 to XII1). Obviously, Pre =775 (b +0p7) - (295)
operators with different spin indices commute, except for Iti to show that
Klein factors, which anti-commute (Section XI11). S easy 1o show
vePv'e — ,C, ,c,/ ls/ ls,/ y 296
First, if wewrite ZU:p P ol + Pup (29)
> bvobv-o = PPl —piph . (297)
Pro =t wlaww N (292) Inserting into the interacting Hamiltonian (291) resultsin
]
Hiny = / dz < = Z [(ga) + 9a1) 505 + (941 — 94L) P3P}
L2 2 &
+ [(g2 + 921) PROL + (921 — 921) PROT] } (298)

We can define the charge and spin combinations of the cou-
pling constants

Jic = (giH + gu) ) (299)
Jis = (giH - gu) . (300)

In the presence of SU(2) symmetry, g;s = 0. Theinteracting

Hamiltonian now reads

L2
gax
Hth/ dx g lT E Pfﬁpx))‘*‘g%P;‘%P%
174

—L/2 A=c,s
(301)
Obvioudly, definitions (293) and (294) induce anaogous
combinations of number and bosonic operators, both in ¢
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and x space etc., such that operatorswith different A labels commute.
. 1 /. .
New = - (NU+ + N,,_) , (302)
, 1, . After bosonization Eq. (291) reads
b a(c,s) = —2 (bq+ + bq_) , (303)
]
Hint = Hzant sznt’ (304)
1 N
HE, = Z {L [gm (Nm + NL)\) + ngNRANL,\] } (305)
L2 gy
#y = ¥ [ |5 S s @) s —gmn s Brbm) Buinn) o (306)
L/2 271' >

The non-interacting part can also be written in terms of charge and spin sectors as can be easily checked

L/2
vF
Hy = _/
0 z}\:{ 2 J_rp

v

We now have two decoupled sectors corresponding to
charge and spin excitations whose solution in terms of ro-
tated bosonsis analogous to what has aready been done be-
fore for spinless fermions.

Let us briefly list a few of the important aspects of the
full solution. Therewill now beavelocity « , and acoupling
constant g (or alternatively K) for each sector A = ¢, s
given by

o = \/27T'UF + gax — g2x
V 270r + gax + g2n

2 2
vp 1+ gax [ _92x . (309)
2mugp 2mugp
Note that the SU(2) symmetric case is characterized by

gs = 1l and us = vp. The diagonalized Hamiltonian is
given

H = ZuAqu Td"

(308)

Ux

72 72
’UN)\NA + UJ)\J)\ ,

q>0
(310)
where the new bosons are defined in an obvious manner and
Ny = Nga+ Nia, (311)
J» = Ngx— Npa, (312
oNy = =, (313)

gx

VI =  UXG). (314)

Note the same fixed rel ation between velocities
ui = UNXUJ)- (315)

That the dynamics of the Luttinger model can be writ-
ten in terms of decoupled charge and spin sectors, together

Z (a ¢VA

L or Z Nf)‘} (307)

with Haldane's conjecture that the universality class of gap-
less systems in one dimension is given at low energies by
the Luttinger model dynamics, leads to the phenomenon of
spin-charge separation, an important feature of fermionic
systems in one spatial dimension. An electron that is in-
troduced into an interacting system will rapidly decay into
its constituent elementary excitations. charge and spin den-
sity modes that propagate at different velocities (u. and u;)
and that will spatially separate with time. This phenomenon
is completely absent in higher dimensions, at least in so far
as they are described by Landau’s Fermi liquid theory.

We notein passing that the Hubbard model, discussed at
the beginning of these lectures has

G2 =921 =94 =941 =U (316)

at wesak coupling U « t, such that

g ~ 1—i (317)
7T’UF
U, ~ UF <1—|—L>, (318)
VR
g9s = 1, (319)
us = vp <u. (320)

At strong and intermediate couplings, the full dependences
of both g, u., and us on U and the electron density n can
be obtained from the exact solution [28]. Althoughgs = 1
exactly, due to spin rotation invariance, u s is not given by
vp. The reason for this lies in the renormalization group
flow from high to low energies and is outside the scope of
these lectures.
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XVI1.2 Correlation functions of the spin-1/2
model

The stage is now set for the calculation of any correla-
tion functions we would like. We are aided by the fact that
the spin and charge dynamics decouple and so do the fac-

