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We review some results concerning the energetic and dynamical consequences of taking a generic hydrophobic
model of a random polypeptide chain, where the effective hydrophobic interactions are represented by Hookean
springs. Then we present a set of calculations on a microscopic model of hydrophobic interactions, investigating
the behaviour of a hydrophobic chain in the vicinity of a hydrophobic boundary. We conclude with some
speculations as to the thermodynamics of pre-biotic functions proteins may have discharged very early on in
the evolutionary past.

I Introduction

The approach of a statistical physicist to biological problems
is different from that of a biologist, in the same way that the
approach of a physicist to any natural phenomenon is differ-
ent from that of an engineer. The difference seems to lie in
regarding any given instance of a particular phenomenon not
as the product of an ingenious design, but only as a member
of a very large ensemble of possible realizations of a generic
rule, all governed by the same laws of physics. To a statisti-
cal physicist, a biological molecule is not, first and foremost,
a high precision tool custom-made to perform a highly spe-
cialized task; it is rather a member of a very large set of pos-
sible outcomes of random processes, which, under nonequi-
librium conditions, have conspired to produce a certian, al-
beit very improbable result. Moreover, as has already been
thoroughly underlined by Eigen [1] and Maynard-Smith [2],
biological entities typically correspond to sharply peaked
probability distributions (“quasispecies”) about some point
in biological phase space, rather than unique solutions to
some optimization problem. This distribution is of course
reflected in the genetic code, and also must translate itself to
the proteins that make up the organism.

Another source of deviations from perfect order is ther-
mal noise. We would like to stress that the protein in its
native state must essentially correspond to a self-organized
system, i.e., the “native state” should be concieved of as the
attractor of a dynamics [3]. This typically corresponds not to
a unique conformation but to a set of conformations to which
the trajectory of the phase point representing the molecule is

confined after asymptotically long times (which may already
be achieved in microseconds).

In this paper we will first review a simple model in-
volving discrete torsional degrees of freedom [3]. The hy-
drophobic interactions driving the folding of the polypep-
tide chain [4, 5] are modeled by Hookean springs con-
necting pairs of hydrophobic residues. [6-12] This sys-
tem, with harmonic interactions, under dissipative dynam-
ics driven by random noise, leads to a distribution of en-
ergy states obeying a modified one-dimensional Ornstein-
Uhlenbeck [13, 14] process, quite independently of the na-
ture of the sequence of hydrophobic and polar residues, or
the dimensionality of the space. It can be shown to obey the
so called Wigner distribution [15-19]

P (ε) ∼ ε exp(−π

4
ε2) , (1)

over a very large range of energiesε relative to someEmin.
This distribution resembles that found for the vibrational en-
ergy density of real proteins [6].

The second consequence of this simple model of
Hookean springs is that that under Metropolis Monte Carlo
dynamics with random initial conditions, the model exhibits
power law relaxation for the initial stages of decay, and at
the later stages the relaxation obeys a stretched exponen-
tial ∼ exp(−tα), with the exponentα ' 1/4 [20]. This
Kohlrausch-Williams-Watts type relaxation behaviour is ob-
served experimentally for real proteins, and predicted theo-
retically [4,21-24]. At zero temperature the probability dis-
tribution function of the energy steps encountered along a
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relaxation path in phase space also obeys a stretched expo-
nential form, with another exponenta ' 0.39. In [20] we
show thatα = a/(a + 1), which yields a value forα in very
good agreement with our simulation results.

In the second part of this review, we would like to dis-
cuss work done with Pınar̈Onder [25], on the statistics of
a hydrophobic chain near a hydrophobic boundary. The hy-
drophobic interaction arises from the competition between
the energy and the entropy terms in the free energy. It turns
out that so-called hydrophobic molecules can, in fact, lower
the total internal energy when intermixed with the water
molecules, but only in a low entropy state of water with a
high degree of short range order. For low enough tempera-
tures, this state is, in fact, the equilibrium state as it lowers
the free energy. However, for somewhat higher tempera-
tures, the entropy term in the free energy wins out, and the
hydrophobic (non-polar) molecules seperate out from the
water molecules, which are now in a completely disordered
state. At still higher temperatures, even this segregation dis-
appears.

The decorated lattice model proposed by Widom and co-
workers [26-31] provides a microscopic basis for the statis-
tical physics of the so called hydrophobic interaction, which
is an effective, entropy driven phenomenon. We adapted
the Widom model to investigate the behaviour of hydropho-
bic chains in the neighborhood of hydrophobic boundaries.
The motivation was to eventually understand the role of hy-
drophobic surfaces in the process of protein folding, i.e., to
see if they could provide a chaperoning effect. We have
been able to treat certain aspects of the problem analytically,
by restricting ourselves to two dimensions, and treating the
wall-chain interaction in a one-dimensional approximation.
Nevertheless the full solution still involves a certain amount
of numerical manipulation. It is gratifying to find that within
a given temperature interval, the hydrophobic chain prefers
to adsorb on a hydrophobic boundary, and outside this in-
terval it is more or less in a randomly coiled state. More-
over, within this interval, the chain is adsorbed in a more
stretched or collapsed configuration, for lower and higher
temperatures, respectively, and remains somewhat collapsed
at temperatures high enough for it to have just desorbed from
the wall. The interplay between the entropy of the water
molecules and the entropy of the chain is what gives rise to
this nonmonotonic behaviour.

In the last part we will briefly discuss the thermodynam-
ics of the folding of hydrophobic or randomly polar and hy-
drophobic polypeptide chains near a hydrophobic wall and
speculate as to the evolutionary possibilities to which this
may have given rise, for the selection of those chains with
narrowly defined native states [32].

The paper is organized as follows. In section II, we dis-
cuss the energetics and the glassy relaxation behaviour of
the simple Hookean model, in section III, we present our
results on the hydrophobic chain near a hydrophobic bound-
ary, and in section IV, provide a brief summary of a scenario
for protein-RNA co-evolution, with prospects for further re-
search.

II A Gaussian model for protein fold-
ing

The Gaussian model of a polypeptide chain we consid-
ered [3, 20] consisted of a chain ofN residues (treated
as point vertices), chemical bonds of fixed length along
the backbone, andN − 3 dihedral angles (see Fig. 1).
We assumed that we are in a temperature range where the
hydrophobic interactions are appreciably strong. The hy-
drophobic interactions between the non-polar residues will
then act in such a way as to segregate them from the po-
lar residues and the ambient water molecules. We mimick
the effective hydrophobic interactions by placing Hookean
springs between all pairs of non-polar residues.

a

b

Figure 1. A chain ofN = 48 residues, half of which are randomly
chosen to be hydrophobic, (darker beads) shown in a random ini-
tial and a collapsed configuration in panels (a) and (b) respectively.
(Generated using RasMol V2.6)

In this study we were motivated by the model proposed
by Haliloğlu, Bahar, and Erman [9] where all interactions
between the different residues are governed by confining
square-law potentials [9-12,33]. In our model, however, the
covalent bonds between residues are treated as fixed rods of
equal length, the chemical angles are also taken to fixed. The
residues located at the vertices may be polarP or hydropho-
bic H. All the hydrophobic vertices are to be connected to
each other with springs of equal stiffness. This results in
their being driven to the relatively less exposed center of the
molecule in the low lying energy states, whereas the polar
residues are closer to the surface. It is important to note that
we treat allH − H pairs on an equal footing, i.e., there is
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no “teleological” information that is fed into the system by
connecting only thoseH −H pairs which are close to each
other in the native configuration for a particular sequence.

