
Brazilian Journal of Physics, vol. 33, no. 2, June, 2003 301

Frame Dependence of the Pair Contribution to the
Pion Electromagnetic Form Factor in a Light-Front Approach
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The frame dependence of the pair-term contribution to the electromagnetic form factor of the pion is studied
within the Light Front approach. A symmetric ansatz for the pion Bethe-Salpeter amplitude with a pseudo
scalar coupling of the constituent to the pion field is used. In this model, the pair term vanishes for the Drell-
Yan condition, while it is dominant for momentum transfer along the light-front direction.

I Introduction

Within the Front Form dynamics[1], where the state of the
system is defined atx+ = t + z = 0, if one uses the im-
pulse approximation of the plus component of the electro-
magnetic current (j+) in the Drell-Yan frame to calculate the
form factors, the pair production from the incoming photon
(pair-term contribution) is in general suppressed by light-
front momentum conservation (see, e.g., [2]). This was seen
in schematic covariant models for spin-zero composite sys-
tems [3, 4, 5]. However, even in the Drell-Yan frame the pair
term is present inj+ for spin-one systems and is necessary
to keep the rotational properties of the matrix element of the
current[6, 7].

To avoid the difficulties associated with the rotational
properties of the impulse approximation some physically
motivated schemes to extract form factors from the cur-
rent were used[8, 9, 10]. In another approach, free of
these ambiguities[11], the plus component of the momen-
tum transfer is non zero while the transverse momentum
transfer vanishes in the Breit frame. This can be achieved
by departing from the Drell-Yan condition by rotating the
system around they-direction, i.e, a non-kinematical trans-
formation, and thus changing the direction of the momentum
transfer in thez − x plane.

However, by relaxing the Drell-Yan condition, a light-
front pair term can contribute to the plus component of the
current, which can be studied in the pion example, as a pro-

totype of a relativistic system of bound constituents. In this
work, the composite system of a constituent quark and anti-
quark, is described by an ansatz for the Bethe-Salpeter am-
plitude which is nonconstant and symmetric with a pseudo
scalar coupling of the constituent to the pion field. Our aim
here is to discuss, within that model, the magnitude of the
pair contribution to the pion electromagnetic form factor for
momentum transfers in thez − x plane in the Breit-frame,
as has been done in Ref.[5].

The work is organized as follows. In Sec. II, we
present the model of the pion Bethe-Salpeter amplitude and
its eletromagnetic current in impulse approximation. In Sec.
III, we discuss the numerical results for the pion electromag-
netic form factor where the separate contribution of the pair
term is given. We also present our summary in Sec. III.

II Pion Model and Electromagnetic
Current

The electromagnetic current of the pion is calculated in
impulse approximation, using a pseudoscalar coupling be-
tween pion and quark fields, given by the effective La-
grangian (see, e.g. [12]):

LI = −ıg~Φ · qγ5~τq , (1)

where g = m/fπ is the coupling constant from the
Goldberg-Treiman relation at the quark level, andm is the
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mass of the constituents andfπ the pion decay constant.

The electromagnetic current ofπ+ in impulse approxi-
mation is build from the covariant expression, which corre-
spond to the Feynman triangle diagram (see, e.g., [13]):

jµ = −ı2e
m2

f2
π

Nc

∫
d4k

(2π)4
Λ(k, P ′)Λ(k, P )

× Tr[S(k)γ5S(k − P ′)γµS(k − P )γ5] , (2)

whereS(p) =
1

/p−m + ıε
, Nc = 3 is the number of colors,

Pµ andP ′µ = Pµ + qµ are the initial and final momenta of
the system,qµ is the momentum transfer andkµ the spec-
tator quark momentum. The factor 2 stems from isospin
algebra.

Our ansatz for the analytical form of the vertex function
describing the momentum part of the coupling between the
constituents and pion is:

Λ(k, P ) =
C

(k2 −m2
R + ıε)

+
C

((P − k)2 −m2
R + ıε)

,

(3)
where mR is the regulator parameter. By imposing the
charge normalization conditionFπ(q2 = 0) = 1, the con-
stantC is fixed. This model satisfies current conservation
q · j = 0[5].

We consider Breit frames, with the momentum trans-
fer q+ 6= 0 and using the light-front variables, i.e.k+ =
k0 + k3 , k− = k0 − k3 ,~k⊥ ≡ (k1, k2), one has

q+ = −q− =
√
−q2 sin α, qx =

√
−q2 cosα, qy = 0, (4)

andq2 = q+q− − (~q⊥)2. The Drell-Yan frame withq+ = 0
is recovered forα = 0, while theq+ =

√
−q2 condition

[11] comes withα = 90o. (The angleθ of Ref.[14] corre-
sponds toα + 90o).

