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We present a general field-theoretic strategy to analyze three connected families of continuous phase transitions
which occur in nonequilibrium steady-states. We focus on transitions taking place between an active state and
one absorbing state, when there exist an infinite number of such absorbing states. In such transitions the order
parameter is coupled to an auxiliary field. Three situations arise according to whether the auxiliary field is
diffusive and conserved, static and conserved, or finally static and not conserved.

I The ubiquity of absorbing-state
transitions

This overview is devoted to a study of nonequilibrium phase
transitions taking place between the active and the absorbing
state of a system, as some control parameter is varied across
a threshold value. Such transitions are encountered in a vari-
ety of fields ranging from chemical kinetics to the spreading
of computer viruses [1]. From a theoretical standpoint ab-
sorbing state transitions form natural counterparts to equi-
librium phase transitions. The transition rates used in the
stochastic dynamics employed to model the physical phe-
nomenon under consideration do not satisfy detailed balance
(with respect to ana priori defined energy function). In spite
of this apparent freedom, the number of universality classes
that the transition can fall into is incredibly small. Among
known universality classes, that of directed percolation (DP)
is by far the broadest. And indeed, in the absence of addi-
tional symmetries or conservation laws, as was conjectured
twenty years ago by Grassberger [2], an absorbing state tran-
sition will invariably fall into the DP universality class. The
interest in absorbing state transitions was further enhanced
as Dickman and coworkers [3] established a one-to-one cor-
respondence with self-organized critical systems (see [4] for
a review on self-organized criticality). They were able to
show that the scaling behavior observed there was entirely
governed by an underlying nonequilibrium phase transition
(which, as a side effect, somewhat tempers the mystics of
SOC).

The study of exactly which microscopic ingredients
make an absorbing state transitionnotbelong to the DP class
has almost grown into a field of its own. It was early realized
that if the microscopic dynamics possesses additional con-
servation laws the universality class of the transition could
be different. Discrete conservation laws, such as the conser-
vation of the parity of the number of particles [5], are known
to be driving the transition to an independent universality
class (the Parity Conserving or Voter class [6]). A recent
study attempts to provide a comprehensive table of all pos-

sible transitions involving the dynamics of a single field [7].
Besides, the effect of a continuous symmetry was shown ei-
ther to change the universality class of the transition [8, 9] or
to simply destroy its continuous nature [10]. The continuous
symmetry present in the systems studied there arose from a
local conservation law.

An independent direction of research has focused on
absorbing-state transitions in which the order parameter
freezes into one among an infinity of absorbing states, but
without any additional conservation law. The paradigmatic
example of a system showing such a behavior is the pair
contact process, initially introduced by Jensen and Dick-
man [11], for which Mũnoz and coworkers [12] devised
a convincing phenomenological picture that we shall later
rely on for our analytic manipulations. The sensitivity of
the DP class with respect to the coupling to an auxiliary
field might actually provide a way out for explaining the
difficulty of experimentally observing of the DP class [13],
in spite of recent efforts (see [14] and references therein).
Among the few effects that may lead a transition to depart
from the directed percolation class we list quenched disor-
der and the coupling to an auxiliary field. The present works
focuses on the latter (which was first formalized in those
terms by Grassberger, Chaté and Rousseau [15]). We should
also emphasize that the following exposition is a one-sided
approach to those phenomena, relying solely on the field-
theoretic approach, thus completely omitting the huge nu-
merical efforts invested in the field.

The existence of an infinite number of absorbing states
(in the large-system limit) and the coupling to an auxil-
iary field are the common characteristics to the microscopic
models that we wish to investigate here. We will provide
a full renormalization group picture of the phase transition
at work in systems possessing an infinite number of absorb-
ing states, with or without an additional conservation law.
We shall rely on a combination of exact mappings and phe-
nomenological Langevin equations approach as a starting
point for the calculations. We begin by introducing the three
families of models the critical behavior of which we wish
to understand. Then we sketch the field-theoretic stragegy
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that we will follow on the simplest example of an epidemic.
As we turn our attention to more complex models we shall
identify which are the new key ingredients that pose techni-
cal difficulties. By doing so we come across an unexpected
connection between the last two families of models we want
to consider. The conclusion section lists some open prob-
lems with the present approach and gives directions for pos-
sible future works.

