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We describe some of the recent results obtained for models with absorbing states. First, we present the nonequi-
librium absorbing-state Potts model and discuss some of the factors that might affect the critical behaviour of
such models. In particular we show that in two dimensions the further neighbour interactions might split the
voter critical point into two critical points. We also describe some of the results obtained in the context of syn-
chronization of chaotic dynamical systems. Moreover, we discuss the relation of the synchronization transition
with some interfacial models.

| Introduction obtained by numerical simulations. At a coarse-grained
level, the physics is often described in terms of a general-
Nonequilibrium statistical mechanics is nowadays a very ac-ized Langevin equation. Unfortunately, there is no general
tive research field [1] and there are several reasons for thatmethod which allows us to perform, in a controlled way, the
First, the most interesting phenomena in Nature take placecoarse-graining process and usually the determination of the
out of equilibrium. The best example is provided by living form taken by the Langevin equation is based only on gen-
matter. More generally, systems which are open (traversederal symmetry arguments [4-7]. This procedure is particu-
by fluxes of energy, entropy or matter) may reach stationary larly ambiguous for systems with noise [8]. When the noise
states which cannot be described by equilibrium statisticalis multiplicative different interpretations of the stochastic
physics. Second, the properties of systems in equilibrium process described by the master equation are possible, leac
are by now rather well understood as equilibrium statistical ing to further confusion [9, 10].
physics is a well established theory. The puzzling problem There are many examples of nonequilibrium phase tran-
of universal behavior observed in the vicinity of second or- sitions. One of the simplest examples is provided by an Ising
der phase transitions is beautifully explained by the renor- like model with competing dynamics. The system is in con-
malization group approach [2]. Itis thus natural to try to ex- tact with two heat baths at different temperatures, each gen-
tend our understanding of equilibrium systems to nonequi- erating a microscopic dynamics obeying detailed-balance
librium ones. (see [11-13] for more details). As a result of this competi-
Indeed, the situation is not so clear for nonequilibrium tion, effective long range interaction develops in the system
statistical mechanics for which no general theory has beenand its critical properties are similar to the ones of equilib-
developed yet. This is particularly true for the case of rium models. Another generic way to obtain nonequilibrium
nonequilibrium phase transitions where, according to the phase transition is to induce dynamical anisotropy. This can
values of some control parameters, the system can changedye done in several ways. Examples are given by the so-
continuously or not, from one stationary state to another called driven lattice gases [14], where particles diffusing on
one [1]. a lattice are driven by an external field oriented in a par-
At the microscopic level, models for nonequilibrium ticular direction. At low temperature, the system exhibits
phase transitions are usually defined in terms of a master@ nonequilibrium phase transition and the ordered phase is
equation [3]. Most of the physics is contained in the transi- characterized by strong anisotropy. As a result, the criti-
tion rates. One of the key differences between equilibrium cal properties belong to a new universality class, not related
and nonequilibrium systems is related with the detailed- With equilibrium phase transitions.
balance condition which is generally not obeyed in nonequi-  The question of the characterization of the possible uni-
librium. As a result, it is often impossible to find an an- versality classes for nonequilibrium phase transitions is thus
alytical solution to the master equation, even for the sta- an important one which is much debated. The effects of
tionary state. This is why a lot of results in this field are violating detailed-balance on the universal static and dy-
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namic scaling behavior has been investigated independentiftems ST has a different critical behaviour, namely it belongs
by Grinstein et al. [15] and duber et al. [16]. It turns out  to the DP universality class [25]. Despite some attempts,
that the standard critical dynamics universality classes aretheoretical understanding of the mechanism that changes the
rather robust and that detailed-balance can be effectively re-critical behaviour is still missing [26-28]. An interesting re-
stored at criticality in some cases. Nevertheless, this is notlated problem is a nature of a multicritical point that pos-
always true and a complete characterization of the nonequi-sibly joins the critical lines of DP and BKPZ type. There
librium universality classes is clearly a difficult and open are some indications that these problems might be also re-

guestion. lated with some particle systems like the recently intensively
An important type of nonequilibrium phase transition studied PCPD model [29]. . _
is the so-calledabsorbing state phase transitidhat takes In section Il we discuss the Potts model with absorbing

place when a system during its evolution reaches a config-states. The synchronization of extended chaotic systems is
uration in which it remains trapped forever. Such a state is discussed in section I, and these two sections are essen-
called an absorbing state and a given system may have ond&ally independent. Conclusions are presented in section IV.
or more such states. Absorbing states are present in numer-
ous systems encountered in physics, chemistry and biology.
A lot of effort has been devoted to the study of such sys- Il

tems and there are some comprehensive reviews on this sub- . e .
ject [17, 18] P An important step toward the classification of absorbing