(

2o

FR,LJ ﬂ:mNR Lo®
——e L ’ L

¢R,La’ (CU)

2ra

>§(gc+gs+¢+ﬁ)

29

torsthat involve only spin and chargefields. Asthisisfairly
analogous to the spinless case and poses no hew conceptual
difficulty wewill skip the calculational details. Wewill only
givethe normal ordered form of the Mattis-Mandel stam for-
mulain terms of the new bosons

X

exp —iv/T { el o, (@) + 5] 1. (2) + 0 [es] o, (@) + 50d 1, (@] }

exp =i/ { oy e (@) + 502,10 (8) + 0 [csp1 2 (2) + 50001, (0)] ] (321)
where we used the short notation
¢y = coshwy, (322
sy = sinhwyy. (323)
The definition of the new bosonic operators ¢ 1 2 () isinduced by (293) and (294) and is quite obvious.
We can then define operators anal ogous to the spinless case
Oc(z) = Z Ul (@) ye (2) 2, (324)
Ocpw (z) = Ze—”’f%m (@)%, (), (325)
Oue (2) = Y e * oyl (@) vh_, (@), (@) ¢y, (), (326)
and others unique to the spi n—% case, describing the smooth and oscillating parts of the spin density
Os(z) = Y op i, ()0, (@) 1, (327)
vpT
Obpw (x) = (328)

Yo e rras gk, (@), (@),
pT

where oy isthe p, T element of the a-th Pauli matrix (p, 7 = £1, a = 1,2, 3). Finaly, pairing operators can be defined with

specific spin symmetries,

Op (@) = i Z 02 Vrp (2) Yrr (@), (329)
0% (z) = i Z or YRy () VL7 (2), (330)
OAZﬂ (z) = 1 Z (o' £io?)] or Yrp () Y- (). (33D

Eq. (329) corresponds to singlet superconductivity (like the
usual BCS pairing) while Egs. (330) and (331) describe
triplet superconducting correlations with total pair spin pro-
jection S, = 0 and S, = +1, respectively. The correlation
functions are defined in the usua way

D; (2) = (0; () 0} ), (332
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They are
De(z) = o, (333)
(rz)
cos (2k
Depw (a) ~ AT (334
cos (4kpzx)
D4kF (l’) ~ T, (335)
D,(z) = L, (336)
(rz)
. cos (2kpx
Dipw () ~ D) (337)
2kpx)
D&Y ~ (}OS(7F’ 338
SDW(:E) x(gc+i) ( )
1
DS (z) = DI(z)~—, (339
S0 = D@~ s, (39
1
DIDTil () ~ ———. (340)

2(7+30)
Theg — 0 limits of the Fourier transforms of Egs. (333)

and (336) give the bulk charge and spin susceptibilities of
the system, the former being related to the compressibility.

]

Gy (2,1) = -

eikp:t e—ikpw
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When the system is SU(2) symmetric and g; = 1, dl three
components of D%y, (z) are equal and so are the singlet
and triplet pairing correlation functions, as it should be.

The above correlation functions give information about
the tendency of the system to show long range order. The
latter is forbidden in one dimension when the operator in
question has a continuous symmetry such as happensfor the
spin (SU(2)) and the pairing (U(1)) correlations. Neverthe-
less, the correlations that decay slowest are the dominant
ones. Remembering that g. < 1 for repulsive interactions
and g. > 1 for attractive ones and focusing on the SU(2)
symmetric case, we see that attraction favors pairing (super-
conducting) correlations, whereas repulsion favors CDW or
SDW correlations. Still in the SU(2) symmetric case, 4k g
correlations dominate over CDW ones when g. < i. The
degeneracy between singlet and triplet pairing when thereis
attraction and between SDW and CDW when thereis repul-
sion islifted by sub-leading logarithmic correctionsto these
correlation functions, which we will not discuss [29, 30].