II Three families of processes

A. Spreading of an epidemic (SIS)

A model for the spreading of an epidemic which is
well-knwon to epidemiolgists is the so-called Susceptible-
Infected-Susceptible model (SIS). The population is divided
into two groups, the susceptibleA’s and the infectedB’s,
whose interactions are contamination of anA by aB upon
encounter,

A + B → B + B (1)

and spontaneous recovery of an infected individual,

B → A (2)

The motion of the individuals will be assumed to be diffu-
sive, with diffusion constantsDA andDB for the suscepti-
ble and the infected individuals, respectively. While the as-
sumption of diffusive motion could itself be discussed (the
very same reaction processes with underlying motion pro-
vided by a chaotic flow are used to model plancton popula-
tion dynamics in the ocean [16]) we will take it for granted.
The hope is that this simple assumption will apply to the
majority of systems with such competitive rules.

When the average density of individualsρ, which is ob-
viously conserved by the above rules, is high enough, the
infection survives indefinitely. At low density, on the con-
trary, the epidemic becomes extinct exponentially fast. And
there exists a critical density thresholdρc separating the two
steady-states,i.e. the active one, with ongoing spreading,
from the absorbing one in which the extinct epidemic can-
not be revived. In the absorbing states,A particles are freely
diffusing.

The critical properties of, say the density of infected in-
dividuals, in the vicinity or at the density threshold were
studied both analytically [8-10] and numerically [17-19],
with a rich variety of behaviors. There is even still some
controversy over the order of the transition in low space di-
mensions (mean-field predicts a continuous transition).

It is not hard to coin a mean-field phenomenological evo-
lution equation for the order parameter fieldψ,

∂tψ = DB∆ψ + (ρ/ρc − 1)ψ − g1ψ
2 (3)

whereg1 is a coarse-grained contamination rate. From this
equation we deduce that the density of infected individuals
ψ in the steady-state, undergoes a continuous transition from
an active state in which, asρ → ρ+

c , ψ ∼ (ρ − ρc)β , to an
absorbing state asρ ≤ ρc, with ψ = 0. At the mean-field
levelβ = 1. Similarly the relaxation rate to the steady-state

occurs over a typical time scaleτ ∼ ξz with z = 2 and there
is typical correlation lengthξ ∼ |ρ − ρc|−ν , with ν = 1/2.
At the critical point the density decays asψ(t) ∼ t−δ with
δ = 1. This set of mean-field exponents will accurately de-
scribe the scaling properties of the transition whenever the
space dimension is high enough to allow diffusion to quickly
homogeneize space fluctuations. However, in low space
dimensions, where random walks are recurrent or weakly
transient, correlations between long-lasting fluctuations will
play a role and the scaling behavior will be modified. In
a region of linear sizè density fluctuations are of order
`d/2, and thus relative density fluctuations are of the order
`−d/2. From (3) we see that the reaction relaxation time
goes roughly inversely proportional to the density fluctua-
tions, hence the time it takes for the reaction to equilibrate
over the region of sizè is of the order̀ d/2. But this mean-
field reasoning holds only if diffusion has acted fast enough
so as to erase space fluctuations over the domain of size`,
which takes a time of the order`2, and for mean-field to hold
we must havè2 ¿ `d/2, that isd > 4.

The features which make of the SIS a system whose be-
havior is not of DP type are the following: the order parame-
ter field is coupled to an auxiliary conserved fieldφ standing
for the local density fluctuation of particles (independently
of their A or B type). There exist an infinite number of ab-
sorbing states, but admittedly all of them are equivalent. In
[20] Grassberger makes a distinction between fully ergodic
absorbing states (such as the ones resulting from the epi-
demic becoming extinct) and those which are frozen in. We
now turn to an example of the latter.