In th i d ib tiv obtai dstate phase transitions into universality classes was made by
1 (€ present paper we describe some recently oblanety, \ e ang Grassberger who predicted that a large group of
results that are not yet covered in these reviews and that ar

lated with hin this field. | dicul ¥nodels falls into the so-called directed percolation univer-
rela de W'Ib our O\t/vndrrc(ja.searc_ ml IS dlel .'t n pbar 'Cg' ar, sality class (DP) and it was conjectured that all models with
we testcrl eha cerda| "T‘e“S'O”E‘ mo e.dW' héa Sorb- d'f'a single absorbing state, positive one-component order pa-
Icnagig,naoﬁhvt\a/ l\(/)lz?rog(;]lia;rglcgsorci;nm f% rc&gslaqufiibrﬁjsmaPrgtotsl 'tameter and short-range dynamics should generically belong
. . to this universality class [30]. By now their conjecture has
model [19]. We describe the role gfandd on the criti- y [30. By )

| behavi  thi del. We al how that th received numerous and convincing support. It also raised a
ca’ behaviour of This modet. YVe aiso show that some o ?rpossibility that the number of absorbing statemight be

?etanst of tgce) dyr:s mics, as f.‘gt" po.:,}tlwtyzozf Cgrftlaln trar:ﬁl— a relevant parameter that determines the critical behaviour
'O.? ral ﬁsr[] 10r Aeltrr?ngehqtlnderac |9ns|[ ] mthuedncte.I (ejof a given model. And indeed, there are some examples
critical behaviour. ougn Its dynamics l00ses the detalled y, i ghow that models with = 2 share the same critical

balance property, the model still bears some similarity to the behaviour that is called the parity conserving (PC) univer-

equilib_rium Potts model_, that is also reflected in the overall sality class [31, 32]. However, it turns out that PC criticality

behaviour of the merI n th.(e]’ d).plane. Ina ce.rta_m case, appears only for models with symmetrical absorbing states.
when the range of interactions in our m.oldel IS Ir‘CfeaS(Ed'Even a small asymmetry in the dynamics of the model that
we observe that the so-called voter transition [21], that typ- would favour one of the absorbing states over the other will

|§:ally. oceurs forg = d = 2, is splitinto two phase transi- drive the system into the DP universality class [33]. Models
tions: first a spontaneous symmetry breaking preselects one it g > 2 were also examined and using a relation with

of the two absqrblng states and then a C°”"."Pse on the PreS5ome particle systems it was predicted that such models are
elected absorbing state takes place [22]. Since our model i

qint ¢ opi i d a Hamiltonian-lik S‘generically in the active phase and only in a limiting case un-
expressed in terms ol Spin operalors and a Hamittonian-i edergo a phase transition related with a certain multispecies
function, one can easily construct its various general'zat'onsbranching-annihilating random walk model [32, 34]. As we
that would include multi-spin interactions, anisotropies or will discuss in this section, the numberdoes not fix the

h!gher order symmetnes()((N)). S.UCh models ”."ght €X" " Critical behaviour because some other details of the dynam-
h'b't novel properu_e; :_:md also enrich t_he (_:ollect|on of rela- ics play a role too. For example, we can change the critical
tions between equilibrium and.r?or?eqwhbnum syst.e.ms. behaviour by suppressing certain transition rates or extend-
Recently a class of nonequilibrium phase transitions wasjng the range of interactions. Many factors are therefore re-
intensively studied in the context of synchronization [23]. sponsible for the critical behaviour of a given model.
When for example two identical chaotic dynamical systems e should mention that absorbing phase transitions also
are sufficiently strongly connected, they can synchronize {5ye place in some particle systems like e.g., branching-
with one another. Since the system cannot escape from th%mnihilating random walk (BARW). For such models the
synchronjzed state it is actually a certain absorbing state..itical behaviour is determined, e.g., through some sym-
For spatially extended dynamical systems (e.g., coupledmetries of their dynamics, rather than by the number of ab-
map lattices) the synchronization transition (ST) resemblessorbing states (that is usually the vacuum). &er 1, at the
some absorbing state phase transitions that are typical t0 Stsoarse grained level, models with multiple absorbing states
tistical mechanics models. Some arguments were given [24].a1 pe related with some particle systems. For higher di-