The pion electromagnetic form factor is extracted from
the general covariant expression:

jµ = e(Pµ + P ′µ)Fπ(q2) , (5)

evaluating the plus component of the current in Eq.(2),
which has two non vanishing contributions: [3, 5, 14, 15]:

Fπ(q2) = F (I)
π (q2, α) + F (II)

π (q2, α) . (6)

The integration over the interval of0 ≤ k+ < P+ de-
finesF

(I)
π (q2, α) (see Fig. 1(a)). Fork+ in the integration

interval P+ ≤ k+ ≤ P
′+ (see Fig. 1(b)) one defines

F
(II)
π (q2, α). In this model the contribution of the valence

component of the wave function is part ofF
(I)
π (q2, α). The

pair term contribution to the form factor, withq+ > 0, is
F

(II)
π (q2, α).

Figure 1. Light-front time-ordered diagrams for the current: (a)
F

(I)
π (Eq.(7)) and (b)F (II)

π (Eq. (8)).

The two contributions to the form factor are given by:

F (I)
π (q2, α) = −ı

m2

(P+ + P ′+)f2
π

Nc

(2π)4

∫
d2k⊥dk+dk−

× θ(k+)θ(P+ − k+)
k+(P+ − k+)(P ′+ − k+)

Π(k, P, P ′) (7)

and

F (II)
π (q2, α) = −ı

m2

(P+ + P ′+)f2
π

Nc

(2π)4

∫
d2k⊥dk+dk−

× θ(k+ − P+)θ(P ′+ − k+)
k+(P+ − k+)(P ′+ − k+)

Π(k, P, P ′) (8)

where

Π(k, P, P ′) =
Tr[O+]Λ(k, P )Λ(k, P ′)

(P− − k− − (P − k)−on + ıε
P+−k+ )

× 1
(k− − k−on + ıε)(P ′− − k− − (P ′ − k)−on + ıε)

,(9)

with,

O+ = (/k + m)γ5(/k − /P ′ + m)γ+(/k − /P + m)γ5 . (10)

The suffixon indicates particles on-k−-shell. In particular,
for the Drell-Yan condition (q+ = 0) F

(II)
π (q2, α) vanishes.

The Dirac propagator written in terms of light-front mo-
menta has two parts [16]:

/k + m

k2 −m2 + ıε
=

/kon + m

k+(k− − k−on + ıε
k+ )

+
γ+

2k+
, (11)

wherek−on = (k2
⊥ + m2)/k+. In the right-hand side of

Eq.(11), the first term is propagating in the light-front time
and the second one is instantaneous. This second term con-
tributes to bothF (I)

π (q2) andF
(II)
π (q2), due to the analytic

structure of the symmetric vertex function of Eq. (3). The
contribution of the instantaneous term is of nonvalence na-
ture because it is left out in the definition of the valence wave
function, as we discuss below.
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The pion Bethe-Salpeter amplitude within the model is
given by:

Ψ(k, P ) =
m

fπ

/k + m

k2 −m2 + ıε
γ5Λ(k, P )

/k − /P + m

(k − P )2 −m2 + ıε
,(12)

from which the momentum component of the valence
light-front wave function,Φ(k+,~k⊥;P+, ~P⊥)[5], is de-
rived eliminating the relative time between the quarks af-
ter dropping the instantaneous terms of the external Dirac
propagators[17]. Also, the factors containing gamma ma-
trices in the numerator and the phase space factorsk+ and
(P+−k+) appearing in the denominator are left out[5], and
then one gets:

Φ(k+,~k⊥;P+, ~P⊥) =
[ N
(1− x)(m2

π −M2(m2,m2
R))

+
N

x(m2
π −M2(m2

R,m2))

]
P+

m2
π −M2

0

. (13)

whereN =
√

Nc C m/fπ, is a normalization factor and
x = k+/P+, with 0 ≤ x ≤ 1; M2(m2

a,m2
b) =

k2
⊥+m2

a

x + (P−k)2⊥+m2
b

1−x − P 2
⊥ ; and the square of the free

mass isM2
0 = M2(m2,m2). The light-front wave func-

tion, Eq.(13), is symmetric by the interchange of quark and
antiquark momenta, therefore it is not plagued by the con-
ceptual difficulties associated with the use of the nonsym-
metric regulator [14].

The electromagnetic form factor evaluated in the Breit
frame using only the valence component is given by:

F (WF )
π (q2, α) =

1
2π3(P ′+ + P+)

∫
d2k⊥

∫ P+

0

dk+

×
[
k−onP+P ′+ +

1
2
~k⊥ · ~q⊥(P ′+ − P+)− 1

4
k+q2

⊥

]

× Φ(k+,~k⊥;P ′+, ~q⊥
2 )Φ(k+,~k⊥;P+,−~q⊥

2 )
k+(P+ − k+)(P ′+ − k+)

, (14)

where normalization constantC is determined from the con-
dition Fπ(0) = 1 in Eq. (6). The probability of the valence
component in the pion,η, is identified toF (WF )

π (0, 0)
The pion decay constant is one constraint to fix the free

parameters of the model:

Pµ < 0|Aµ
i |πj >= ı m2

πfπδij , (15)

whereAµ
i = q̄γµγ5 τi

2 q is the isovector axial current. With
our ansatz for the pion-̄qq vertex function, one gets

fπ = −ı
m

fπ

Nc

m2
π

∫
d4k

(2π)4

× Tr[/Pγ5S(k)γ5S(k − P )]Λ(k, P ) , (16)

and integrating onk−, one arrives at

fπ =
m
√

Nc

4π3

∫
d2k⊥dk+

k+(mπ − k+)
Φ(k+,~k⊥; mπ,~0) , (17)

expressed in terms of the valence component of the wave
function [12].