It is known that real proteins are distinguished byH, P
sequences that lead to unique ground states while a ran-
domly chosenH,P sequence will typically give rise to a
highly degenerate ground state. In the absence of detailed
knowledge regarding the rules singling out the realisticH, P
sequences we considered a genericH, P sequence obtained
by choosing fifty percent of the residues to be hydropho-
bic and distributing them randomly along the chain. We
have checked that our results were quite robust with respect
to changing the sequence of hydrophobic or hydrophilic
residues, or even taking all of them to be hydrophobic. (In
the last section of this paper we will indulge in some specu-
lation as to how those sequences with unique ground states
may have been selected for.)

In this model, the energy of the molecule is given by

E =
K

2

∑

i,j

ci,j |ri − rj |2 = K
∑

i,j

r†iVijrj (2)

If we defineQi = 1 for the ith vertex being occupied by a
hydrophobic residue, andQi = 0 otherwise, we may write
ci,j = QiQj , and the interaction matrix then becomes

Vij = [(NH − 1)ci,i − ci,j−1 − ci,j+1]δi,j

− (1− δi,j)(1− δi,j−1 − δi,j+1)ci,j . (3)

We take the bond anglesθi, i = 1 . . . , N−1, to have the
alternating values of(−1)iθ, with θ = 68◦. The dihedral
anglesφi can take on the values of 0 and±2π/3. The state
(conformation) of the system is uniquely specified once the
numbers{φi} are given.

In this study, we did not take into account steric ef-
fects explicitly. The constraints placed on the conforma-
tions due to the rigid chemical bond lengths and by restrict-
ing the chemical and dihedral angles to discrete values, pre-
vent the molecule from trivially collapsing to a point. This
has a similar effect to placing the chain on a tetrahedral lat-
tice; however, since the chemical angles are slightly differ-
ent from π/3, this is not exactly true, and the configura-
tions are off lattice when compared to a tetrahedral struc-
ture. Since the chain has a certain rigidity and persistence,
the volume of the folded structures to grows withN , the
number of residues.

A. Dissipative dynamics of the Hookean chain

The position vectorsri of each of the vertices in the
chain can be expressed in terms of a sum over the directors
Ri of unit length representing the chemical bonds, which
may be obtained fromR1 by successive rotationsMk(θk)
andTk(φk) through the bond and the dihedral angles [34],
viz.,

ri =
i−1∑

j=1

2∏

k=j

Tk(φk)Mk(θk)R1 . (4)

where we may chooseR1 to lie along any of the Cartesian
directions in our laboratory frame without loss of general-
ity. We obtain the torques that act at each of the vertices
i by substituting this in equation (2) and taking the partial
derivative with respect toφi, viz.,

τi = −∂E/∂φi . (5)

The system is assumed to evolve within a viscous en-
vironment, subject to random kicks from the surrounding
molecules. As a numerical realization of this dissipative sys-
tem, we explore the phase space under a dynamics based on
relaxing pairs of rotational degrees of freedom, namely the
dihedral angles, sampled with a probability which is a func-
tion of the conjugate torques,

P (i) =
|τi|η∑
i |τi|η . (6)

We may write the Langevin equation for the positions of the
vertices as

dri(t)
dt

=
1
ζr

Fi + ξr(i, t) (7)

where ζr is a friction coefficient andξr(i, t) is a Gaus-
sian distributed noise term, delta correlated ini and in time.
Equivalently, in terms of the state vectorφ = (φ1, . . . , φN ),
we have the Langevin equation

dφi(t)
dt

=
1
ζτ

τi + ξτ (i, t) (8)

where the torqueτi is a function of all the angles{φ},
ζτ is the appropriate friction coefficient andξτ is again a
Gaussian random force delta correlated in space and time.
Viewed in this way the dynamics is similar to a pinned in-
terface or a charge density wave system [35-39] in1 + 1
dimensions.

The dynamical rules we employ for the sequential up-
dating of the system loosely correspond to a discrete version
of the dissipative system envisaged in Eq.(8) above. In or-
der to mimick the conservation of angular momentum, we
choose pairs of vertices at a time, turning theφi in oppo-
site directions [3]. (This does not strictly conserve angular
momentum, due to the fact that the axes of rotation are not
necessarily parallel; however since the motion is highly dis-
sipative, we do not think this is a big problem.) The choice
of vertices for each updating operation is done according to
the distribution of torques over the vertices of the chain.

The most natural probability distribution we can form
out of the torques, without introducing any special scale into
the problem, isP (i) = |τi|η/Σj |τj |η. Note thatη is a pa-
rameter of our dynamics; we discuss below how changingη
affects our results.

1. At each step, for that given configuration of the chain,
we form two such independent distributions, one for
{τi > 0} and another for{τi < 0}.

2. We choose a pair of vertices ( one with positive, the
other with a negative torque on them), according to
the above distribution.
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3. We then update the dihedral angles at the selected ver-
tices, by incrementing them according toφi(t + 1) =
φi(t) + sign(τi)× (2π/3).

After applying the search strategy based on changing the
torques according to a distribution, we found that updating
the maximal torques (η > 0) drives the system to a state with
relatively high energies, whereas a random search (η = 0)
or preferentially choosing the minimal torques (η < 0) gives
rise to more successful strategies for reaching low lying en-
ergy states. Thus it can be said thatη here plays the role
of a coarse– or fine–graining parameter in the exploration
of the energy landscape. It should be noted that increment-
ing preferentially those vertices with high torques on them
corresponds, in the language of the Langevin equation (8)
to relatively small friction coefficientsζτ ; whenη = 0, one
simply has thermal noise, and no force term.

B. Distribution of energy states

The distribution of the energies of the discrete config-
urational states explored by the chain ofN = 48 residues
shown in Fig. 1, as it evolves under the above dynamics, is
shown in Figs. 2, 3, for both positive and negativeη. Af-
ter the first 5000 steps were discarded, the statistics were
taken over 5000 steps of the trajectory. We checked that the
statistics were stationary at this point so that we may safely
assume that we have reached the attractor for this dynamics.
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Figure 2. The normalized energy histograms, averaged over10 ran-
dom initial states for chains ofN = 48, for differentη ≥ 0, along
paths of104 steps, with the first5000 steps discarded. The fits are
to the Wigner distribution forη = 0, 1, 3 and Gaussian distribution
for η = 8.

The shape of the distribution essentially does not change
with η for η < 0, while for positive η the peak shifts
to successively higher values of the energy, and the distri-
bution is distorted towards a Gaussian, indicating that the
states explored are less correlated. These figures compare
very favorably with the energy histograms obtained by Socci
and Onuchic [40] for a Monte Carlo simulation on a lattice
model of a proteinlike heteropolymer, the density of vibra-
tional states found by ben-Avraham [6] and the ultraviolet

absorption spectra reported by Mach et al. [41]. It should be
observed that the distributions which we obtain are also ex-
tremely similar to the specific heat capacityCP as a function
of temperature as found by Chan for different proteins. [42]
It is interesting to note that it is also very similar to the distri-
bution of Euclidean distances to the global energy minimum
in the phase space of large atomic clusters [43].
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Figure 3. The normalized energy histograms, for chains ofN =
48, for different η < 0 (see Fig.2). The fits are to the Wigner
distribution.