B. Fixed Energy Sandpiles (FES)

The second family of systems that we would like our
analysis to encompass has, at first sight, no relationship
with the above. Stochastic fixed energy sandpiles (FES),
known as the Manna model [21, 3, 22], are defined as fol-
lows. Grains of sand are distributed on the sites of a lattice.
Whenever a site is occupied by more than two grains, these
are randomly distributed to the nearest neighbors. After a
while, at sufficiently low grain density, all the sites will have
less than two grains and the activity remains frozen in for-
ever. At high grain density the toppling processes will keep
occurring throughout the system, thus leaving a finite den-
sity of active –or toppling– sites in the infinite time limit.
Of course, the system is supposed to be closed (the grains
cannot escape though the boundaries). Identify now an ac-
tive site with an infected individualB and a still site with
a susceptibleA. Only theB’s are now diffusing, but oth-
erwise the reaction rules (1,2) continue to roughly describe
what is taking place in the system. Interestingly, and this is
the important contribution of Vespignani and coworkers, a
very large number of cellular automata can effectively be de-
scribed by the SIS model in which the susceptibles are static.
While this slight variation on the model present in the pre-
vious paragraph sounds innocuous, it will prove a dramatic
change for te scaling properties. To get a first feeling of why
it is so, we note that, as previously, the order parameter is
coupled to a conserved field. But now this field is static, or
rather its dynamics is slaved to that of the order parameter.
We may expect, thus, that the fluctuations of this field will
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introduce memory effects, and lead to increased deviations
to mean-field behavior. Again there exist an infinite num-
ber of absorbing states, but we do not know a priori what
their distribution is. Pastor-Satorras and Vespignani [23]
performed the first study of the epidemic with static healthy
individuals, after the general characteristics of systems de-
scribed by those schematic reaction rules had been identi-
fied by Rossiet al. [24] by studying two distinct automata,
the Activated Random Walkers and the Conserved Transfer
Threshold Process.

C. Pair Contact Process (PCP)

The third and final family of models we will bend over
is embodied by the Pair Contact Process (PCP), a reaction
involving a single species of static particles denoted byC.
These excluding particles may either annihilate when on
neighboring sites according toC + C → ∅ or produce an
offspring C + C → C + C + C. But they do not dif-
fuse. The order parameter of the transition is the density of
pairs of nearest neighbor particles. At high branching rate
the steady-state exhibits a finite density of particles, while
at low branching the system eventually settles in a frozen
state in which all particles are isolated. The order parame-
ter of the transition is the local pair density. The connection
between the PCP and the above two processes lies in the
identification of a pair with aB particle, and of an isolated
particle with anA. Unfortunately there is no ready-to-use
one-to-one mapping between a configuration ofA’s andB’s
and a configuration of theC ’s. One can draw a heuristic
correspondence based on physical intuition, which can be
written in a rather loose notation in a form reminiscent of
the previous paragraphs:

A + B → B + B, B → ∅, B → A (4)

While there is obviously no particle conservation one may
easily identify a branching process similar to the contam-
ination one and two growth-limiting processes. Note also
that the branching of a pair induces effective diffusion for
theB’s. A large number of systems, such as the dimer reac-
tion [11], the dimer-dimer [25] and dimer-trimer [26] reac-
tions, or the threshold transfer process [27] are modeled by
the above mechanism.

III Field-theoretic techniques: a uni-
fied treatment

A. Action for the epidemics

There are well-established techniques [28] for map-
ping a reaction-diffusion process in which particles diffuse,
branch, annihilate, and possibly exclude each other, onto
a field-theory thatexactlyencodes the microscopic dynam-
ics. We will not review how such a mapping is achieved. It
suffices to know that the resulting field theory features, for
each species of particles, a density field, the first moment
of which gives the local density of particles, and a response
field (usually bearing an overbar) with no straightforward

physical interpretation. Denoting byψ the order parame-
ter field and byφ the local density fluctuation we have the
following action

S[ψ̄, ψ, φ̄, φ] =
∫

ddxdt
[
ψ̄(∂t + σ −DB∆)ψ

+ φ̄(∂t −DA∆)φ

+ φ̄(DA −DB)∆ψ

+ ψ̄ψ2 − ψ̄2ψ + ψ̄ψ(φ̄ + φ)
]

