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The human eye, as our biological vision instrument, contains intrinsic optical defects, referred to as optical
aberrationsor ametropia. The immediate consequence of such aberrations is poor quality of images formed at
the retina. With the advent of more precise pulsed lasers for eye surgery, the development of instrumentation
to determine precisely the higher order aberrations of the eye became a crucial chalange. Current instruments
available commercially (refractometers) measure only the lower optical aberrations of the eye, i. e., myopia,
hyperopia and astigmatism. In the present work we have developed a high resolution refractometer based on the
Hartmann-Shack(HS) wave-front sensor. The HS sensor was originally developed for aberration measurements
in general optical systems, and is of wide-spread usage in adaptive optics applications such as astronomical
telescopes. Preliminary results for a mechanical eye are presented here and the RMSE in dioptric power (D)
and cylinder axis (in degrees) were as follows: 0.04D for sphere and cylinder and 4

0 for axis. It is known that
refractometers have typical errors of 0.12D diopters for sphere and cylinder and 5

0 for axis. These preliminary
results indicate that the HS sensor may be applied successfully on in vivo eyes and that, in the near future, this
technology may be available in most eye hospitals and clinics throughout the world, therefore bringing benefits
to the general population.

I Introduction

I.1 Aberration theory
The principle of image formation through optical sys-

tems is far from being a trivial subject. There are many
variations in optical materials, surface curvatures and tol-
erances, distances between elements, quantity and function
of each optical element, and so on. In the paraxial approxi-
mation the image formation by spherical refracting surfaces
are only approximately correct. In devising ray-tracing for-
mulas for these surfaces it is necessary to assume that rays
form small angles with the refracting surface and also strike
the surface close to the optical axis. In paraxial optics, the
power expansions of sine and cosine, given by
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are approximated by their first terms. To the extent that these
first order approximations are valid, Gaussian Optics im-
plies exact imaging. The inclusion of higher order terms in
the derivations, however, predicts increasingly higher depar-
tures from “perfect imaging”. These departures are referred
to as optical aberrations. In order to quantify how well an
optical system can transfer objects from object space to the

image space, elaborate theories of optical aberration have
been developed [1]. An illustration for a brief definition of
optical aberration may be seen in Fig. 1.

Figure 1 shows a diagram of the image formation by a re-
fracting surface separating two media of different refractive
indexes (n and n0). An object point at position (p) localized
at the object plane (O) has it’s image formed at point (p 0) on
the image plane (I ). A marginal ray intersects the exit pupil
at some point (�; �) of the surface. The wave aberration (W )
along the marginal ray is calculated as the difference in op-
tical path length (OPL) from the chief ray, i.e.,:

W = OPLmarginal �OPLchief (2)

Using ray-tracing techniques and Snell’s Law, if the sur-
face position and shape is known (such as in cylindrical co-
ordinates, i. e., z = z(�; �)) and also the refracting indexes
of the different media, for a certain object point one may
calculate the wave-aberration function for each ray pencil
passing through the exit pupil. For the illustration in Fig. 1
the wave aberration for the considered ray is:

W = nd+ n0d0 � nl � n0l0 (3)
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Figure 1. Definition of wave-front aberration for a refracting surface.

When the third order terms from the cosine and sine ex-
pansions in equation (1) are included, third-order aberration
theory results. These aberrations have been studied and for-
malized in 1856 by the German mathematician Ludwig Von
Seidel and are referred to as Seidel Aberrations. The Seidel
Aberrations may be represented by a power series in polar
coordinates (�; �):

W (�; �) =

1X
n;m=0

Snl1�
ncosl� + Snl2�

nsinl� (4)

In this series the Seidel Aberrations, a total of six, are
explicit: piston, tilt, curvature of field, astigmatism, coma,
spherical aberration(please refer to Table 1). An additional
aberration, called chromatic aberration, results from the dis-
persion curve (refractive index variation with wave-length)
of certain optical materials.

n l Representation (polar) Description
0 0 1 Piston
1 1 �cos� Tilt
2 0 �2 Curvature of Field
2 2 �2cos2� Astigmatism
3 1 �3cos� Coma
4 0 �4 Spherical Aberration

Table 1. Seidel Aberrations.