We were able to fit the simulation results very success-
fully with a distribution of the Wigner form (Figs. 2,3)

fW(E) = a(E − E0)e−b(E−E0)
2

, (9)

for η = −6 to η = 3. HereE0 corresponds to the offset due
to the lowest energy state attained for the differentη, and it
can be seen that it shifts the distribution to higher values of
the energy for higher values ofη. The distributions become
Gaussian forη = 6 andη = 8. (See Ref.[3], Table Ia,b for
the values of the fitting parameters)

It should be mentioned that the same energy distribu-
tions may be fit equally well (or better near the pointE0

and in the far tail) by the “inverse Gaussian” [44], where the
probability density is given by,

fIG(E) =

√
A

2πE3
exp

[
−A(E −B)2

2B2E

]
. (10)

This has the same functional form as the distribution of first
passage times over a distanced for an Ornstein Uhlenbeck
process [13, 14] with diffusion coefficientD and initial drift
velocity v, in the regime of small times, if one makes the
further identificationsA = d2/(2D) andB = d/v. The pa-
rameters and estimated errors for the fits to the parameters
A andB are given in Table II of Ref. [3]. Both the “dif-
fusion constant” (mobility) and the “drift velocity” of the
phase point along its trajectory in phase space depend on
η, being maximum forη = 0 and decreasing for positive
values ofη. Forη < 0 they are essentially independent ofη.
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C. Universality of the energy historgrams and the
Ornstein-Uhlenbeck process

An Ornstein-Uhlenbeck (OU) process describes the dif-
fusive motion of a particle subject to a drift velocity pro-
portional to the distance from the origin [13, 14]. Such a
process for a single particle in one dimension would be de-
scribed by the Langevin equation,

dx

dt
= −1

ζ
gx + ξ(t) (11)

with a Hookean forceF (x) = −gx and a delta correlated
random forceξ(t), 〈(ξ(t))2〉 = σ2. In the absence of the
stochastic term which gives rise to diffusive motion, the ve-
locity is simply proportional to the distance from the origin
(or the point of equilibrium). For an initial displacement
x(0) = d, the solution for the distribution of first passage
times through the origin is given by

f(t) =
2yd

π1/2σ

(
ρ

1− y2

)3/2

e
− ρy2d2

σ2(1−y2) , (12)

whereρ = g/ζ andy = exp(−ρt).
We would now like to show that both the Wigner distri-

bution (9) and the inverse Gaussian distribution (10) arise
as limiting forms in an OU process. Clearly, without
the stochastic term, the solution for (11) is simplyx =
d exp(−ρt) = dy. We see that (12) goes over, in the limit of
large times, i.e.y ¿ 1, to

fW =
(

2ρ3/2

π1/2σ

)
yde−

ρd2y2

σ2 . (13)

On the other hand, for very small times, (12) becomes, to
leading order,

fIG =
2πdσ2

(2πσ2t)3/2
e−

(d−vt)2

2σ2t (14)

where we have definedρd = v.
Sincex = dy is the “distance remaining to the origin,”

the distribution function (13) may just as well be consid-
ered as a function ofx. For late times, we getfW(x) ∝
x exp(−ρx2/σ2) which is in the form of the Wigner surmise
(1). On the other hand, for very small times,x ∼ d(1−ρt) =
d − vt. The distance from the initial point,̃x ≡ (d − x)/v,
becomes simply proportional to the time elapsed and we get
the “inverse Gaussian”(10) form,

fIG(x̃) ∼
(

λ

(2πx̃)3

)
e
−λ

2 (
x̃−µ)2

µ2x̃2 (15)

whereλ = (d/σ)2 andµ = 1/ρ. It should be noted that (13
and 14) are numerically very similar.

Now let us observe that the energyE given in Eq.(2)
obeys a one dimensional OU proces (11) under the dynam-
ics given by (7). Since there is no explicit time dependence
of E, we have

dE

dt
=

∑

i

∂E

∂ri
· ∂ri

∂t
. (16)

Substituting from (7) we get,

dE

dt
= − 1

ζr

∑

i

(
∂E

∂ri

)2

+
∑

i

∂E

∂ri
· ξi(t) . (17)

From (2) we find

∑

i

(
∂E

∂ri

)2

=
NE

ζr
+

∑
i,j,k
i 6=k

cikcjk(ri − rk) · (rj − rk) .

(18)
We see that the second term is like an average of the product
of differences(ri − rk) · (rj − rk) over(i, j) pairs(i 6= j),
and for a reasonably isotropic configuration, it vanishes. To
the same approximation, we may assume that the second
term in Eq.(17) is itself equal to a Gaussian stochastic noise,
i.e., setξE(t) = K

∑
ij cij(ri− rj) · ξi(t) . This yields the

required result, namely,

dE

dt
= −NE

ζr
+ ξE . (19)

If under the given dynamics, theE distribution obeys
one of the limiting forms (13) or (14), then the first passage
time distribution for the attainment of the lowest energy state
must obey, in turn, Eq. (12). This is the reason why the dis-
tributions of first passage times for rather general global op-
timization problems with quadratic cost functions [44] is the
same as the form of the distribution of energy states which
we find from our simulations.

That the same form is found experimentally for the
spectral fluctuations of rather diverse confined systems of
sufficient complexity [17, 16, 43, 45] seems to indicate
that quadratic cost functions seem to be a sort of attrac-
tor, under coarse graining, for a large space of many-body
interactions. The seemingly universal behaviour which
ben-Avraham finds for the density of vibrational states [6]
and the ultraviolet absorption spectra reported by Mach et
al. [41] for various proteins, also display very similar curves.
Thus there seems to be a striking universality [8] not only
between different protein-like structures, but also between
different ranges of length and energy scales. It is actually
surprising that the density of vibrational states should have
a behaviour similar to energy histograms obtained under our
dynamics, since the former involve inertial degrees of free-
dom, while the latter arise from dissipative dynamics

It is also intriguing to compare the results forη ≥ 0
(Fig. (2)) with the numerically obtainednth neighbor spac-
ing distributions of the eigenvalues for Gaussian orthago-
nal matrices, as reported by Porter [18], where the identi-
cal shift of the peak and tendency to a symmetric Gaussian
distribution is found. This we interpret as reinforcing our
observation that largerη dynamics results in a more coarse-
grained sampling of the energy landscape. A very simi-
lar sequence of distributions is obtained by Wales [43] for
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the energies of large atomic clusters, with successively fur-
ther right-shifted peaks corresponding to distributions about
higher metastable states.