(5)

where we have omitted higher order terms in the fields and
have not specified any names for the interaction vertices.
Note that the free field̄φ, φ could be integrated out to yield
an effective action for the order parameterψ and its response
field ψ̄ alone. The renormalization group analysis of (5) was
performed [8-10] with the following results : the coupling of
the order parameter to an auxiliary diffusive and conserved
field drives the transition to two universality classes differ-
ent from the DP one according to whether0 < DA < DB

orDA = DB . Even more surprisingly, the continuous phase
transition is outweighed by a first order one below the upper
critical dimension when0 < DB < DA. While a first-order
transition was indeed observed in a two-dimensional sys-
tem, it has been both ruled out [18, 29] and confirmed [30]
in one dimension. In the following table we recall the results
for the critical exponents given to first order inε = 4 − d
(a star superscript indicates a result holding to all orders in
ε) and provide for comparison the directed percolation ex-
pression [31]. The exponentsη and η̄ are the anomalous
dimensions of theψ and ψ̄ fields, respectively, defined as
ψR ∼ `−

d+η
2 andψ̄R ∼ `−

d+η̄
2 , where` is a length scale.

exponent DA = DB DA < DB DP
z 2∗ 2∗ 2− ε

12

ν−1 2− ε
2
∗ 2− ε

2
∗ 2− ε

4

η − ε
8 0∗ − ε

6

η̄ − ε
8 −0.313ε − ε

6

β = ν d+η
2 1− ε

8 1∗ 1− ε
6

(6)

It is worth commenting on Table (6): several exponents ap-
pear to be given to all orders inε. That thez exponent takes
the value 2 is understable since the conserved and freely dif-
fusive fieldφ imposes its (slow) relaxation scale. Hence the
superdiffusive behavior observed in DP (z < 2 ) when it is
not coupled to any auxiliary field is overcome by the slowest
relaxing modes, which happen to be freely diffusive modes
(with diffusion constantDA). This is a very robust prop-
erty that can be seen to hold even if we took the omitted
quartic terms in (5) into account. It is rooted in the absence
of renormalization of theφ propagator. The exactness of the
correlation length exponentν = 2/d has a very different ori-
gin. A shift of the density fieldφ by a constant has the same
effect as shifting theψ field mass term. This implies a exact
identity between vertex function, which carries over to the
renormalized quantities, thus yielding an additional relation-
ship between exponents, namely thatν−1 equals the scaling
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dimension ofφ, which is d/2. Unfortunately this contin-
uous symmetry is broken by quartic terms whose effect in
low-dimensions is ill-controled. This has led to some debate
in the literature [33, 32, 18]. Quite understanbly, the exact
knowledge of some exponents (if blindly taken for granted)
eases numerical analysis and yields higher precision results
on the remaining exponents.

B. One-loop-expansion for FES

One crucial difference between the SIS and the FES is
that theA particles become static, which can be achieved
simply by settingDA = 0 in (5). Note that an immediate
consequence of setting the auxiliary field diffusion constant
to zero is that it ceases to impose its own dynamic scale (in
particular, we should now expect that the order parameter
field ψ will indeed exhibit superdiffusive behavior, and that
φ will follow). The total density fieldφ has its dynamics
slaved to the local fluctuations in the order parameterψ, as
can be see by writing the equation of state forφ:

∂t〈φ〉 = DB∆〈ψ〉 (7)

This means that the modes ofφ describing the short-scale
fluctuations verifyφ(q, t) ∼ −q2

∫ t
dτψ(q, τ). When inte-

grating out thēφ, φ fields from the action (5) one is left with
effective interaction of the form

g4

∫
ddxdtψ̄ψ(x, t)

∫ t

dt′∆xψ(x, t′) (8)

But at small distances (largeq’s) there is no difference be-
tween theg4 vertex and

g3

∫
ddxdtψ̄ψ(x, t)

∫ t

dt′ψ(x, t′) (9)

Thus it is not surprising that ag3-like vertex is generated al-
ready at one loop, as can be seen on the Feynman diagram
depicted in Fig. 1.

+=

Figure 1. The one-loop diagram combines theg4 andg2 vertices to
yield effectiveg3 andg1 couplings. A black dot on a leg means that
the vertex is proportional to the square of the momentum flowing
through the leg. The dotted line means that the dangling leg is at
time earlier than the other two making up the vertex.

