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Symmetry energy coefficients of asymmetric nuclear matter generalized are investigated as the inverse of nu-
clear matter polarizabilities with two different approaches. Firstly a general calculation shows they may depend
on the neutron-proton asymmetry itself. The choice of particular prescriptions for the density fluctuations lead
to certain isospin (n-p asymmetry) dependences of the polarizabilities. Secondly, with Skyrme type interac-
tions, the static limit of the dynamical polarizability is investigated corresponding to the inverse symmetry
energy coefficient which assumes different values at different asymmetries (and densities and temperatures).
The symmetry energy coefficient (in the isovector channel) is found to increase as n-p asymmetries increase.
The spin symmetry energy coefficient is also briefly investigated.

I Introduction

The (n-p) symmetry energy coefficient and its dependence
on the nuclear density has been extensively studied and this
is of relevance, for example, for the description of macro-
scopic nuclear properties as well as for proto-neutron and
neutron stars. It represents the tendency of nuclear forces
to have greater binding energies (E/A) for symmetric sys-
tems - equal number of protons and neutrons. It contributes
as a coefficient for the squared neutron-proton asymmetry
in usual macroscopic mass formula,E/A = H0(A,Z) +
aτ (N − Z)2/A2, whereH0 does not depend on the asym-
metry, Z, N and A are the proton, neutron and mass numbers
respectively. Other powers of the asymmetry (proportional
to (N − Z)n for n 6= 2 [1]) are usually expected to be less
relevant for the equation of state (EOS) of nuclear matter
based on such parameterizations [2, 3]. The same kind of
parameterization is considered for nuclear matter where in-
stead of nucleon numbers one has to deal with densities.
aτ is also the parameter which measures the response of
the system to a perturbation which tends to separate pro-
tons from neutrons. It is given by the static polarizability of
the system which also may depend on the asymmetry of the
medium. This point has been developped and emphasized
recently [4, 5]. The spin symmetry energy coefficient of nu-
clear matter may also be defined,aσ, representing the cost
in energy to make the system spin-asymmetric (and eventu-
ally polarized nuclear matter). The spin channel is relevant
for the study of the neutrino interaction with matter because
it couples with axial vector current together with the scalar

channel [6, 7, 8]. A suppression of the spin susceptibility (in
this work we will be dealing rather with its inverse) leads to
the suppression of Gamow Teller transitions which are of
interest for the supernovae mechanism [8] and eventually
to instabilities associated to ferromagnetic polarized states
[9, 8]. In this work we articulate and extend the ideas devel-
opped previously for the dependence of symmetry energy
coefficients on neutron-proton asymmetry. For this we use a
calculation for the static polarizabilities - proportional to the
inverse of the symmetry coefficients in asymmetric matter -
which was done using Skyrme effective forces in [5, 4].

II Generalized Symmetry Energy
Coefficients

When considering a small amplitude external perturbationε,
the medium polarizability is defined as the ratio of the den-
sity fluctuation (β = δρn − δρp) to the amplitude of the
external perturbation and it can be written as [5, 10]:

Πs,t ≡ β

ε
= − ρ

2As,t(b, β)
, (1)

whereAs,t is the neutron-proton (isovector) symmetry co-
efficient (s = 0, t = 1 - spin, isospin) andb = ρn/ρp − 1
is an asymmetry coefficient. For the other channels (differ-
ent (s, t)) one may define different symmetry coefficients.
Note thatAs,t is a function ofb andβ and these parameters
may be related, as argued below. The occurrence of these
functional dependences ofAs,t can be found just by the first
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stability condition with respect to the (density) fluctuation
from which one defines the polarizability (1):dH/dβ = 0.