Finally, it is interesting to look at the single particle
Green's function, defined in Section X1V. It isdiagond in
spinindices and is given by

2r | /(@ — uct) (z — ust)

V(@ + uct) (z + ust)

o2\ Fleete2) o2\ st )
<x2 —u§t2> <w2 —u§t2> '
(341)

This is derived in Appendix E. Note, once again that the anomalous dimension is & (g>\ + g% — 2) . As a conseguence,
there will be is the usual anomalous power laws in the momentum distribution and local density of states, characteristic of

one-dimensional systems

G(z,t=0)~ —

where

V:%Z(%%-g%). (344)

A

XVIIl  Gapsandthesine-Gordon the-

ory

We will now only mention an important aspect of the
bosonized theories we have treated so far. Let us start with
the XXZ model. In the bosonization of the Hamiltonian, we
ignored the Umklapp terms

Hrmitapy = / dz (%%)2 + H.c.] . (345)

To leading order (forgetting Klein and number factors),

1 _
§—ngn(k—kp)|k—kp|" v (342)

= Plocal (w) ~ wyila (343)

the bosonization versionis given by

A A
HUmklapp —47r2a2 /da’: [e—l4ﬁ¢(x) + H. C.:|
(346)
A
3708 dz cos [4y/7¢ (z)] . (347)

The second form israther cavalier with respect to Klein fac-
torsbut is frequently used and contains the important part of
the physics. Similar terms occur in the Hubbard model. For
instance, we could write

Hpaek = g1 Z/dw : ¢LawLG¢E,J¢R,J 5 (348)

or
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]

—4ikpx
HUmklapp =931 § /d(L‘@ r
o

(Here, we finally see where the other indices 1 and 3 have
gonel) Eq. (348) corresponds to a scattering event across
the Fermi surface with an accompanying spin flip and is
called a spin backscattering or simply backscattering term.
Eq. (349), an Umklapp terminvolving different spins, hasan
oscillating factor, but at half-filling in the Hubbard model,
for example, this factor disappears (the factor of two comes
from the spin)

kp=—=— o ¢ tkrr =1 (350)
When bosonized Egs. (348) and (349) become

Hypor. ~ gu_/da: cos [2\/%41)3 (m)] , (351)
HUmitappy ~ 931 / di cos [2v2r. ()] , (352)

which are quite similar to (347).

Let uslook at the effect of such cosine terms. We fo-
cus on Eq. (347). We saw in Section XIV that the theory
in the absence of thisterm is described by the Hamiltonians
(211) or (212), where ¢ and 0.0 are canonically conjugate
variables

(¢ (2),0,0 (y)] = id (z —y). (353)
We can make the following canonical transformation
¢ = V99, (354)
0
0 — 355
- 7 (355)

which leaves (353) unchanged. In this case, the Umklapp
term becomes

A
Humklapp — Py /daz cos [4y/mgo (x)].  (356)

It is known from renormalization group arguments that for
g > gerit = 1/2, the Umklapp term is irrelevant: its ef-
fect on the low-energy sector is simply to renormalize the
effective parameters « and g but, other than this, it can be
ignored. However, if g < 1/2, thentheUmklapptermisrel-
evant: it is responsible for the opening of a gap in the spec-
trum. Inthiscase, a Luttinger liquid descriptionis no longer
valid. Thecase g = g..i+ = 1/2 (which coincides with the
isotropic Heisenberg model as we saw) is a marginal case.
The most important effect of (356) is the generation of loga-
rithmic correctionsto the power laws of the spin correlation
functions[29, 30]. Thus, for the Heisenberg model

(S0 85 ox (~1)/ ¥ a'j 5 (357)
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b b W, b, +Hec. k. (349)

From the exact expression of g in terms of A of the XXZ
model given in Eq. (287) of Section XV, we can see that
g € (1/2,00) if =1 < A < 1, and the system is a L uttinger
liquid. For A > 1, g < 1/2 and (356) opensagap in the
spectrum. All thisis corroborated by the exact solution.

This discussion can be easily generalized to the spinful
case. Indeed, the terms in Egs. (351) and (352) are relevant
and generate agap in the spin or charge spectraif g5 < 1 or
ge < 1, respectively. Let us discuss the physics of each of
these cases separately. In a model with on-site interactions
only, the Umklapp term occurs only at half-filling because
of the commensurability condition (350). Then, for repul-
siveinteractions(g. < 1), thereisagap in the charge sector.
Indeed, thisis observed in the Hubbard model, in which any
finite U opens a gap at half-filling [20]. The spin sector re-
mains gapless and is a L uttinger liquid.