D. Relaxation Behaviour

In order to investigate how the present model relaxes to
equilibrium at a given temperatureT , we have employed
Metropolis Monte Carlo dynamics [20]. This consists of

a) choosing a pair(i, i′) of dihedral angles randomly on
the chain, and updating the (φi, φi′) in a way that preserves
angular momentum, incrementing them in opposite direc-
tions by∆φ = ±2π/3,

b) accepting the move with unit probability if∆E ≤ 0
and with probabilityp = exp(−β∆E)) for ∆E > 0, where
β is an effective inverse temperature,β = (kBT )−1 with
kB being the Bolzmann constant.

c) repeating the second step once before discarding the
pair altogether and going to the first step.
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Figure 4. The decay with time (in Monte Carlo steps) of the energy,
in arbitrary units, of anN = 100 chain, along a Metropolis Trajec-
tory of 104 steps, averaged over 20 runs. The initial configuration
is random. The inverse temperature isβ = 0.3. The initial stage
(inset) is fit by a power lawε(t) ∼ t−σ with σ = 0.49± 0.01, and
the late stage to a stretched exponential withα = 0.234± 0.03.

We monitor the relaxation of the total energy as a func-
tion of “time” measured in the number of MC steps, (i.e.,
the number of pairs(i, i′) sampled) until a steady state
is reached, typically in about 10,000 steps for chains of
N = 100. The results averaged over 20 randomly cho-
sen initial configurations at zero temperature (β = ∞) are
shown in Fig. 4. Definingε ≡ (E − E0)/EI , whereE0

is the (time- averaged) equilibrium energy andEI , the ini-
tial value, we find that it obeys a power law,ε(t) ∼ t−σ with
σ = 0.49±0.01 for the initial stages of the decay, while later
stages can be fitted by a stretched exponentialε(t) ∼ e−tα

with α = 0.234± 0.003.
We also performed simulations for different values ofβ,

for chains ofN = 48, averaging over 100 runs with random
initial configurations. Forβ → ∞, β = 0.5 andβ = 0.3,
the above relaxation behaviour continues to hold and the ex-
ponents do not seem to depend onβ, with α ' 1/4 and
σ ' 1/2 as given in Table I.

Table I: The exponentsσ andα found for the power law and
stretched exponential decay of the total energy with time, for
different chain lengthsN and inverse temperaturesβ. The
fits were obtained from a weighted least-squares computa-
tion.

N β σ ∆σ α ∆α
48 ∞ 0.57 0.01 0.281 0.004

0.5 0.56 0.01 0.30 0.04
0.3 0.57 0.01 0.25 0.03

100 ∞ 0.49 0.01 0.234 0.003

Clearly one may writeE(t), averaged over many inde-
pendent runs, as〈E(t)〉 = 〈E(0) − ∑M

i=1 ∆EiΘ(t − ti)〉
whereΘ is the Heavyside step function andti =

∑i−1
k=0 τk,

with τk being the waiting time at thekth step, not to be con-
fused with the symbol for the torques in subsection IIA. Tak-
ing the time derivative one gets,

〈Ė(t)〉 = 〈−
M∑

i=1

∆Eiδ(t−
i−1∑

k=0

τk)〉 . (20)

At zero temperature, the expectation value ofĖ(t) can
be calculated by carrying out an integration over the disti-
bution of waiting times{τk}, and the distribution of energy
steps encountered along the relaxation path. The expecta-
tion value,〈Ė(t)〉 is then,

〈Ė(t)〉 = −〈
M∑

j=1

∆Ejδ(t−
i−1∑

k=0

τk)〉∆E,τ . (21)

It is important to note that the distribution of waiting
timesτk is dependent only on the configuration of the chain
at thek’ th step and independent of the previous waiting
times. Since the dynamics is just changing a pair of dihedral
angles in opposite directions, for each conformation{φi}
one may define an associated chain ofN(N − 1)/2 sites,
with each site corresponding to a pair of angles(i, i′) on the
original chain. On the associated chain, a site will be as-
signed the value 1 if the corresponding pair of angles has
at least one “allowed” move, and the value 0 if both moves
are “blocked” under the Metropolis dynamics at zero tem-
perature. Now the probabilities of encountering allowed or
blocked moves as one takes successive Monte Carlo steps
are simply given by the density of 1’ s or 0’ s on the as-
sociated chain at thekth relaxation step. Let us label these
probabilitiespk andqk = 1 − pk. Then, in thek’th confor-
mation, the probability of making a transition after precisely
τk blocked moves simply obeys the first passage time distri-
bution [13],

Pk(τk) = µke−µkτk , µk ≡ |ln qk| . (22)

If we assume that theτ are distributed identically at
each step of the relaxation process (and therefore indepen-
dently of the∆E), then we can evaluate the averages in
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(21) immediately, and we end up with a simple linear de-
cay forE(t). By contrast, to see how the relaxation times
depend on the state of the system, we may argue that the
larger the energy loss in a relaxation event, the longer it
will take for the phase point to make a transition out of this
state. Sinceµk is roughly the expectation forτk, we assume
that µk ∼ 1/∆Ek. With the assumption that the energy
steps encountered along a relaxation path are independently
distributed, i.e.,P (∆E1 . . . ∆EM ) =

∏M
s=1 P (∆Es) for a

process ofM steps, one finds,

〈Ė(t)〉 = − 1
2π

M∑

j=1

〈∆Ej〉
j−1∑

`=1

Ij`(t) , (23)

whereIj,`(t) is

Ij,`(t) ≡
∫ ∞

0

d(∆E`)e
− t

∆E` P (∆E`)

×




j−1∏
k=0
k 6=`

〈
∆E`

∆E` −∆Ek

〉

∆Ek


 . (24)

This is obtained by taking the integral representation for the
delta-function in Eq.(21), and then performing the integrals
over theτk with the probability distribution (22), and fi-
nally performing the remaining integral using the residue
theorem. Meanwhile we find that the probability distribu-
tion of the energy differences encountered along a relaxation
path,P (∆E`), also is a stretched exponentialP (∆E`) =
Po exp(−(∆E`)a), with a = 0.39 ± 0.02 (see Fig. 5). The
angular brackets then take the form

∆E`

∫ ∞

0

(∆E` −∆Ek)−1 exp(−(∆Ek)a)d∆Ek (25)

which we approximate by∆E` exp(−(∆Ek)a). The in-
tegration in equation (24) is then straightforward, leading,
upon substitution in (23), to

E(t) ∼ t

M∑

j=1

(
j − 1

j

)
exp(−ajt

α) (26)

whereaj = j(1− a)(aj)−α(1 + α)−1 and

α =
a

a + 1
. (27)

Substituting the above value ofa we getα = 0.28 ± 0.01
which is the result we obtained from the fits to the MC sim-
ulations within our error bounds.
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Figure 5. The distribution of energy differences encountered along
the relaxation path are fit to a stretched exponential. Level spacing
histograms were formed for chains of N=48 and averaged over 100
runs for the zero-temperature Metropolis relaxation. The exponent
a of the stretched exponential is found to be0.39± 0.03.

The distribution of∆E along a trajectory of theη–
dynamics [3] is quantitatively different from the distribution
of ∆E encountered along a Metropolis Monte Carlo path,
and depends onη. This arises from the highly complex na-
ture of the energy landscape, and the extremely important
correlations that arise between the energy steps encountered
depending upon how the phase space is being sampled. In
particular, we have found out that in the limit of extremely
largeη, where no cooperativity remains, the distribution of
∆E along a trajectory of the dynamics is Poissonian, which
would have led toα = 1/2 instead of1/4.