Because circular apertures are very common in opti-
cal systems, such as in telescopes, lenses and also the hu-
man eye (for example, the crystalline lens and eye pupil),
the treatment in polar coordinates is very attractive. The
power series that describes the Seidel Aberrations are, un-
fortunately, not an orthogonal set over the unit circle, which
means that they do not form a complete base of polynomi-
als (i. e., they are not linearly independent). In 1934 the
Dutch physicist Fritz Zernike published an article containing
a different set of polynomials for description of optical aber-
rations [2]. These polynomials have certain mathematical

properties, such as orthogonality over the unit circle and in-
variance with rotation, which make them specially interest-
ing for wave-front fitting. Because of the simple mathemat-
ics involved to generate these sets of polynomials at any de-
sired order, highly precise fitting of the aberration function
could be accomplished. These polynomials became gradu-
ally popular among optical scientists in the second half of
the 20th century and are widely used today in many differ-
ent fields of optics, including vision optics and optical en-
gineering. They became commonly known as Zernike Poly-
nomials. We have chosen to use these polynomials instead
of those of Seidel in the present work, for the above reasons
and also because they have been chosen as the conventional
polynomials for aberration description in vision science by a
special comity of the Optical Society of America [3] . A for-
mal mathematical presentation of Zernike Polynomials and
their equations and properties is given in section (3).

I.2 Aberration in vision optics

Until the mid 80s there were only two options for the
ophthalmologist in order to correct ametropia: spectacles
or contact lenses. Of course, for both these techniques,
the main objective was to correct the three lower order
ametropia. There was no motivation for correction of higher
order aberrations for two basic reasons: (1) there was no
instrumentation for measuring them and, even if one could
make more precise measurements, (2) there were no power
lathe that could possibly mold optical surfaces with profiles
more sophisticated than toroidal surfaces (the summation of
a spherical plus a cylindrical surface).

In this scenario, there was no apparent need for better in-
struments than the conventional refractometers, developed
in the early 70s [4, 5]. After the advent of computerized
and high precision instruments for corneal surface measure-
ments (usually referred to as Corneal Topographers)[6] in
the mid 80s and pulsed dye lasers for molding the cornea
into elaborate forms in the early 90s [7], the need for more
precise refractometers became evident. The necessity for
such instrumentation started to be addressed in 1994 when
Liang and colleagues [8] suggested, for the first time, the
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application of the HS sensor [9, 10] for measuring the aber-
rations of the in vivo eye. This was a truely innovative idea
given the fact that HS sensor were popular in other optical
fields at the time, but had never been applied to the human
eye. It became clear that, if vision correction is to achieve a
“state of the art” status, higher order aberrations should be
measured and corrected, much in the same that this correc-
tion was already happening at high magnification telescopes
since the early 1950s [11].

In the next section we present the second generation of
an instrument that has been developed at Lab. de Óptica
Oftálmica - IFSC. The first generation prototype has pre-
sented partially elsewhere [12].

II Instrumentation

The diagram of Fig. 2 shows a simple scheme of our instru-
ment.

Figure 2. Schematic diagram of optical setup used to measure aberrations of the mechanical eye.

A He-Ne laser beam (1) is focused at the back of the eye.
In this first optical path the goal is to generate a small spot of
light at the retina, by adjusting position of lens (16). The ac-
commodation system consists of a light bulb (5) that shines
a picture (5), which is viewed by the eye. Lens (3) is shifted
until the far point of the eye is found. The diffused light
reflected at the retina return passing by all eye components
(vitreous humor, crystalline, aqueous humor, cornea), goes
through lens (16), reflects on the beam splitter (7) and con-
tinuous through lenses (8), (9) and (11), going through the
stop (10). The stop eliminates reflections from the accom-
modation system, from the cornea and lens (16). Finally the
wave-front hits at the HS sensor (12) and is focused at the
CCD array (13). The CCD image is digitized in a ”frame
grabber” (14) and processed at an IBM PC, which displays
the graphical information at the colored monitor (15).