III Numerical Results and Summary

In this model, we have two free parameters: the constituent
quark massm, which is chosen as 0.220 GeV [12, 18, 19]
and the regulator mass,mR, found to be 0.6 GeV from
the fit of the experimental valuefexp

π = 92.4 MeV. The
pion mass used is 0.140 GeV. With these parameters, the
charge radius from〈r2〉 = 6 ∂

∂q2 Fπ, comes out to be 0.74
fm, which is about10% larger than the experimental value
(rexp = 0.67 ± 0.02 fm [20]). The probability of theqq
Fock-state component in the pion in the model is calculated
to beη = 0.77, differently from the nonsymmetric regulator
model of Ref. [4], whereη = 1. We note that, in a previous
work[12] it was necessary a probability around 0.5 - 0.75 of
the valence wave function to fit the data on deep inelastic
scattering.

[ ]

Figure 2. Pion form factor as a function of−q2 for α =

90o. Theoretical results:Fπ(q2) (solid line);F (I)
π (q2, α) (dashed

line); F
(II)
π (q2, α) (dotted line); F

(I)
π inst(q

2, α) (long-dashed
line); F

(II)
π inst(q

2) (short-dashed line). Experimental data: Ref.
[21] (full squares), Ref. [22] (full triangles), Ref. [23] (empty
squares), Ref. [24] (empty circles) and Ref. [25] (full circles).

In Fig. 2, the results for the pion form factor are shown
and compared to the experimental data. The full-model
calculations, Eq. (6), nicely agree with the new data for
the pion form factor [21]. Therefore, our symmetric ver-
tex model can reproduce the form factor data consistently
with the experimental value offπ, while for the nonsymmet-
ric regulator this was not achieved[4]. We observe that the
model reproduces simultaneouslyfπ and the experimental
form factor for constituent quark mass in the range between
0.2 and 0.3 GeV.
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The separate contributions to the pion form factor,F
(I)
π

andF
(II)
π for α = 90o, are shown in Fig. 2. Differently

from the caseα = 0o, the form factor is dominated by the
pair production process forα = 90o, except nearq2 = 0.
Also, we observe that the form factor is completely dom-
inated by the pair-term contribution at high values of the
momentum transfer, which appears to be fairly model inde-
pendent as well[5, 14].

The contributions of the instantaneous part of the
Dirac propagator toF (I)

π (q2, α) and F
(II)
π (q2, α), called

F
(I)
π inst(q

2, α) and F
(II)
π inst(q

2, α), respectively, are also

shown in Fig. 2 forα = 90o. The value ofF (I)
π inst(q

2, α) is
nonzero because of the specific analytic structure of the ver-
tex function[5]. We also observe thatF

(II)
π inst(q

2, α) domi-
natesFπ(q2) at higher momentum transfers. One can under-
stand this by looking at the diagram of Fig. 1(b), where in
principle the spectator quark can be exchanged between the
incoming and outgoing pion at a given instantx+, while the
quark-antiquark pair has been produced by the virtual pho-
ton at an earlier stage. As the magnitude of the momentum
q−(= −q+) increases, the time fluctuation for the virtual
process decreases and favors the instantaneous exchange of
the spectator quark between the initial and final pion, which
finally explains the dominance ofF (II)

π inst(q
2, α) in the pion

form factor. In Fig. 3, the results for the various contribu-
tions to the pion form factor for−q2 = 1 (GeV/c)2 as a
function of the angleα are shown. For increasing angles,
the form factor changes smoothly from valence to pair-term
or nonvalence dominance.

Figure 3. Contributions to the pion form factor vsα for −q2 =

1 (GeV/c)2. Theoretical results:Fπ(q2) (solid line); F (I)
π (q2, α)

(dashed line) ;F (II)
π (q2, α) (dotted line);F (I)

π inst(q
2, α) (long-

dashed line);F (II)
π inst(q

2, α) (short-dashed line).

In summary, we verified that the new data for the pion
electromagnetic form factor[21] is satisfactory described by
our symmetric ansatz of the vertex function when the experi-
mental value offexp

π is fitted and the constituent quark mass

is chosen in the range between 0.2 and 0.3 GeV. We per-
formed a detailed analysis of the contribution of the light-
front pair-term to the form factor for different momentum
transfer directions in the Breit frame. Such contribution
is unique and does not depend on the particular choice of
Bethe-Salpeter vertex, as long as the four-dimensional im-
pulse approximation is used to calculate the electromag-
netic current. Another interesting outcome of our symmetric
model is that the probability of the pion valence component,
η, is about 0.77), at variance with previous covariant calcu-
lations whereη = 1[4, 14].
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