The relaxation to the native states for several real pro-
teins was investigated by Erman [23, 24], who also finds
a stretched exponential relaxation withα = 1/4. Ex-
periments on real proteins and polymers [4, 21, 22] yield
0.2 ≤ α ≤ 0.4. Our results seem to be closer to 1/4 and
smaller than the values most commonly found for pinned
charge density waves [39], or spin-glasses [46], namely 1/3.
It should also be noted that glassy behaviour is obtained here
in the absence of quenched randomness, or of frustration
arising from steric hindrances, which we do not take into
account.

Comparing the theoretical and experimental relaxation
behaviour near the native state with the behaviour we ob-
serve at relatively high energies for random heteropolymers,
we conclude that the relaxation behaviour, and therefore the
dynamics and the structure of the energy landscape are uni-
versal over a very large range of energies, and are relatively
independent of the specific sequence or the details of the dy-
namics.
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III Hydrophobic chain near a hy-
drophobic boundary

In this section we will go back to the effective, entropy medi-
ated hydrophobic interaction which is the driving force be-
hind protein folding considered in the previous section as
well as many other biological processes [4,5,47-50]. We
will review some work which builds upon the model intro-
duced by Widom and co-workers [26-30] to understand the
microscopic mechanism leading to the effective attractive
interaction between non-polar molecules placed in water, at
least within a certain temperature interval. Then we will use
this model to study the behaviour of a hydrophobic chain
near a hydrophobic boundary, in two dimensions [25]. In
trying to understand the behaviour of a hydrophobic chain
in water, one must take into account both the hydrophobic
interactions mediated by the orientational entropy of the wa-
ter molecules, and the configurational entropy of the chain,
while respecting its connectivity.

Although the behaviour of chains (or membranes) in
the vicinity of spatial boundaries have been considered be-
fore [51-53], these studies have concentrated on temperature
independent interactions.

With the inclusion, to various degrees of accuracy, of
the entropy of the chain, we are able to take into account
the competition between the entropy of the water molecules
which can be constrained by the presence of hydrophobic
molecules in their neighborhood, and the entropy of the
chain. We find that although at low and high temperatures,
the chain prefers to be in a random configuration, detached
from the wall, there is an intermediate temperature range
where it is adsorbed on to the wall, at least for the relative
values of the hydrogen bond, dipole-induced dipole and sol-
vation energies which we have assumed.

The motivation behind studying this particular system
is to shed light upon the chaperoning role which might be
played by a hydrophobic surface in facilitating the folding
process.

A. Decorated lattice model of hydrophobic interactions

A decorated lattice model that mimics the solvent medi-
ated hydrophobic interaction was suggested by Widom and
his collaborators [26-30]. In this model,q-state Potts spins,
{si}, are situated at lattice sites. These represent the polar
solvent molecules. They can have any of theq different po-
larization directions. Hydrophobic molecules (HM), which
are non-polar, can only be accommodated at interstitial sites,
more precisely on the bonds connecting neighboring pairs
(see Fig. 6). Lattice-gas variables,{σij}, σij = (0, 1), lo-
cated on the bonds(ij), indicate whether an interstitial site
is empty or occupied by a HM.

Figure 6. Decorated lattice model. Lattice sites are occupied by
water molecules (shown as filled circles); hydrophobic molecules
(open circles) can only be accommodated at interstitial sites.

The interaction energy between a pair of solvent
molecules is given by−δsi,1δsi+1,1(u− w)− u. The occu-
pation of the instertitial site is not allowed unless the neigh-
boring pair of Potts spins are in the “special state” 1. The
allowed states and their energies are summarized in Table
II.

We have slightly modified this model, by introducing an
energy of solvation and relaxing the prohibition against the
occupation of the interstitial site in the disordered state. In
this way we may actually write down a Hamiltonian for the
water-and-hydrophobic solute system as,

HW =
∑

<ij>

{δsi,sj δsi,1[σij(w − u) + u]

+vσij

(
1− δsi,sj δsi,1

)} . (28)

The interaction energies are ordered so that

w < u < 0 < v , (29)

wherev may be thought of as the solvation energy of the HM
in the disordered state of the water molecules (see Table II).

The ordering of the various interaction energies may be
seen to follow from elementary considerations. The inter-
action between water molecules and HM is always attrac-
tive, because of the dipole-induced dipole interaction. On
the other hand water molecules can form short lived tetrahe-
dral structures [54, 55] stabilized by hydrogen bonds [56],
i.e., a type of short ranged order. Because these structures
have an open cage like space between them [57], a HM
can be accommodated there without breaking any hydro-
gen bonds. Thus, this “ordered” configuration is the min-
imum energy configuration of water molecules in the pres-
ence of a HM. In this model, the unique ordered state of the
tetrahedrally bonded pentameric configurations of the wa-
ter molecules [57], which is able to accommodate the HM
without breaking any hydrogen bonds, is identified with the
configuration where all thesi are in the state 1.

If there are no HMs between the ordered water
molecules, there still is an attractive interaction due to the
hydrogen bonds and the dipole-dipole interactions, but the
absolute value of the interaction energy is smaller, by pre-
cisely the amount contributed by the induced dipole inter-
actions. At higher temperatures, water molecules will tend
to be oriented randomly. This state, with no HM inter-
mixed with the water molecules, we chose as the reference,
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i.e., the zero level of the energy. When water molecules
are randomly oriented, they can still have hydrogen bonds
between them, though fewer in comparison to the ordered
state. However, unlike the ordered state, there will be less
open space between them. To be able to accommodate a HM
in a disordered region of water molecules, further hydrogen
bonds have to be broken. Thus, the insertion of a HM within
this disordered phase of water molecules is energetically un-
favorable.

The Hamiltonian Eq.(28) may be rewritten in terms of
two-state variablesti, defined by

δsi,1 = ti . (30)

with ti = {1, 0}, if we allow a temperature dependent “ex-
ternal field.” In the partition function the multiplicity of the
si 6= 1 states can be taken care of by inserting a factor of
(q− 1) for each Potts spin not in the ordered state, or a term
−β(1− ti) ln(q − 1) into the Hamiltonian, to get,

H =
N∑

<ij>

{titj [σij(w − u− v) + u] + σij v}

−β−1
N∑

i

(1− ti) ln(q − 1) . (31)

Larger values ofq are more realistic sinceq is the num-
ber of different orientations in which the solvent molecule
can find itself. Apart from steric hindrances, we expect the
orientation to be able to vary continuously, corresponding to
some appropriateq → ∞ limit [29]. Larger q values will
clearly give rise to stronger entropy-mediated interactions
between the solute molecules.

B. Effective hydrophobic pair interaction in the Mean
Field Approximation

We would like to make use of this effective Hamiltonian
to compute the self-interaction of a hydrophobic chain. To
do this efficiently, we need an effective temperature depen-
dent pair potential between the elements of the chain. In
one dimension, one could perform a trace over the mediat-
ing solvent molecule between two HM, to obtain an effective
interaction. However, in two or higher dimensions, correla-
tions between solvent molecules may be built up over many
different paths. Therefore we decided to compute the effec-
tive interactions between the solute molecules (without any
effect felt from the presence of a wall) in the Mean Field
Approximation. This is the subject of this section.