In Fig. 3 we may see an actual photograph of the instru-
ment mounted at the Lab. de Óptica Oftálmica - IFSC. The
components shown in Fig. 3 are in accordance to the optical

diagram shown in Fig. 2. The equipment was mounted over
an moveable aluminum base with a commercial head and
chin rest was adapted to it. The accommodation system is
still under development [13] for future tests on in vivoeyes.

Figure 3. Wave-front instrument developed at the IFSC.
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The working principle of the HS sensor is depicted in
Fig. 4. In Fig. 4(a) we present HS principle for a plane
wave-front and a distorted wave-front, respectively. For a
plane wave front the focusing position on the CCD plane
is exactly at the intersection of the axis of the micro-lens
with the CCD x; y plane; on the other hand, for an aber-
rated wave-front, light focuses at a spot slightly shifted. For
a set of micro-lenses (Fig. 4(b)) the same principle applies
and we will have uniformly spaced spots for a plane wave
and non-uniformly distributed points for aberrated waves.
The amount of displacement of the spots in each direction
(�x, �y) is what allows us to determine the exact amount
of wave-front aberration. This procedure is described in the
following section.

Figure 4. Principle of the HS sensor, showing plane (a) and (b)
distorted wave-fronts hitting the CCD sensor.

III Representing optical aberrations
with Zernike Polynomials

Zernike polynomials are a set of polynomial maps from the
unit disc x2+y2 � 1 of the x; y-plane into the z-axis, which
have the desirable property that combinations of these maps
can be found to well fit the surface shapes of wave-front
aberrations. In polar coordinates, Zernike polynomials are
the product of a radial polynomial and a azimuthal map:

Zl
n(�; �) = fR(�) cos l�if l < 0R(�) sin l�if l � 0 (5)

where l may be any integer number and n may be any pos-
itive integer and zero. When l is greater than or equal to
zero, the sine function is used and when it is smaller than
zero the cosine function is used. The radial components of
the Zernike polynomials are given by:

Rl
n(�) =

(n�l)=2X
s=0

(�1)s(n� s)!

s![(n+m)=2� s]![(n�m)=2� s]!
�n�2s

(6)

The Zernike polynomials are thus a set of orthogonal
maps defined in the unit circle. Their orthogonality condi-
tion is expressed by:
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The main motivation for using Zernike polynomials is
that they describe with high precision the shapes of four con-
ventional Seidelaberrations. Because there is no limit on the
number of terms that may be used, many higher order aber-
rations can be described by Zernike polynomials, among
them coma,3rd order spherical aberration, etc.. Actually
it is enough to use the first 15 linearly independent Zernike
polynomials (see Table 2), in order to obtain a highly ac-
curate description of the most common aberrations found
in human eyes. These polynomials, in mathematical terms,
comprise a set of linearly independent polynomials in two
indeterminates with degree less than or equal to 4, which
are orthonormal with respect to the inner product given in
(7).

We mention in section (3) the possibility of calculating
the wave-front aberration from the wave-front slopes. Based
on figure 4 we may write the slopes in the x and y directions
as:

W
0

x =
�x

f
=

xa � xc
f

(8)

W
0

y =
�y

f
=

ya � yc
f

(9)

where (xa; ya) is the coordinate of a spot from an aberrated
wave-front, (xc; yc) is the coordinate of the reference spot,
i. e., a non-aberrated, plane wave-front, and f is the fo-
cal length of the micro-lenses. If we use a single index k
as function of n and l ( the indexes of equations (3)-(5)),
namely,

k =
n(n+ 1)

