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This paper describes the use of simple lattice models for studying the properties of structurally disordered
systems like glasses and granulates. The models considered have crystalline states as ground states, finite
connectivity, and are not subject to constrained evolution rules. After a short review of some of these models,
the paper discusses how two particularly simple kinds of models, the Potts model and the exclusion models,
evolve after a quench at low temperature to glassy states rather than to crystalline states.

I Introduction

In recent years, there is growing interest in systems com-
monly found in disordered structural configurations such
as glasses and dense granulates. Clearly different in many
respects, these two classes of materials share in common
the property of displaying stable states which are very far
from what would be expected from equilibrium considera-
tions [1, 2]. As a consequence of this property other features
emerge, like slow relaxation and response functions.

Models of disorder are generally based on the presence
of quenched, ora priori, disorder which takes the system far
from ordered configurations. Only recently it has been ob-
served that lattice models capable of ordering can also well
reproduce many properties of disordered systems. On the
other hand glass formers in nature usually have crystalline
states as ground states, but this does not prevent them from
being frequently found in some glassy state. The situation
for a granular system is in general different, insofar as ir-
regular grains inhibit the evolution of ordered states. Nev-
ertheless even in the case of identical beads it is practically
impossible to arrange them into an ordered fashion merely
by supplying the energy to them.

The aim of this paper is to briefly review some lattice
models employed in the description of the slow dynamics of
glasses and dense granular matter, which do not possess any
a priori disorder nor long range interactions. We shall not
discuss in detail the models, but just recall some of the main
results, addressing the interested reader to the bibliography.
More attention will be drawn to some recent observations
regarding the condition for the emergence of glassy phases
in some models of this kind.

The paper is structured as follows: in Section II ex-
clusion models and hard particle models are briefly intro-
duced together with their employment in irreversible dy-
namics; Section III is devoted to their use in the descrip-
tion of dense granular matter and related results; Section IV
describes spin models which have been recently shown to

exhibit glassy states and associated slow dynamics; finally
in Sec. V some new ideas are illustrated on when and why
glassy states are generated in the place of crystalline states
in some lattice models.

II Exclusion and hard particle
models

Flory [3] modeled the irreversible deposition of dimers on
a one-dimensional surface by the random sequential adsorp-
tion (RSA) of particles on a lattice. In this model, particles
are placed one at time at randomly chosen positions of a lin-
ear chain of sites (“hard particles”). Each particle occupies
two lattice sites and cannot overlap other particles. Flory
was able to show that, despite its stochastic nature, this pro-
cess leads, in the limit of an infinite lattice, to a well defined
percentage of covering which he computed exactly. Soon
after the same model was extended to two-dimensional sys-
tems and to a variety of particles, also including desorption
and cooperative processes (see [4, 5] for review). The con-
tinuous version of RSA is sometimes called the car parking
problem.

Diffusivity, which accounts for particle rearrangement
and relaxation, was also introduced in RSA models giving
rise to the so called RSAD models (see [6, 7]). In addi-
tion, multilayer deposition has been investigated [7]. RSAD
multilayer models are the base of the most common lattice
models for dense granular materials, as will be explained
below.

Exclusion models represent a slight modification of hard
particle models. In the latter each particle occupies a certain
set of lattice sites that cannot be occupied by other particles.
In exclusion models, each particle occupies one single site,
and excludes a certain neighbour set from being occupied by
other particles. Depending on the exclusion rules, a one-to-
one correspondence can sometimes be drawn between the
two kinds of models.
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Exclusion models have been extensively investigated in
relation to equilibrium phase transitions [8]. There iden-
tical particles are randomly deposited or retired from ad-
dimensional lattice at a rate determined by the value of a
chemical potential; in addition particles can diffuse along
the lattice (in accordance with the exclusion rules), allow-
ing the system to look for configurations of the maximum
density compatible with the imposed value of the chemical
potentialµ. Whenµ is taken to infinity the maximum al-
lowed density in reached with particles arranged in an or-
dered phase. A remarkable result of these models is that
they are able to describe both first and second order phase
transitions as a function of the space dimensionality and of
the number of excluded sites [8]. On the contrary, when the
chemical potential in RSAD processes is changed abruptly,
diffusion is not always sufficient to drive the system into an
ordered phase. When this happens the ordering process is
generally very slow, with density evolving algebraically in
time.