In the MFA, the Hamiltonian (31)on a cubic lattice ind
dimensions, can be written as

HMF =
2d∑

j=1

{t〈t〉[σj(w − u− v) + u] + σj v}

−β−1µ(1− t) ln(q − 1) . (32)

where the sum runs over the bonds pointing to the near-
est neighbor sites. The field〈t〉 is the mean value of the

random variablestj associated with the neighboring water
molecules, and it will be determined self-consistently. We
have insertedµ for later convenience in computing expec-
tation values, and will otherwise set it to unity. We ob-
tain the effective pair interactions between the solute (HM)
molecules by performing thet sum in the partition function.

The partition functionZ is defined as

Z =
∑

{σi},t
e−βHMF[t,{σi}] , (33)

i = 1, . . . , 2d, and〈t〉 must be found from

1− 〈t〉 = [ln(q − 1)]−1 ∂

∂µ
ln Z|µ=1 (34)

which we solved numerically for each given temperatureT ,
for d = 2.

We may define all the possible effectivep-body interac-
tions that may be built from these lattice gas variables, by
writing the effective Hamiltonian

Heff = −k0 − k1

∑

i

σi − k2

∑

(ij)

σiσj

− k3

∑

(ijk)

σiσjσk − k4Πiσi , (35)

where (ij) denotes nn and nnn pairs and(ijk) triplets.
Note that the nearest neighbor (nn) and next nearest neigh-
bor (nnn) pairs are indistinguishable from each other in this
“tree” approximation, since the bonds issuing from the sin-
gle central site may be freely interchanged with one another.
The interaction constants may be determined by setting

Z =
∑

{σi}
e−βHeff [{σi}] . (36)

By considering terms with all theσi set to zero, only one
different from zero, or a pair of them different from zero,
etc., one is able to determine all the coupling constantskp.

For the the two-body interactionsk2, which we will call
M(β) from now on to simplify the notation, we find,

eβM(β) =
e−2β [〈t〉(w−v+u)+v] + (q − 1)e−2β v

[
e−β [〈t〉(w−v+3 u)+v] + (q − 1)e−β v

]2

×
(
e− 4β u〈t〉 + q − 1

)
. (37)

Substituting the numerical values for〈t〉 in Eq.(37) one fi-
nally obtains the effective solute-solute interaction energy
in two dimensions, which we plot, in Fig. 7, against the in-
verse temperature for different choices ofq. The interaction
between HMs is attractive for any finite temperature, ask2

enters Eq.(35) with a negative sign.
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Figure 7. Effective, temperature dependent nn and nnn interaction
energies between hydrophobic residues in water, in the MF approx-
imation to the decorated lattice model [28]. Note thatM = k2 en-
ters with a negative sign into the effective Hamiltonian in Eq.(35).
Here q is the number of different orientations which can be as-
sumed by the water molecules. The effective interaction is stronger
for largerq. The coupling constants for the decorated lattice model
have been taken asw = −1.5, u = −1, v = 1.

To the lowest approximation [30] we will neglect the
plaquette and triplet couplingsk4 andk3 as being of higher
order in the fluctuations. The linear term we will also ne-
glect, because it is like a chemical potential, and this will be
taken into account in the wall-particle effective interaction
which we will now calculate in a one-dimensional approxi-
mation in the next subsection. The constant term of course
cancels in all the expectation values, and may therefore be
dropped from the start.

C. Effect of the boundary

In order to be able to estimate in closed form the effec-
tive interaction of a HM with the hydrophobic boundary, we
will consider a one dimensional system, and compute the ef-
fective interaction between a hydrophobic insertion and the
hydrophobic boundary from the free energy difference re-
sulting from this insertion. We will then use this as an ap-
proximation to the true interaction between the solute and
the hydrophobic wall, in the unique normal direction to the
wall (a linear boundary) in two dimensions.

The Hamiltonian in Eq.(31) becomes, in one dimension,

H =
N∑

i

{titi+1 [σi(w − u− v) + u] + σi v

−β−1(1− ti) ln(q − 1)} (38)

≡
N∑

i

Hi[ti, ti+1, σi] .

ForN being the length of the one-dimensional lattice of
water molecules, the free energy costF (N, T, r) of adding
only one HM at an interstitial a distancer from the wall at
temperatureT is given by

−βF (N, T, r) ≡ ln
(

Z(N, T, r)
Z0(N, T )

)
, (39)

whereβ−1 = kBT as usual,Z0(N, T ) is the partition func-
tion of the one dimensional system withσi = 0 for all i, that
is, no HM molecules, andZ(N, T, r) is the partition func-
tion computed in the presence of one HM a distancer from
the wall. The effective interaction between the wall and a
single HM is thus given by the free energy cost of bringing
HM from bulk to distancer from the wall,

F
(I)
N (1, r) = F (N,T, r) − F (N, T, rb) , (40)

whererb means a displacement from the wall beyond which
the effect of the wall is no longer perceptible, namely a bulk
site. In the thermodynamic limit

F (I)(1, r) = lim
N→∞

F
(I)
N (1, r) . (41)

To compute the partition functions in (39), we used the
transfer matrix method. From Eq.(38), the transfer matrices
in one dimension are obtained as

T (σi) = 〈ti|e−βHi[ti,ti+1,σi]|ti+1〉 . (42)

Thus, the transfer matrix is conditional on the presence (or
absence) of an interstitial HM at each bond connecting two
water molecules, and we find,

T (0) =
(

e−β u (q − 1)
1
2

(q − 1)
1
2 (q − 1)

)
, (43)

T (1) =
(

e−β w e−βv(q − 1)
1
2

e−β v(q − 1)
1
2 e−β v(q − 1)

)
,(44)

for the two possible resulting transfer matrices. To get
the transfer matrices in a more symmetric form, we have
rewritten the third term in the Hamiltonian (Eq.(38)) as
− 1

2β−1(2 − ti − ti+1) ln(q − 1). ¿From Eq. (40), we get,
with one HM inserted at a distancer from the wall,

−βF
(I)
N (1, r) = ln

∑

k

〈1|T r−1(0)T (1)T (0)N−r |k〉

− ln
∑
m

〈1|T N−1(0)T (1)|m〉 . (45)

Notice that the left-most vector is fixed to be unity, sig-
nalling the presence of the hydrophobic wall. In the ther-
modynamic limitN →∞, this reduces to,

−βF (I)(1, r) = ln
∑

ijk

AiTij(1)a1ja1k

− ln
∑

ij

a11a1jTji(1) , (46)

where we have defined

Ai ≡ a11a1i + (λ2/λ1)
r−1

a21a2i , (47)

with

λ1,2 ≡ 1
2

e−β u{1 + (q − 1)eβ u

± [
1 + (q − 1)((q + 3)e2βu − 2eβu)

] 1
2 } (48)
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being the eigenvalues ofT (0), andakl the elements of its
kth eigenvector.