2
+

n� l

2
+ 1 (10)

then we may write the wave-front as:

W (x; y) =

15X
k=1

CkZk(x; y) (11)

and its partial derivatives as

W
0

x(x; y) =

15X
k=1

Ck
dZk(x; y)

dx
(12)

W
0

y(x; y) =
15X
k=1

Ck
dZk(x; y)

dy
: (13)

Note that k is the number of the Zernike term in accordance
to Table 2. In order to find the Zernike coefficients for a
specific wave-front, we perform a minimum square fit for
all i; j centroids which form the HS image. This procedure
consists of minimizing the sum
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relative to each Zernike coefficient, therefore we have to find dS
dCt
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d

from where we extract a square linear system AC = b with
k equations and k unknown values of C. By solving this
linear system through conventional procedures (LU decom-
positionand Gaussian elimination method) [14] we find 15
values of C for each measured eye. For a flat wave-front the
partial derivatives dW

dx and dW
dy are zero, and we therefore

obtain a solution C = 0, which by the general equation (11)
rendersW (xij ; yij) = 0, a plane wave in the xy plane. Now
for wave-fronts that are not flat we obtain nonzero values of
partial derivatives, therefore the linear system will not have a
trivial solution. The coefficients that contribute the most to a
specific aberration will have greater values. For example, if
the measured eye has a great amount of comathe eighth and
ninth coefficient will have values greater than others. Other-
wise if there is a greater amount of astigmatism at 450, the
fourth term will predominate. In the next section we show
results of calculation for several calibrated aberrations for a
mechanical eye.

IV Preliminary Results

Measurements were made in a mechanical (artificial) eye
which was calibrated with five different ametropia: em-
metropic (0D), hyperopic (+5D), myopic (-5D), and 2D
astigmatism at 450 and 900 for the cylinder axis (observa-
tion: in ophthalmology the quantification of an ametropia
is usually given by the spherical plus cylindrical compo-
nents of a toric lens). An image processing algorithm to
find the HS spots was implemented in Pascal (Borland Del-
phi version 5.0) using conventional Computer Visiontech-
niques such as segmentation and filtering [15, 16]. Image

processing was accomplished separately for each aberration
(see Fig. 5, column A) and results were plotted in several
different outputs.

In the Fig. 5, from left to right column, respectively,
we may see results for the image processing (A), two-
dimensional color coded maps for the wave-front (B), sur-
face maps (C) and, finally, the Zernike coefficients for each
of the 15 terms in Table 2 (D). A qualitative analysis for
the first row (0D) shows regular spaced dots, a color map
with one color, a plane of hight one, and coefficients all
with value zero. This is obviously in accordance with the
expected values for a zero dioptric eye, i.e., with no aber-
rations, therefore resulting in a plane wave leaving the eye.
The same qualitative analysis for the other eyes show the va-
lidity of results. For example, in the cases of +5D and -5D,
we know that the wave-front should look like a dome shaped
surface, facing downwards for the myopic (strong optical
system = converging wave-front) and upwards for the hyper-
opic(weaker optical system = diverging wave-front). This is
in accordance to the expected shapes of wave-fronts leaving
eyes with different low order aberrations.

It is possible to relate the wave-front measurements with
those of refractometers. Regardless of the wave-front’s typ-
ical high resolution data, it is still possible to retrieve con-
ventional dioptric power values for the best spherocylinder
lens that describes the eye’s lower order aberrations. If we
consider the spherocylindrical lens as