that ST should generically belong to the same universality mensions, such an analogy in general does not hold. There
class as a certain model of a driven interface bounded with 8¢ 4ready some reviews on this subject [17, 18].
wall (BKPZ). However, for a certain class of dynamical sys-

Absorbing-state Potts model



528 Brazilian Journal of Physics, vol. 33, no. 3, September, 2003

[I.1 Definition of the model and the Monte and then monitors some stochastic properties of surviving
Carlo method runs [37]. The most frequently used characteristics are the
survival probability P(¢) that the activity survives at least
until time ¢ and the number of active sité$(t) (averaged
over all runs). At criticality these quantities are expected to
have power-law decay?(t) ~ t=% and N (t) ~ t".

Before defining our dynamical model, let us recall some
basic properties of the usual equilibrium Potts model [35].
First, we assign at each lattice sita ¢-state variabler; =
0,1,...,q — 1. Next, we define the energy of this model

through the Hamiltonian: d=1
_ Z First, let us consider the cage= 2. The simplest possi-
H - 60'1'0"7 (1) o . . . . .
r ’ bility is to consider our model on a one-dimensional chain.

However, forg = 2 and for any temperaturg, this model
where summation is over pairs ofand j which are usu- is trivially equivalent to thel” = 0 temperature Ising model
ally nearest neighbours aridis the Kronecker delta func-  with Metropolis dynamics. Indeed, in this case the allowed
tion. This equilibrium model was studied using many dif- moves are only those which do not increase energy and they
ferent analytical and numerical methods and is a rich sourceare always accepted. The same rule governs the dynamics o
of information about phase transitions and critical phenom- theT" = 0 Ising chain. To overcome this difficulty, we stud-
ena [35]. To simulate numerically the equilibrium Potts ied our model on a ladder-like lattice, where two chains are
model defined using the Hamiltonian (1), one introduces connected by interchain bonds such that each site has thre
a stochastic Markov process with transition rates chosenneighbours.
in such a way that the asymptotic probability distribution Monte Carlo simulations of the model show that for
is the Boltzmann distribution. One possibility of choosing large enough” the model remains in the active (disordered)
such rates is the so-called Metropolis algorithm [36]. In phase. After reducing the temperature below a certain criti-
this method one looks at the energy differedcE between  cal value, the model collapses on one of the absorbing states
the final and initial configuration and accepts the move with The evolution to the absorbing state resembles the coarsen
probability min{1,e~2F/T}, whereT is temperature mea- ing process. Measuring the critical exponents at the critical
sured in units of the interaction constant of the Hamiltonian point we found that their values are very close to those of
(1), which was set to unity. To obtain a final configuration the PC universality class, which is an expected result.
one selects randomly a site and its state (one ogtiofour We also did simulations fogy = 3, 4, and 5. In this
case). In the above described algorithmTor> 0 there is case we found that our model remains in the active phase
always a positive probability of leaving any given configura- for anyT > 0 and collapses on one of its absorbing states
tion (even when the final configuration has a higher energy).only atT = 0. It was already suggested that an absence of
Accordingly, such a model does not have absorbing stateshe transition for models with > 2 absorbing states is a
forT > 0. generic feature [32, 34]. Such a conclusion can be obtained