We will use F (I)(1, r), which we have calculated ex-
actly in one dimension (Fig. 8), to give us an estimate of the
interaction between the HM and the hydrophobic boundary
in two dimensions.

Figure 8. The effective interaction potential of a residue with the
hydrophobic wall for different values ofq, at r = 1, at differ-
ent inverse temperatures. The interaction coefficients of the lattice
model were chosen as in Fig. 7.

Hydrophobic chain with intra-chain and chain-
boundary interactions

We are interested in the behavior of a hydrophobic poly-
mer chain in the presence of a hydrophobic wall. This means
we have to respect the connectivity of the chain in perform-
ing the trace over the lattice gas variables corresponding to
the HM. In other words, the phase space consists of allowed
chain configurations.

To be able to treat the model at least in a semi-analytical
way, we have considered two simplified sets of chain con-
figurations, which we will outline below.

1. Modular chain or SOS model

We define a set of elementary modules, from which a
large number of chain conformations can be built, such that
only nearest neighbor modules come within the interaction
range of each other. The subset of configurations that can be
generated by random combinations of the modules that are
shown in Fig. (9a) can clearly be seen as graphs (taking the
boundary as the axis) without overhangs, as in a restricted
solid-on-solid (SOS) model [58] in (1+1) dimensions, where
successive steps are constrained to differ by at most one unit
of height. Making use of the linearity of the chain and the
restriction to nearest neighbor interactions between the mod-
ules, we used the transfer matrixalong the chainto solve the
partition function for our model Hamiltonian.

r

r

i

i

(1) (2) (3)

Figure 9. a) (Top panel) Elementary modules used to generate SOS
like chain configurations which only allow nearest neighbor inter-
actions between the modules, via nn or nnn interactions between
the hydrophobic residues. b) (Lower panel) Nearest and next near-
est neighbor interactionsM(β) between HMs on the chain are in-
dicated as wavy and dashed lines, respectively.

We labeled the modules in Fig. (9a) as1, 2, 3 from left
to right. A chain configuration is uniquely specified by as-
sociating a variable,ui = {1, 2, 3}, i = 1, . . . , Nm, with
each module along the chain, and by specifying the distance
of the first module from the wall. Note that the number of
residues along the chain is given by2Nm in this case. The
interaction energy of each residue with hydrophobic wall
is computed usingF (I)(1, r). We tookM(β) defined in
Eq.(37), to be the interaction energy between nearest and
next nearest neighbor residues (see Fig.(9b)). Note that the
nearest neighbor interaction (wavy line) connects residues
belonging to modules twice removed from each other. Yet,
since this occurs only in the(i, i + 1) = (2, 3) or (3,2) com-
bination,independentlyof the identity of thei−1st module,
it can still be accomodated within a nearest-neighbor Hamil-
tonian.

We model the effective Hamiltonian of a polymer with
Nm modules as,

Hc = −
Nm∑

i

{M(β)〈ui|Γ|ui+1〉

+h1(ri−1, ri)} . (49)

The vectors|ui〉 correspond to the three states of the vari-
ableui, i.e.,(1, 0, 0), (0, 1, 0) etc., so that the coefficient of
the pair interactionM(β) is conveniently written in terms of

Γ =




0 2 2
0 2 3
0 3 2


 . (50)
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Figure 10. The average center of mass displacement from the
boundary, of the hydrophobic chain with 60 residues in the SOS
approximation, for different values of solvation energy,v, and dif-
ferent values ofq. For computational purposes, the width of the
channel was chosen to be 12 lattice spacings.

The second term is the free energy cost of adding HMs to the
solvent matrix,h1(ri, ri−1) = −F (I)(1, ri−1)−F (I)(1, ri).
The distance of the second residue on theith module from
the wall,ri, is found fromri = r + ρi, wherer is the dis-
tance of the first module from the wall, and

ρi =
i∑

j=1

(
δuj ,2 − δuj ,3

)
. (51)

Note that the displacement of the first residue on theith
module is the same as that of the second residue on thei−1st
module, and therefore the expression forh1 follows.

The partition function of the polymer is,

Z =
∑

r

∑

{u}
e−β Hc . (52)

Explicitly,

Z =
∑

{ri},{ui}
〈r1, u1|U|r2, u2〉〈r2, u2|U|r3, u3〉 . . .

. . . 〈rNm−1, uNm−1|U|rNm , uNm〉 . (53)

Here,|ri, ui〉 areM×3 dimensional vectors, withM being
the size of the system in the direction orthoganal to the wall.
The transfer matrixU is given by a direct product

U =
3∑

ζ=1

W (ζ) ⊗R(ζ) (54)

with

W
(1)
k` = δ`,1 (55)

W
(2)
k` = δ`,2

[
e2βM (δk,1 + δk,2) + e3βMδk,3

]
(56)

W (3) = (2 ® 3) , (57)

wherek, ` = 1, 2, 3, (2 ® 3) indicates an interchange of the
indices 2 and 3 in the previous equation, and

R(ζ)
γη = δζ,1 δγ,ηe− 2βF I(1,γ)

+ δζ,2 δγ,η−1e
− β [F I(1,γ)+F I(1,η)]

+ δζ,3(γ ® η) , (58)

whereγ, η = 1, . . .M andζ = 1, 2, 3. We note that only
the diagonal, upper diagonal and lower diagonal elements of
the matricesR(ζ) are different from zero. However we have
not been able to find a way to analytically diagonalize the
matricesU , or, for that matterR; they are not simply cyclic,
but the matrix elements depend directly on the row (or col-
umn) index through the functionsF (I)(1, ri). (See Eq.(13)).
Therefore we have had to perform the matrix multiplications
numerically.

We calculated the center of mass distance of the hy-
drophobic polymer from the hydrophobic boundary,

〈rcm〉 =
1

Nm
〈
Nm∑

i

ri〉

=
1
Z

1
Nm

Nm∑

i=1

∑

Ω

〈r1u1|U i|riui〉ri

〈riui|UNm−i|rNmuNm〉 (59)

where the sum over the setΩ shall henceforth mean a trace
overr1, u1, ri, ui, rNm , uNm . Defining a3×M vector,|φ〉
such that

〈φ| = (1 0 0 1 0 0 1 0 0 . . . 1 0 0) (60)

one may slightly rewrite Eq.(59) as,

〈rcm〉 =
1
Z

1
Nm

Nm∑

i=1

∑

Ω

〈r1u1|U i|riui〉〈φ|riui〉

〈riui|UNm−i|rNmuNm〉 . (61)

and this is shown in Fig.(10) as a function of temperature. At
intermediate temperatures the polymer chains are attracted
to the wall so strongly that〈rcm〉 ' 1.5. The chains are pre-
dominantly in a zig-zag configuration confined very close to
the wall, with half of them actually adsorbed on the wall,
and the maximum number of nn and nnn interactions.
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Figure 11. Mean length of the hydrophobic chain with60 residues,
projected on to the boundary, in the SOS approximation. Different
values of solvation energy,v, and different values ofq are shown
for comparison.