The fact that such terms are generated would seem to be
in conflict with the local conservation law. But there is no
contradiction as other terms are generated, which will turn
out to be irrelevant from the renormalization group point
of view, yet they will take care of preserving this essential
property. We now rewrite the effective action for the order

parameter field only:

S[ψ̄, ψ] =
∫

ddxdt
[
ψ̄(∂t + λτ − λ∆)ψ

g1ψ̄ψ2 − g2ψ̄
2ψ

+ g3ψ̄ψ

∫
dt′ψ(x, t′)

− g4ψ̄ψ

∫
dt′∆ψ(x, t′)

− g5ψ̄ψ

∫
dt′ψ̄ψ(x, t′)

]

(10)

Theg1 andg2 vertices alone make up the directed percola-
tion action. In fact, in all members of the FES family, ver-

tices of the form
∫

ddxdt ψ̄ψ
[∫ t

dt′ψ(t′)
]n

are generated

at one loop. To illustrate this state of affairs, in Fig. 2 we
draw the one-loop diagram generating then = 2 term.

=

Figure 2. Twog3 vertices are combined with ag5 vertex to yield

an effective
∫

ddxdt ψ̄ψ
[∫ t dt′ψ(t′)

]2

interaction.

In the next section it is explained how to make physi-
cal sense of the action (10) and to extract physical quantities
from it.

C. The special PCP case

In the PCP the microscopic dynamics is quite different.
Following the suggestion of Mũnoz [12], it is not hard to see
that the directed percolation action has to be supplemented
by an additional interaction term of the form

δSPCP[ψ̄, ψ] = −
∫

ddxdtψ̄ψ(x, t)
[
e−λ

∫ t
0 dt′ ψ(x,t′) − 1

]

(11)
Note that subtracting−1 in the bracket in the right-hand-
side of (11) amounts to shifting the mass term of the field
theory (which now vanishes at the mean-field critical point).
The mass term being positive, this means that we are work-
ing in the absorbing phase. In other words, the order param-
eter relaxes exponentially fast to zero. We choose to per-
form our analysis with a positive mass, and we shall carry
the necessary renormalizations in the absorbing phase, as
is done in all previous renormalization group studies of ab-
sorbing state transitions. Working in the active phase would
lead to the same renormalization factors, but would imply
following a much more complicated path with exactly the
same outcome.

One could believe that the present exponential term will
not contribute to determining the anomalous scaling prop-
erties of the phase transition at work by arguing as follows.
The order parameter will tend to a constant value and hence
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this term will be suppressed exponentially fast. But this rea-
soning involves fixing the mass and letting time to infinity.
We are interested in the reverse limit in which time is much
shorter than any typical critical time so that the critical fluc-
tuations can develop (but of course much larger than micro-
scopic time scales). And those limits do not commute. All
the terms making up the series expansion ofδSPCP are rele-
vant at the Gaussian fixed point (then’s power ofλ has bare
dimension2+nε, which indicates that those terms will con-
stitute relevant perturbation of the directed percolationO(ε)
fixed point.

The nature of short-time and short-distance singularities
(UV divergencies) dictates the universality class that a phase
transition falls into. This is quite counter-intuitive since a
phase transition is a large-scale collective phenomenon. And
indeed renormalization is not but a refined coarse-graining
procedure which integrates out the short-time and short-
distance degrees of freedom, and which will carry these
pieces of information over to the macroscopic degrees of
freedom (the global order parameter, for instance).

D. Analysis

In order to study UV divergencies we follow the strat-
egy outlines in [34] and we expandδSPCP in powers ofλ.
Then a quick inspection at the one-loop graphs tells us that
the new upper critical dimension isdc = 6, below which the
theory is super-renormalizable, and above which mean-field
applies. From here on the notationε stands for the deviation
of the space dimension with respect to the new upper critical
dimensiondc = 6: ε = 6−d. It is instructive to writeδSPCP

in the form

δSPCP[ψ̄, ψ] =λ

∫
ddxdtψ̄ψ(x, t)

∫ t

0

dt′ψ(x, t′)

−
∫

ddxdtψ̄ψ(x, t)×
[
e−λ

∫ t
0 dt′ ψ(x,t′) − 1 + λ

∫ t

0

dt′ψ(x, t′)
]

(12)

because now the brackets in the right-hand-side contain
terms which are irrelevant in the renormalization group
sense. A word of caution is needed here: the unfortunate
wording irrelevant does not mean those terms are irrele-
vant physics-wise, and indeed by throwing them away we
would simply lose the physical mechanism at work in the
PCP (there would simply be no more phase transition). This
merely expresses that those additional terms do not intro-
duce corrections to the large scale effective couplings. There
are many instances of systems described by a field theory in
which RG-wise irrelevant terms govern the phase diagram,
but not the anomalous scaling properties, both in equilib-
rium (see the review by Amit and Peliti [35]) and out of
equilibrium (see Janssen and Schmittmann [36] for the ex-
ample of a driven diffusive system or Deloubrièreal. [37],
more recently, for providing the analysis of the Pair Contact
Process with Diffusion). All powers ofλ higher than two
therefore constitute dangerously irrelevant terms.