A nonequilibrium Potts model havingabsorbing states  relating a model with absorbing states with multi-species
can be obtained by making the following modification in BARW model that in some case are known to exhibit such
the Metropolis dynamics [19, 20]: when all neighbours of a behaviour [38]. However, such a relation is not rigorously
a given site are in the same state as this site, then this sitestablished and must be taken with care. And indeed, one
cannot change its state (at least until one of its neighbourscan show that in some cases models witly 2 absorbing
is changed). Let us notice that any of theround states  states behave differently.
of the equilibrium Potts model is an absorbing state of the In the following we shall describe a modification of our
above defined nonequilibrium Potts model. Moreover, the nonequilibrium Potts model that even fpr> 2 undergoes a
rules of the dynamics of our model depends on the param-transition at positive temperature. To comply with ref. [20],
eter T that for the equilibrium Potts model would be the we refer to this modification as a model B. All we have to do
temperature. Although for our model the thermodynamic is to introduce the following restriction in the dynamics of
temperature cannot be defined, we will refeftas temper-  our model: a flip into a state different than any of its neigh-
ature. bours is forbidden. In other words, we suppress the sponta-

To study the properties of this model we performed stan- neous creation of, e.g., domains of type A between domains
dard Monte Carlo simulations. A natural characteristic of of type B and C. Here, A, B, and C denote three (out of
models with absorbing states is the steady-state density of;) different states. Let us also notice that the above restric-
active sitesp. A given sitei is active when at least one of tion does not break the symmetry and the absorbing states
its neighbours is in a state different than Otherwise the  of model B are symmetric with respect to its dynamics. Nu-
sitei is nonactive. In addition to the steady-state density we merical simulations of such a model fgr> 2 show that at
also looked at its time dependeng). In the active phase  positive temperature it undergoes a phase transition that be-
p(t) converges to the positive value, while at criticaljtyt) longs to the PC universality class [20]. It was suggested that
has a power-law decay ~ t~©. In addition, we used  with the above restriction, the long-time dynamics of model
the so-called dynamic Monte Carlo method where one setsB in the active phase and close to the critical point is domi-
the system in the absorbing state, locally initiates activity, nated by parity conserving processes and that might explain
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the origin of PC criticality. (id=2,9=3
d>1 In this case (nearest-neighbour interactions) there is clear
> evidence of a discontinuous phase transition. In particular,

The nonequilibrium Potts model was also studied on the stgady—state depsity of active sitdsas a discontinuous
higher dimensional lattices and below we briefly describe Pehaviour and the time dependeiit) develops a plateau at

the obtained results [19]. a critical point.
(d=2, q=2: (i) d=3, ¢g=2
Models with a single absorbing state @r= 2 lattices typi- To split the voter critical point in the two-dimensional case

cally belong to the DP universality class. It is interesting to W& had to include further neighbour interactions. Alterna-
ask whether forl = 2 models with double absorbing states {iVely, increasing the dimensionality updo= 3 also results
share the same critical behaviour. Recent numerical calcu{N tWo separate phase transitions [22]. It would be interest-
lations show that indeed there is a group of such models thatNd t0 check whether in the three-dimensional case some ad-
have the same critical behaviour, that was termed the voterditional interactions (possibly antiferromagnetic ones) could
universality class [21]. The name of this universality class actually lead to the overlap of these two transitions.

was given after a voter model that was originally proposed as ~ Studying our nonequilibrium Potts model for some val-

a model of spreading of an opinion [39]. Later, various gen- U€S 0fg andd we were tempted to speculate on the over-
eralizations of this model were also studied [40]. In the voter &ll behaviour of the phase diagram in the d) plane [19].
model the order parameter vanishes continuously to 0 upon/ndeed, it seems that th@, d) plane is divided into three
approaching a critical point but the decay is slower than any Parts with (i) non-mean-field critical behaviour (ii) mean-
power law. In addition, the time decay of the order parame- field critical behaviour, and (iii) discontinuous transltlgns.
ter at criticality is also slower than any power law decay and Arrangements of these parts suggests that the qualitative be-
is in fact logarithmic, as can be shown exactly [41]. Such h_aV|0urof our model res_embles _the behaviour of th_e_eqt_ullb-
an unusual behaviour explains the numerical difficulties in UM Potts model. If so, it would imply that the modification
studying models of this universality class [19]. The nonequi- ©f the dynamics that we introduced, and that imply the ex-
librium Potts model for; = 2 and on square lattice with |stence_of absorplng states, might not change that much the
nearest neighbour interactions also belongs to the voter uni-dualitative behaviour of the model (as compared to the equi-