III Models for granulars

A process widely investigated in the physics of granular ma-
terials is the compaction, that is the decrease of the vol-
ume fraction (the ratio between the total volume of the con-
stituent grains and the volume macroscopically occupied by
the system) of a spatially limited system, subject to grav-
ity, under the action of an external perturbation. The energy
supplied by the perturbation (e.g. a mechanical perturbation
like tapping or shaking) must be comparable with the vari-
ation in potential energy required to rearrange the system
structure. The process exhibits rather a rich behaviour with
reversible and irreversible cycles as a function of the per-
turbation amplitude [9], and logarithmic [10] or stretched
exponential laws [11] in the number of tapping.

Lattice models with only the excluded volume constraint
have proven to be good models for dense granular systems.
They are all essentially based on multilayer sequential de-
position [12], and have been so far investigated in1 + 1
dimensions. The lattice is considered to lay in the vertical
position. It is initially prepared by sequentially dropping
extended hard particles from the top. Each particle proceeds
downwards until it hits the bottom of the lattice or a previ-
ously deposited particle. Excluded volume effects prevent
the process from generating ordered configurations and an
initial state with many defects and low volume fractionρ
is usually obtained. Then an external mechanical perturba-
tion is activated by turning on upwards diffusion along the
lattice meshes for a finite time (the duration of the tapping)
and then allowing only downwards and horizontal diffusion
in order to mimic the relaxation process under the effect of
the gravity field. By periodically turning upwards diffusiv-
ity on and off the effect of multiple tapping cycles can be
investigated, modulating their intensity by changing the ra-
tio between upwards and downwards-horizontal diffusion.

The so called “Tetris” model introduced by Caglioti et

al. [13] in its original version is based on dimers placed on a
lattice with meshes tilted of45◦ and, when tapped, shows
a logarithmic increase of the volume fraction, in agree-
ment with [9]. More generally, “T” shaped particles have
also been considered, showing that the model possesses a
thermodynamic-like temperature which is numerically mea-
surable through the fluctuation-dissipation relations [14] and
which coincides with a configurational pseudo-temperature
proposed for granular matter [15]. The latter has also been
measured in a system of monodisperse hard spheres on lat-
tice [16].

Dimers placed on lattice with non tilted meshes also ex-
hibit very well defined scaling laws [17] but with stretched
exponential (the so called Kohlrausch-Williams-Watts law)
rather than logarithmic compaction:

ρ(t) = ρ∞ −∆ρ exp(−t/τ0)β . (1)

A similar behaviour has been found in recent extensive ex-
periments [11] and in a generalization of the model which
includes friction [18].

IV Models for glasses

Lattice gas models with constrained dynamics [19] exhibit
many of the properties of glass dynamics, such as slow re-
laxation, two step relaxation, vanishing diffusivity, ageing,
etc. Other kinds of models with constrained dynamics have
also been introduced and investigated yielding similar re-
sults [20-24].

A class of lattice models exhibiting glassy behaviour
with neither quenched disorder nor constrained dynamics
are the spin models with many spin interaction whose en-
ergy can be written as:

E = −
∑

<i,j,...,k>

sisj . . . sk, (2)

where the sum is extended to a finite number of Ising spins:
si = ±1. A single spin flip Monte Carlo algorithm is gener-
ally used for numerical simulation of the dynamics. The four
spin model [25] exhibits a discontinuous equilibrium transi-
tion in three dimensions, but if quenched quickly enough
below the transition temperature, it enters a very long living
metastable state with many of the features of glassy systems
[26, 27]. More recently [28] the existence of a dynamic glass
transition has been proved for a three spin model on a Bethe
lattice that also has a first order transition to a ferromagnetic
phase.