On the other hand, spin backscattering (Eg. (351)) isrel-
evant in the negative U Hubbard model, which describes
atractive on-site interactions. Thisis a spin-rotationally in-
variant model, so g;; = g;1. Thus, thereisag; termin
addition to (351). It is fairly easy to show that this kind
of term can be incorporated into a g»-type interaction by
92| — 92| — 91|, such that both ga. — g2c — g1y, and
g2s — 925 — 1), effectively generatinga g, < 1. Thisis
what is needed for (351) to be relevant and open a spin gap.
Indeed, the negative-U Hubbard model is known to possess
aspin gap at any filling. The charge sector remains gapless
with g. > 1, with dominant superconducting (singlet) corre-
lations. Thisisthe closest to a superconductor we can get in
a one-dimensional system, since true long-range supercon-
ducting order is rigorously forbidden in 1D. There is a par-
ticular case of the sine-Gordon model, the value g, = 1/2,
where one can refermionize the system (i.e., map it back
to a different fermionic system) and solve it exactly [31]!
Because this solution was found by Luther and Emery, this
spin-gapped quasi-superconducting phase is commonly re-
ferred to as the L uther-Emery phase.

A Useful formulas

A.1 Sumsin thefirst Brillouin zone

L—1
E : eikj — E :ei%rnj
n=0

keBZ
L ifxr=1,

L-1
:nzzox :{ Lo’ fx £,

T
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27

wherez = e*z". It follows that

> et = Lgjo. (358)
keEBZ

Analogously

L L

A cox -
E :ezk] E :ezfn]
j=1 j=1

L
= 1—zr
1—=z

L
> et = Ly o. (359)
j=1

ife =1,
ifx # 1.

It follows that

A.2 Periodic delta-function

Consider the following “ saw-tooth” function, defined on the
real axis

f(w):n—%—xifwe(n—l,n), (360)

wheren € Z (seeFig. 6).

08

06 -

Figure 6. “ Saw-tooth” function, defined in Eq. (360).

Its Fourier series can be written

f(CC): Z ei27rszk7

k=—o00

where

L 1 ifk=0
_ —12wkx - _ )
_/Oe <2 :”)d‘”_{ﬁ if k # 0.
So
1 o €i27rkz
fla)=5= > — (361)
k=—oc0
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Taking its derivative

% — f: ei27rkw —1.

k=—00
But from its definition
6f 00
— =1 —n).
o + E d(x—n)

Thus,
> d(z—n). (362)

n=-—oo

[eS)
§ 6127rkz —

k=—o00

B Bosonic coherent states

Suppose there is only one boson b ([b,bf] = 1). Then, the
state et |0) is an eigenstate of b, since from identity 1 of
Appendix C

e~ pe  — pya (363)
= be® = et b+ ) (364)
= b 10) = ae® |0). (365)

Notethat e’ |0) is not normalized. Actually, using identity
2 of Appendix C

ea*beabf — eabT ea*be|a\2’ (366)
and
(0]’ |0) = el (0] e e ™? 0) = €el*®.  (367)

Thus )
la|”

o) = %

" |0) (368)

isnormalized. For different bosonslabeled by ¢ the coherent
states are

[{ag}) = exp lz (—% + aqb;ﬂ 0).  (369)

q

C Useful operatorsidentities

1. Baker-Hausdorff formula

_ — 1
e BAeB:;ﬁ[A,B]n
:A+[A,B]+%[[A,B],B]+---, (370)

where[A, B],, = [[4,B],,_, , B] and [4, B], = A.

2 1f ¢ = [A4,B] and [4,C] = [B,C] = 0, then
eteP = eABeC/2 and eteP = ePeteC.
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D Bogoliubov transformation

Consider the following Hamiltonian, involving two bosons
Rand L

H=R'R+L'L+\(R'L'+LR). (371)
Define two new bosons .S and T' given by
S =aR + LT, (372a)
Tt = BR + oLt (372b)
whose inverse transformationis
R =aS — BT, (373a)
Lt = —BS +aTt. (373b)

For S and T to obey canonical bosonic commutation rela-
tions we must have

[S,8T] =a® — g2 =1.