versality class [22]. It was suggested that two-dimensional liPrium one). _ _ o
models with double absorbing state should generically be- ~ Sincé our model is formulated in terms of spin-like
long to the voter universality class [21]. However, as we Variables, we can easily introduce its various modifications
describe below, there are some exceptions to this rule [22]. that for example will take into account lattice anisotropy,
An interesting feature of the voter critical point is the Multi-spin interactions, external fields or additional sym-
fact that at this point actually two phenomena seem to takeMetries (gaugel/(1),...). For example some equilibrium
place. One of them is the symmetry breaking between two "0mogeneous spin models are known to exhibit glassy be-
competing states of the model, that is similar to the symme-haviour [42]. One of the questions is whether a similar be-
try breaking in the Ising model. The second phenomenon ishaviour exists when the dynamics with absorbing states is
the phase transition between active and absorbing phases d{S€d-
the model. It turns out that these two phase transitions can
be separated and it happens in the 2 Potts model on the . . .
square lattice with interactions (all of the same strength) upIII SynChronlzatlon of dynamlcal
to the third nearest neighbour. In this case the behaviour systems
of the model can be thus described as follows. At suffi-
ciently high temperaturd” the model remains in the dis- Recently, synchronization of dynamical, and in particular
ordered phase. Upon reducing the temperature, the modethaotic, systems has received considerable attention [23].
first undergoes the symmetry breaking phase transition. Cal-This is to large extent related with its various experimental
culation of the Binder cumulant suggests that this transition realizations in lasers, electronic circuits or chemical reac-
belongs to the Ising type universality class. Upon further de- tions [43]. So far, most of the attention has been focused
crease ofl’, the model undergoes a second phase transitionon the behaviour of the low-dimensional systems. More re-
into an absorbing state. Since at this point the symmetry cently, spatially extended, i.e., high-dimensional, systems
is already broken and the absorbing state is already preseare also drawing some interest [44]. Since the synchronized
lected, this second transition, as expected, belongs to the DRtate is an attractor of the dynamics, it can be considered as
universality class. an absorbing state. Consequently, a transition into a syn-
The Ising-type phase transition is just one example of a chronized state (ST) for spatially extended systems bears
symmetry breaking. The voter criticality can be regarded as some similarity to absorbing state phase transitions. How-
a superposition of this transition with DP transition. One ever, for continuous dynamical systems, like e.g., coupled
can ask whether other types of symmetries, such as&,g., map lattices (CML) [45], the system cannot reach a per-
or U(1) can be superposed with DP. Possibly in such a casefectly synchronized state in a finite time. This is in con-
a new critical behaviour might result. trast with for example some cellular automata that typically
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can reach an absorbing state in finite time. In some casesas recently been intensively studied [26-28].

such a difference has probably a negligible effect and ST

belongs to the directed percolation universality class [25]. IIl.1 Coupled-Map Lattices

But there are some other arguments suggesting that the crit-

ical behaviour at ST typically is different and belongs to To provide a more detailed example we examine a model
the bounded Kardar-Parisi-Zhang universality class [24]. A recently proposed by Ahlers and Pikovsky that consists of
possible crossover between these two universality classeswo coupled CML’s [46],

]
u(z,t+1)\ _ (1—=v v o (I+eA)f(ur(z,t+ 1)) @
uz(z,t + 1) v 1=7) A+ er) flus(et + 1))
|

where Awv is the discrete Laplaciadv(z) = v(z — 1) — with 1 < a < 2. Fora = 2 this is the symmetric tent map.
2v(z)+v(xz+1). Both spacex) and time ) are discretized,  Let us notice that in the limit — 1, the slope of the sec-
x=1,2...,Landt = 0,1,.... Periodic boundary condi- ond part of this map diverges. In such a limit the map has
tions are imposed; 2(x + L,t) = u; 2(x,t) and, similarly a strong nonlinearity and we expect that ST in this case be-
to previous studies, we set the intrachain coupting 1/3. longs to the DP universality class. Numerical calculations