However, having in mind that now the upper critical di-
mension is shifted up todc = 6, we see that alsog1 is a

dangerously irrelevant coupling to the extent that, as shown
by Muñoz and coworkers [12], it eventually controls the dy-
namics of the order parameter by playing the role of the
leading nonlinear growth-limiting coupling (at late times).

There are now two separate problems. The first one is to
renormalize the field-theory with theg5ψ̄ψ

∫ t
dt′ψ(t′) ver-

tex. But this has already being done almost twenty years
ago by Janssen [38] and Grassberger and Cardy [39] (this
is the same field theory that describes dynamical percola-
tion). And then one must compute the scaling dimension of
the dangerously irrelevant operators at the dynamical perco-
lation fixed point. The second issue is how to extract the
scaling behavior of physical observables knowing that the
usual scaling assumption breaks down. Again it may look
surprising that the universality class is that of dynamical per-
colation, a process with no absorbing state transition. This
is because in the PCP the phase transition is driven by irrele-
vant couplings (which are absent in dynamical percolation).

The scaling dimension ofg1 at the dynamical percola-
tion fixed point is found to beyg1 = −2 − ε

7 . At scale
b À 1, the effectiveg1(b) behaves asbyg1 . And then we use
the mean-field scaling function’s dependence ing1 (which
depends ong1 as 1/g1) which is correct to first order in
ε = 6− d. The conclusion is that

〈ψ〉 ∼ b−
d+2+η

2 F(b1/ν |σ|, b−zt, g1(b)) (13)

with F(x, y, z)
z→0∝ F (x,y)

z to leading order inε. We can
therefore extract the following critical exponents

β = 1− 3
14

ε, δ = 1− 1
4
ε (14)

which are valid to first order inε. We have used the dy-
namical percolation expressions for the correlation time and
correlation length exponents,z = 2− ε

6 andν−1 = 2− 5
21ε.

IV Conclusions

One of the major drawbacks of the analysis presented here,
as far as the FES and PCP-like systems are concerned, is
the absence of agreement with numerical simulations. That
there is disagreement with the dynamical percolation pic-
ture in one-dimensional systems is not too surprising owing
to the triviality of percolation ind = 1. This signals that
there is very likely an intermediate dimension below which
the universality class that we have described shifts to some
other class. It could even be that FES and PCP systems be-
have differently in low space dimensions. As usual with ex-
pansions in the vicinity of the upper critical dimension, few
results lend themselves to direct comparison with the simu-
lations. We shall not try to review the numerical status of the
systems considered throughout this paper, but we mention
that the general belief is that the upper critical dimension,
both for the FES and PCP-like systems isdc = 4, and not
dc = 6 as advocated here. We refer the interested reader to
[40].

We would like to mention a list of interesting problems.
In all three families of processes that we have considered
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there is competition between a one-particle branching pro-
cess and nonlinear growth limiting processes. It was re-
cently argued that binary spreading processes (first intro-
duced by [41]), that is reactions in which branching only
occurs by pairs, would lead absorbing state transitions to a
universality class different from that of directed percolation.
While there is not even any consensus on that, we speculate
that it is indeed so [37], at least in the case of the Pair Con-
tact Process with Diffusion (PCPD). In the PCPD there are
two absorbing states (degenerate in the large size limit), but
coupling it to an auxiliary field, possibly conserved and/or
static, might reveal a rich variety of behaviors [42]. We leave
this and other issues for future work.

Ackowledgment

The research presented here arose from direct collabo-
rations and evergoing, and sometimes disagreeing, discus-
sions with H.J. Hilhorst, K. Oerding, A. Vespignani, H.
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