Assuming a and S to bereal, they can be parametrized by a
number v € R

a = cosh 7, (374a)

B = sinh+. (374b)

Plugging (373) into (371), we get

H = (a®+ % —2)xap) (STS+TTT)

+ A (@ +B%) —2aB] (STTT +TR) +28(8 — a).
(375)
By choosing

tanh 2y = A, (376)

we can eliminate the crossed terms of Eq. (375) to get (we
also drop the constant term)

1
= fS+11T). 377
cosh 2y (S S+ ) 377)
We can solve explicitly for v in terms of A
1 1+ A

]

¢R,La’ (:177 t) ¢I{,Lo’ (07 0) =

(

(

(v { el e (0,0
(ive{

—i\/7_r{cc<p1720 (5” ) + 5c021¢ (:n;) to [08801,2s (wsi) t 852,15

5
)
)

CePy e (0,0) + 53 1c (0,0)+ o

+ SC‘P;M (0,0

33

Note the condition that | A| < 1. For later use, we also quote

cosh2y = \/11——)\2’ (379)
sinh2y = ﬁ, (380)
coshy = % <g>1/4 + <;—;> 1/4] (381)
= 1[(2)"- (152) " om0
We thus get

H=+1-X(S'S+T'T).

The spectrum of (383) is now trivia since STS and 7T are
the number operators.

The transformation (373) can also be obtained canoni-
cally. The corresponding unitary operator is

(383)

U = exp[y(R'L' - LR)], (384)
vt o= Ut (385)
such that
URU™! = aR - L', (386a)
UL'U™' = -8R + L. (386D)

The above formula can derived by means of the Baker-
Hausdorff formula of Appendix C. The transformed oper-
ators should now beread as R, . — S, T in order to make
contact with (373).

E Single-particle Green’sfunction
In this Appendix, we calculate the single-particle Green's

function for spin-1 fermions. Sinceit is diagonal bothin the
branch (“chirality”) and spin indices we need to find

)+ [esel 0s (0,0) + 50} 1, (0,0
) [Cs@ms (0,0) + 850515 (0,0
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where we have used (321) and already dropped the phase factorsin V. r,1- Thetime dependence, discussed in Section X1V.2
for the spinless case, is easily generalized for electrons with spin through the new entitiesz ). = = F uxt (A = ¢, s). Wecan
normal order the exponentials by using identity 2 of Appendix C e 4e? = ePete”, where C = [A, B] and

C

7 {2 [0100 (@2) 0] e (0,0)] + €2 0124 (21) 1] 24 (0,0)]

+33 [‘PQ,M (356;) 790;1(3 (070)] + 33 [@2,13 ($s¢) 790;13 (070)]}
1 27 2mi 27 27
-5 {cz In [:FTwci] +c2In {:foft] +521n [ifw%] +521n [ifa:‘;

Q

} : (389)

where we used (205) and (206) generalized to the spinful case and the limits L — oo and o — 0 ™ have already been taken.
The expectation value of Eq. (387) can now be easily calculated since the expectation value of the normal-ordered sequence
of exponentialsisequal to 1

o 0o
o b0

c s

0
N‘n M
w
N‘n N

1 1 1
1 (2ma\ 10totactal) oo +HL\* (L L _\*
1 —
; S
<¢R’L0 @0 V510 (0’0)>o 27ra< L ) <2m~;> (2«;@) <j:i27r:n§F> (4_-1'2m;>
(389)
Using
1< 1 \/—> (390)
C = P g ’
A 2 \ Vo gx
o = l(L_\/—> (301)
A = D) \/g_)\ x|
2y = (L, (392)
2\ A = 9 i ax |,
andc3 =1+ s3, wehave
i (a2 (a2 (a2 [a\?
t - = - — -
<¢R,La’ (x,t) ¢R,La’ (070)>0 - 2Ira <xi> (l“;) <1‘%> (l“;)
+i

PN — u?t? z? — uZt?
Analogously,
1 1 1 1
+i 1 a? s(ge+oe-2) a? s(g:+9:-2)
t = _ =
(Vo 0.0, 00) = 57— () () C
Thus,
1 1 1 1
+sgn (¢ 1 a? 3(5c+9--2) o? 3(5+9:-2)
Gr.Lo (2,1) = en (1) < 2 2 2) <ﬁ> ’ (395)
27 \/(;g:':uct) (r Fugt) \7° —uzt T? —uit
and

s et et
Go 1) = =57 [\/(x —ucl) (= ust) /(o + uct) (z + ust)

The spinless case simplifies to
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