A. Isospin dependence ofAs,t

We considerAs,t to be a function of the density fluctua-
tion β. Althoughβ is not the explicit n-p asymmetry (given
by b) we will consider that it depends on it (as it was also
argued in [5]). We consider these parameters are related to
each other and therefore we will writeA = A(β) shortly.
In [4] two different prescriptions were discussed forβ in the
calculation of the response function of asymmetric nuclear
matter. We have used (and it was shown to be the more rea-
sonable prescription) the one which leads to the following
relation between the fluctuationβ and the explicit asymme-
try (b):

β = δρn

(
2+b
1+b

)
, (2)

Whereδρn is the neutron density fluctuation. In the n-p
symmetric limitβ = 2δρn and in another limit, in neutron
matter,β = δρn. The above prescription (expression (2))
is based on the assumption that the density fluctuations are
proportional to the respective density of neutrons and pro-
tons, i.e.,δρn/β = ρn/ρ, beingρ the total density. In spite
of being rather well suited for the isovector channel, this
kind of assumption can be considered as a starting point for
the other channels (spin, scalar) in asymmetric nuclear mat-
ter. Prescription (2) is therefore model-dependent and differ-
ent choices for it yield other forms for the the (asymmetric)
static screening functions. The dynamic response functions
are less sensitive to this prescription [4].

From the solution of the polarizability (1) we calculate
the first derivative with relation tob:

dβ

db
=

ερ

2A2
0,1

dA0,1

db
= − β

A0,1

dA0,1

db
. (3)

Another expression can be obtained from the relation be-
tweenb andβ of (2). It yields:

dβ

db
= − β

(2 + b)(1 + b)
. (4)

Equating these two last equations we obtain:

−A0,1 β

(2 + b)(1 + b)
= −β

dA0,1

db
, (5)

From which it is possible to derive the following relation
between the isospin s.e.c. and the n-p asymmetry [5]:

A0,1 = A0,1
sym

2 + 2b

2 + b
. (6)

In this expressionAsym = aτ ' 30MeV is the s.e.c. of
symmetric nuclear matter (b = 0). For b = 2 (neutron den-
sity three times larger than the proton density) we obtain
A = 1.5Asym. In the limit of neutron matterA(b →∞) =
2Asym.

Other prescriptions for the density fluctuation, leading
to different dependences on the n-p asymmetry (b), can be
given by:

c

1)β = const → A0,1 = const,

2)β = δρn
2 + bm

1 + bm
→ A0,1 = Asym

2 + 2bm

2 + bm
(m > 1 integer).

(7)

d

The first of these alternative prescriptions leads to a constant
symmetry energy coefficientA = aτ . However, it corre-
sponds toδρn = δρp, independently of the asymmetry of
the medium. This does not seems to be reasonable for ex-
ample because in the limit of neutron matter there would be
no proton density. Furthermore this prescription has been
used in the dynamical response function yielding seemingly
non physical results [4]. The second of prescriptions (7) is a
very general one valid for arbitrary integer numbersm and
was considered for the sake of simple algebraic calculation.
Probablym should be not large because it would lead to a
too much strong (stiff) dependence onb.

Another assumption for deriving expressions (6) and (7)
was thatρ is independent ofb. This would be unreasonable
if one considers a complete self consistent calculation with
the equation of state of a proto-neutron star, for example.

III Polarizabilities with Skyrme
forces

A nearly exact expression for the dynamical polarizability of
a non relativistic hot asymmetric nuclear matter at variable
densities was derived with Skyrme interactions in [4].

The general static screening functionAs,t in asymmetric
nuclear matter at finite temperature was explicitely written
in [5]. (The coefficientb is related to a frequently used asym-
metry coefficient:α = (2ρ0n − ρ0)/ρ0, by the expression:
b = 2α/(1− α).)