Varying the interchain coupling allows us to study the  show, however, that DP criticality sets in already foin a
transition between synchronized (largeand chaotic (small  finite distance from 1 [47]. In such a way model (2) with
~) phases. Local dynamics is specified through a nonlinearthe map (3) allows us to study the change of the universal-

function f (u). ity class of ST. An interesting possibility is that at a certain
Next, we introduce a synchronization errofx,t) = a = a. > 1, where DP and BKPZ critical lines intersect,
lui(z,t) — ua(z,t)| and its spatial averagev(t) = a multicritical behaviour appears. Numerical simulations of

%ZLﬂ w(z,t). The time average ofo(t) in the steady ~ Model (2) are not yet conclusive enough, but it is possible
Statez;\”” be S|mp|y denoted as. In the chaotic phase one that additional InSIght into this problem can be obtained us-

hasw > 0, while in the synchronized phase= 0. More- ing certain effective models of ST. This problem is discussed
over, at criticality, i.e. fory = ., w(t) is expected to have a  in the next subsection.
-0 i . . .
power-law decay to zero(t) ~ t~°. In the stationary state, ||| 2 |nterfacial models of synchronization
and for~ approaching the critical valug. one expects that
w~ (e —)P. An interesting approach to ST was initiated by Pikovsky

For f(u) = 2u mod(1), i.e., a Bernoulli map, Pikovsky ~ and Kurths [24]. They have argued that the temporal evolu-
and Ahlers [46] found that ST belongs to the DP universality tion of the small perturbation of a synchronized state, t)
class. Such a behaviour is in agreement with earlier predic-0f the system (2) in the continuous limit should obey the fol-
tions by Baroni et al. [25] that DP critical behaviour should lowing Lagevin-type equation [24, 46]
exist for maps with strong nonlinearities (in the case of the
Bernoulli map itis even a discontinuity). Let us notice, how-
ever, that DP criticality is typically attributed to models with ot
a single absorbing state. On the other hand, an extende
dynamical system as e.g. (2) has infinitely many synchro-
nized states. Recently, we applied a dynamical Monte Carlo
method to study model (2). Our results show [47] that ex-
ponents) andd depend on the type of a synchronized state,
but their sumny + § remains constant. Such a.sitl.Jat'io.n is (1) =0, (E(z, e ) = 2028(x — 2')o(t — 1').
known to take place in some other models with infinitely (5)
many absorbing states [48]. Applying the Hopf-Cole transformatioh = In|w|, Eq. (4)

A different critical behaviour emerges for the symmetric s transformed into a driven interface model
tent mapf (u) = 1 — 2|u — 1/2|. Since the map is now con-

w(z,t) 0%w(x,t)

0x2

4)
Q/vherea is a control parameter connected with the trans-
verse Lyapunov exponent, , that describes an exponential
growth of w(z,t). The Gaussian stochastic procé€ss, t)
has the properties

= [a+&(x,t) — plw(z, t)]*|w(z, t) +e

tinuous, as expected, ST belongs to the BKPZ universality Oh(x,t) h(z,t)

class. But happens when the symmetry of the tent map is o 4T §(x,t) — pe”"

gradually distorted? In particular, let us examine the follow- Ph(z, 1)

ing map +ET‘”2’ + €[Oh(x, 1) /dz]?, 6)

au for0 <u<1/a 3) which is the KPZ equation [49] with an additional exponen-
Flu) = a(l—u)/(a—1) forl/a<u<1, tial saturation term. In Eq. (6), synchronization corresponds
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to an interface moving towardsco, and the saturation term  point. Synchronization transition and its connection with in-
prevents the interface from moving towards large positive terfacial models is still intensively studied by several groups
value. Equation (6) is usually referred to as the boundedand further interesting results are likely to appear.

KPZ equation.

Critical exponents of model (6) [50] remain in a satis-
factory agreement with those obtained for the CML model ~ This work was partially supported by the Swiss Na-
(2) with the symmetric tent map [46]. However, the relation tional Science Foundation and the project OFES 00-0578
with model (6) offers little understanding of what changes “COSYC OF SENS”.
the universality class to DP for strongly nonlinear local maps
f(w). Recently, there were some attempts to understand theReferences
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