Wlens = 2C4xy + 2C5(x
2 + y2) + C6(y

2 � x2) (16)
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Term Polar Cartesian Meaning
Z1(x; y) 1 1 Constant term
Z2(x; y) � sin � x Tilt in x

direction
Z3(x; y) � cos � y Tilt in y

direction
Z4(x; y) �2 sin(2�) 2xy Astigmatism

with axis at
�45o

Z5(x; y) 2�2 � 1 �1 + 2y2 + 2x2 Focus shift
Z6(x; y) �2 cos(2�) y2 � x2 Astigmatism

with axis at 0
or 90o

Z7(x; y) �3 sin(3�) 3xy2 � x3

Z8(x; y) (3�3 � 2�) sin � �2x+ 3xy2 + 3x3 Third order
coma along x
axis

Z9(x; y) (3�3 � 2�) cos � �2y + 3x2y + 3y3 Third order
coma along y
axis

Z10(x; y) �3 cos(3�) y3 � 3x2y
Z11(x; y) �4 sin(4�) 4y3x� 4x3y
Z12(x; y) (4�4 � 3�2) sin(2�) �6xy + 8y3x+ 8x3y
Z13(x; y) 6�4 � 6�2 + 1 1� 6y2 � 6x2 + 6y4 + 12x2y2 + 6x4 Third or-

der spherical
aberration

Z14(x; y) (4�4 � 3�2) cos(2�) �3y2 + 3x2 + 4y4 � 4x2y2 � 4x4

Z15(x; y) �4 cos(4�) y4 � 6x2y2 + x4

Table 2. Set of first 15 Zernike polynomials

the sphere (�D), cylinder (�A) and axis (�) may be written
as:

�A = 4
p
6

p
a24 + a26
r2

(17)

� =

(
90 + arctan(C6

C4
) for C6

C4
> 0

arctan(C6

C4

) for C6

C4

� 0
(18)

�D =
4
p
C5

d2
(19)

where d is the diameter of the entrance pupil.
The RMSE for these measurements were as follows:

0.04D for sphere and cylinder and 40 for axis. It is known
that auto-refractors have typically errors of 0.12D diopters
for sphere and cylinder and 50 . As we may see from these
preliminary measurements the wave-front device allows for
more precise exams. We believe this precision is repro-
ducible for eyes of the general population.

V Discussion

We have demonstrated the precision the HS wave-front sen-
sor in measuring optical aberrations of a calibrated mechan-
ical eye. Tests on in vivo eyes should be conducted for veri-
fication and validation of the technique.

One common difficulty of instruments when attempting
to measure refractive errors happens during accommodation.
It is not always possible to repeat the measurements with
the crystalline lens at exactly the same power. This cer-
tainly makes the reproductivity of these instruments much
lower than expected. Our intention here was not to compare
precision of the whole refractive instrumentation, therefore
we did not consider accommodation (our artificial eyes do
not have a lens). Furthermore our intention was to provide
insight to how promising the wave-front technique may be
when compared to conventional auto-refractors, in terms of
resolution and precision. An accommodation system, when
in well functioning condition, may be applied to any of
both instruments and than absolute precision comparisons
for daily measurements in the human population may be un-
dertaken.
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Figure 5. Wave-front results for all 5 cases.

An important factor is the amount of micro-lenses in the
HS sensor. If we double the number of micro-lenses in the
row and column, the resolution is multiplied by a factor of 4.
On the other hand, for highly distorted corneas this might be
a disadvantage. In a previous work [17, 18] we have shown,
by implementing computer simulations of HS patterns for
several corneal topographies, that for eyes with severe cur-
vature changes on corneal surface (a pathology commonly
known as keratoconus), the HS spots may overlap, prevent-
ing the software from the capacity of image processing and
data analysis. In these specific cases, conventional trial lens
tests with auto-projectors or Snellentables may still be nec-
essary.

We strongly believe that refractometers based on the HS
technology represent the next generation of high resolution
refraction instruments and that they will gradually be avail-
able in most eye-care clinics and hospitals, much in the
same way that HS sensors have also become wide-spread in
high magnification astronomical telescopes throughout the
world. Moreover, the high resolution wave-front data will
allow for precise corneal surgeries [19, 20, 21], resulting
in algorithms that may execute what is being called “cus-
tomized corneal ablations” [22].
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