Models with geometrical frustration and only two body
interaction have been employed as coarse grained approx-
imation of hard sphere models in the continuum limit.
A dynamical glass transition has been observed in three-
dimensional models with a constraint on the local equilib-
rium density [29] together with a first order transition. Sim-
ilar results have also been found in [30] and in [31] although
in the latter model the crystalline phase does not seem ac-
cessible by numerical simulation even at very low cooling
rate.
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Some kind of glassy states can also be observed in two
dimensional exclusion models. It has been found by nu-
merical simulations [32] that a monolayer RSAD of parti-
cles with the exclusion of the first three shells of neighbours
(N3 model) is not able to generate a periodic arrangement.
The dynamics leads asymptotically to states in which many
locally ordered domains of particles are formed, while at
the domain boundaries many sites remain empty. Analo-
gous behaviour has been observed in the RSAD of dimers
[33, 34], whereas in models with exclusion of only two
shells of neighbours (N2 model) the density of empty sites
vanishes in the thermodynamic limit [35]. In the next sec-
tion the properties of these models will be discussed more
extensively.

The many spin interaction models, theN3 model and
the other models referred to above show that glassy states
are generated also in models with no quenched disorder or
long range interaction and with stable crystalline states. On
the other hand, glass formers in general also have crystalline
phases; this point deserves consideration and in the next sec-
tion some ideas on the emergence of glassy vs crystalline
states in some lattice models are discussed.

V Emergence of glassy states in
lattice models

In this section some properties are reported that have re-
cently emerged [36-39] in the coarsening of the Potts model
following a quench and in RSAD dynamics of some exclu-
sion models.

In the Potts model [40] each lattice site can stay in one
out of q distinct states, or colours. To each site one asso-
ciates a variableηi that takes the values1, 2, . . . , q. Let us
write the energy of theq state Potts model as:

U =
∑

(ij)

(1− δηiηj ), (3)

whereηi = 1, 2, . . . q and the sum is over the nearest neigh-
bour sites. There areq degenerate system ground states
with zero energy corresponding to having all sites the same
colour.

Starting from an initial disordered configuration a
quench of the system can be numerically simulated by let-
ting the system evolve according to the Metropolis dynamics
[41] at a temperatureT below the temperature at which the
model is known to have a phase transition. ForT = 0, large
q and periodic boundary conditions, the dynamics leads the
system into some frozen state [42] that represents a local
minimum in the energy landscape of the finite system with
energy higher than the ground state energy. This is not the
case for lowq. In the two-dimensional Ising model, corre-
sponding toq = 2, the fraction of blocked configurations
tends to zero in the thermodynamic limit.
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Figure 1. Energy decay in a two dimensional Potts model af-
ter a quench atT = 0. For increasingq larger deviations from
t ∝ 1/

√
(t) are displayed.

A first important consideration concerns such a different
behaviour exhibited for different values ofq. Fig. 1 shows
the decrease in time of the energy per site,E = U/N , in a
system withN = 106 sites for some different values ofq af-
ter a quench atT = 0. In this case fixed boundary conditions
have been used, that is a prefixed colour has been assigned
at the beginning to the sites at the system boundary, and can-
not change during the simulation. This breaks the symmetry
among the different ground states and makes the system con-
verge to the preselected ground state. Since it is expected to
follow an algebraic decay of the typeE(t) ∝ t−α [42, 43],
the curves have been plotted on a double logarithmic scale.
The figure shows that the lines, which are straight forq = 2
andq = 3, decrease their slope and develop a bump asq
increases. This suggests at first sight a deviation from the
algebraic behaviour. However if the same curves are plot-
ted as functions of1/

√
t a linear behavior is observed for all

times up to the final relaxation for every value ofq, showing
that the energy decrease in this regime is correctly described
by

E(t) ∝ t−1/2 + const (4)

as shown in Fig. 2 for the caseq = 7. It is the constant term,
which depends onq, that accounts for the bump and bending
observed in log-log scale. After the1/

√
t regime the system

performs a fast relaxation towards the prefixed ground state.
The second important point is that the time at which the

final relaxation occurs increases with lattice sizeN . The
same happens for the freezing when periodic boundary con-
ditions are used, but in this case fluctuations of the final en-
ergy from sample to sample are larger. Extrapolation of the
energy curves leads to conclude that in the thermodynamic
limit:

lim
t→∞

E(t) = E∗(q). (5)

It can be useful to point out that here the thermodynamic
limit is taken before the infinite time limit. This is the rea-
son for which the thermodynamical equilibrium state with
E = 0 is not obtained.
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Figure 2. E(t) vs1/
√

t for the Potts model withq = 7 and differ-
ent size and boundary conditions:fbc= fixed boundary conditions;
pbc= periodic boundary conditions. A common regime is shown
whose duration increases with the system size.