A. Results for Skyrme interactions

The Skyrme interactions used are: SLyb [11], SkSC4,
SkSC6 and SkSC10 [12, 13]. In Figure 1 we show the in-
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verse of the static polarizability (generalized symmetry en-
ergy coefficient) in the isovector channel for diverse Skyrme
forces. as a function of the asymmetry parameterb. For
symmetric nuclear matterb = 0 the different Skyrme forces
yield values between27 and 34 MeV, the usual values
adopted in the litterature. For increasingb the coefficient
increases, being the slope strongly dependent on the inter-
action. We plot one case for dense nuclear matterρ = 2ρ0

(long dashed-short dashed line) with force SLy(b). We note
that the increase ofA0,1 is much smaller. These results were
discussed more extensively in [5].
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Figure 1. Neutron-proton symmetry energy coefficientA0,1 =
ρ/(2Π0,1

R ) as a function of the asymmetry coefficientb for sev-
eral Skyrme forces: dotted line (SGII), thick dotted (SkSC4), long-
short dashed (SLy(b)), crosses (SkSC6), thick long-short dashed
(SLy(b) at twiceρ0), medium thick dotted (SkSC10).

In Figure 2 the spin symmetry energy is shown as a
function ofb with forces SLy, SkSC4, SkSC6 and SkSC10.
The values for symmetric nuclear matter are very different.
The common trend is the increase ofA1,0 with b, i.e., at
very asymmetric matter the spin interaction tends to become
more repulsive. However the particular behavior of the spin
s.e.c. withb is different for each effective force at a given
density. We can compare our results to the ratio of spin sus-
ceptibility of interactingneutron matter to the non inter-
acting Fermi gas obtained by Fantoni, Sarsa and Schmidt
[14] by means of the auxiliary field diffusion Monte Carlo
method. This ratio is proportional to the polarizability as ob-
tained in expression (1) and therefore inversely proportional
to the spin symmetry coefficientA1,0. First of all we note
that, in most cases, the values they find are all positive for
the range of densities considered by them, from0.75ρ0 up to
2.5ρ0 (in our calculation the total density was kept constant
and equal to the saturation densityρ0). The slope seems to
be nearly the same as that we obtain for low values of the
n-p asymmetry. Consequently they may obtain instabilities
for higher density neutron matter whereas we do not observe
this result in our calculations with Skyrme forces at the sat-
uration density (the comparison is meaningful for neutron
matter:b very large). A further comparison at different total
nuclear densities is to be shown elsewhere [5].
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Figure 2. Spin symmetry energy coefficientA1,0 = ρ/(2Π1,0
R ) as

a function of the asymmetry coefficientb for the different forces:
thick dotted (SkSC4), long-short dashed (SLy(b)), medium thick
dotted (SkSC6), thick solid line (SkSC10).

IV Summary and Conclusions

Summarizing, the dependence of the s.e.c. on the n-p asym-
metry was studied extending the results of ref. [5]. Dif-
ferent prescriptions for the density fluctuations (expressions
(2,7)) in asymmetric nuclear matter lead to different depen-
dences of the symmetry energy coefficients on the asymme-
try parameterb. The n-p asymmetry dependence of the s.e.c.
in the different channels was analyzed for different Skyrme
forces. They may yield very different behaviors including
the possibility (or not) of nuclear matter to undergo phase
transitions. These forces can describe different behaviors of
the symmetry energy coefficients. Therefore, in principle,
different values can be expected for the (bulk) symmetry en-
ergy coefficients in asymmetric nuclear matter with different
n-p asymmetries. It would be interesting to apply the results
obtained here and in [5] in studies of the equation of state
of asymmetric nuclear matter, trying to extract experimen-
tal constraints forAs,t, in particular in the isospin channel
(s = 0, t = 1). (For works which can be related with the
present ideas see, for example, these proceedings - work by
W. Lynch - and [15]). Although we have dealt with neutron-
proton density asymmetry we can expect that the same kind
of ideas can be applied for the neutron-proton number asym-
metry used in mass formulas for finite nuclei [3]. In the spin
channel it is possible to expect spin polarized asymmetric
matter yielding magnetic fields in neutron stars, as discussed
in [9]. However with the increase ofb we find that the spin
interaction may be rather repulsive, hindering this magne-
tization effect with the use of these Skyrme forces for the
value of density analyzed here (ρ0). In this work we do not
include the simultaneous study of the density dependence of
the symmetry coefficients.
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