The residual energy term (5) is due to interfaces sepa-
rating homogeneous domains with different values ofq that
do not disappear whent → ∞. Moreover, since forq large
enough this term does not vanish whenN → ∞, it can be
concluded that the total length of the interfaces is of order
N . This property can be used to define the glassy state in
this kind of model, and is observed for anyq > 4. For
q < 4 the residual energy vanishes in the thermodynamic
limit, showing absence of interfaces (crystalline state for
q = 2) or at most a total length of order

√
N (polycrys-

talline state forq = 3). The caseq = 4 is critical insofar as
relaxation is not1/

√
t; by including a logarithmic correction

E(t) ∝
√

ln t/t + E∗ it is compatible withE∗ = 0.
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Figure 3. Residual energies in the Potts model after a quench at
T = 0 as a function of the number of statesq.

Simulations demonstrate that the residual energyE∗(q)
is a monotonic function ofq. This is shown for some val-
ues ofq in Fig. 3 together with the fitting curveE∗(q) =
(q − qc)0.5 for q ≥ qc = 4. This suggests a relationship
between a non zero residual energy and the discontinuous
transition in the equilibrium phase diagram of the model dis-

played whenq > 4. Such a conjecture is made stronger by
the observation of an analogous behaviour in the case of ex-
clusion models. They are predicted to belong to the same
universality class as the Potts model [44], with a correspon-
dence between the numberp of excluded sites per particle
andq. In theN1 modelp = 2, whereasp = 4 andp = 5
in theN2 andN3 models respectively. In these systems the
density of deposited particles plays a role similar to that of
energy in the Potts model; in fact one can associate an en-
ergy to the density by means of the chemical potentialµ.
In particular, the density is maximum, and the energy is
minimum, in the state with the closest allowed packing of
particles, corresponding to a periodic arrangement (ground
state). Any deviation from this value signals the presence of
residual empty sites (defects). By assumingE = 0 for the
state with the closest packing, an energyE = µρd corre-
sponds to a density of defectsρd. The equilibrium diagrams
of these systems exhibit continuous transition forp = 2 and
p = 4 and discontinuous transition forp = 5 [8, 45, 44].
Thus zero density of defects is expected forp = 2 (crys-
talline states), a vanishing one forp = 3, 4 (polycrystalline
states) and glassy states with a number of defectsO(N) for
p = 5. This has indeed been observed [32, 35, 37] and
has been confirmed by further numerical simulations to be
largely independent on the chosen parameters [38, 39]. On a
triangular latticeN1 shows an equilibrium first order transi-
tion, whereas the transition is discontinuous for theN1 and
theN2 models. Numerical simulations confirm the predic-
tion of crystalline states forN1 but are not yet conclusive for
N2 andN3 [38]. It can be interesting to mention that a kind
of polycrystalline state, in the sense defined above, has also
been observed in the quench of the three-dimensional Ising
model [46].

VI Summary

The work done in recent years has shown that lattice models
with crystalline states and finite connectivity are capable of
reproducing many properties of structurally disordered sys-
tems like granulates and glasses. This is of relevance for the
understanding of the underlying mechanisms, also in view
of similar behaviours exhibited by other kinds of models
whose features can however be traced back to different ori-
gin [47].

The analysis of the conditions under which a lattice
model with crystalline states may exhibit glassy states has
been recently carried out on simple models such as exclu-
sion and Potts models showing that it is the competition
among a number of equivalent ground states that drives
the systems away from crystallisation. When this number
is small crystallisation or polycrystallisation take place in-
stead. This result is obtained by inverting the usual order of
performing the infinite time and the thermodynamic limits,
and suggests a relationship between the observed behaviour
and the equilibrium properties of the systems, with glassy
behaviour associated to the presence of a first order transi-
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tion which is generallly also a feature of the other models
described in this paper.

Many thanks are due to T. Toḿe and M. J. de Oliveira,
with whom most of the work described in Sec. V has been
developed, and to F. Dalton for revising the manuscript.
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