As β → 0 (high temperatures) the intrachain interaction
M also goes to zero, the entropy of the chain becomes the
determining factor, and the chain floats free. At low tem-
peratures, as the entropy term in the free energy becomes
negligible, the equilibrium state is determined by energetic
considerations, and the polymers desorb and take on ran-
dom configurations, constraining a large number of water
molecules in their neighborhood.

The average end to end distance of the polymer chain,
projected on to the boundary, is given by

〈L〉 = Nm +

〈
Nm∑

i

δui,1

〉
. (62)

Defining|ψ〉 by,

〈ψ| = (1 0 0 2 0 0 . . .
1
3
(k + 2) 0 0 . . . M 0 0) , (63)

we get,

〈L〉 = Nm +
1
Z

1
Nm

Nm∑

i=1

∑

Ω

〈r1u1|U i|riui〉〈ψ|riui〉

〈riui|UNm−i|rNmuNm〉 . (64)

The temperature dependence is reported in Fig. (11). In the
limit β → 0, clearly〈L〉 = Nm(1 + 1

3 ), which is what one
sees in Fig.(11), withNm = 30. It is interesting to note
the non-monotonic behaviour of〈L〉 within the region of in-
terest, namely the temperature interval for which the center
of mass lies very close to the wall. This non-monotonicity
arises from the competition between the entropy mediated
effective self-interaction of the chain (leading to smallerL)
and the interaction with the wall (completely shielding one
side from the water by stretching out to adsorb on to the
wall). This behaviour is also observed in the models we
have considered in the subsequent sections.

Although the SOS model is exactly solvable in princi-
ple, it is unable to take into account configurations of the

chain which fold on themselves, and we therefore have also
considered a model where such conformations are allowed.

2. Then-fold model

In this section we take a different subset of chain con-
figurations over which to perform exact summations. These
configurations are shown in Fig.(12). If the length of the
polymer isNl then the energy of a chain with an integer
number of foldsNl/n, is given by

Hn =
Nl

n

n∑

i=1

F (I)(1, r + i− 1) − M νn(1− δn1− δnNl
)

(65)
wherer is the distance from the wall andνn = 3(n −
1)(Nl/n − 1) is the total number of nearest neighbor and
next nearest neighbor pairs in this configuration. The parti-
tion function

Z =
∑

r

′∑
n

e−βHn (66)

is nontrivial to sum, again because of the complicated way
in which the functionsF (I)(1, r + i − 1) depend on their
arguments, viz. Eqs.(46,47), and the nonlinear dependence
of νn onn.

(i)

(ii)

(iii)

{
    n

Figure 12. Polymer configurations included in the exact enumera-
tion of then-fold model.

The center of mass displacement from the wall can be
obtained in principle from

〈rcm〉 = Z−1
∑

r

′∑
e−βHn [r +

1
2
(n−mod2n)] , (67)

where the prime indicates that the summation is only over
exact divisors ofNl. The mean value of the vertical distance
between the first and last monomer is〈L〉 = 〈Nl/n〉, which
can be calculated from,

〈Nl/n〉 =
1
Z

∑
r

′∑
n

Nl

n
e−β Hn . (68)

To obtain these quantities, the partition function and
the expectation values were summed numerically, insert-
ing, for each different value ofβ, the numerical value of
F (I)(1, r + i − 1) and ofM . For the numerical sums, of
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course a finite set of values had to be chosen forr. The re-
sults we find are qulitatively and quantitatively very close to
our earlier results for the SOS-like model. [25]

In the low temperature limit, increasing the number of
HM-water nn pairs lowers the energy and this is favorable
since the entropy term in the free energy is suppressed, and
the chain takes on relatively open, random configurations.
At intermediate temperatures where the hydrophobic inter-
actions are the most effective, the chain prefers to neigh-
bor the hydrophobic wall at as many nn sites as possible,
and therefore is adsorbed on the wall in the unfolded state.
As the temperature is raised somewhat more, effective self
interactions of the chain become more important, and the
chain is in a more folded state, although still adhering close
to the wall. At high temperatures it is advantageous to mini-
mize the number of nearest neighbor sites at which the chain
is in contact with water molecules, since the entropy of the
water molecules is rather large, especially for largeq. On
the other hand, the entropy of the chain also favors open
configurations, which win out in the high temperature limit.
We found, withNl = 50, 〈L〉 is close toN3/4

l = 18.8, at
both extremes, with the power being that of the self avoiding
walk in two dimensions.

E. Monte Carlo simulations

Monte Carlo computations for 3×105 random self
avoiding walk configurations of lengthN = 20 were
reported in Ref. [25]. Here we will report the results
from 3×104 configurations , generated via a genetic algo-
rithm [60]. If a random walk passes through any lattice
point which it has already visited, the configuration is dis-
carded, and a new one generated. Each successfully gen-
erated configuration was decorated with the interaction po-
tentialsF (I)(1, r) and M(β) from Eqs.(40,37), to finally
compute the expectation values for the center of mass dis-
placement from the wall and the longitudinal component of
the end to end distance, in the canonical ensemble. The re-
sults we find (Figs. 13,14) are surprisingly close to those
shown in Figs. (10,11), to then-fold model results and to
the MC results in [25].

IV Thermodynamics of early protein
function

It has long been appreciated [34] that proteins are unique
among possible amino acid chains in being able to fold into a
unique “native state” and reversibly unfold to a random coil.
Synthetically produced amino acid chains have degenerate
ground states. Moreover, small to medium sized proteins
typically fold and unfold at one go, without any intermedi-
ary states between the folded and the unfolded ones. This
can be quantified by various measures of so called “two-
state cooperativity”[42, 61]. It is a challenge to understand
the mechanism by which such amino-acid sequences were
selected in the course of evolution or how biological evolu-
tion as we know it came to being in the first place. It would
seem

Figure 13. Monte Carlo results (see text) for the average center of
mass displacement from the wall, of a polymer with20 residues,
for different values of the solvation energy,v, and forq = 10,
u = −1.0, w = −1.5, on a 40×40 lattice. The longitudinal axis
is the inverse temperature in units ofkB/u.

Figure 14. The average longitudinal component of the length of the
hydrophobic polymer, for the same parameters as in the previous
figure.

to be self-evident that the highly specific functions dis-
charged by proteinsin vivo would not have come into play
unless two-state cooperativity had already been selected via
some pre-biotic mechanisms. In Ref. [32], we have argued
for a basic thermodynamic function which could have been
fulfilled by proteins, namely that of a refrigerant in an ad-
sorption refrigeration process.

Eigen identifies two essential properties of a biological
system, or “principles of organisation,” ashypercyclesand
compartition, namely the containment and segregation of bi-
ological material [62]. The translation of RNA code means
picking out a specific sequence of amino acids from a ran-
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dom jumble and transforming them into an ordered chain.
As a result, the information carried by RNA is translated
into specific intra-chain interactions as well as interactions
with the ambient water, subject to given boundary condi-
tions. Once the peptide chain is formed and wiggles free
from the RNA molecule, it can behave as an active Brown-
ian particle [63] responding to variations in temperature or
other external stimuli in specific ways which enable it, in
turn, to act upon them.

A common assumption regarding compartition is that
porous rock could have played host to prebiotic pro-
cesses. [2, 64] Recent evidence has been providedby Mar-
tin and Russel [65] that life could have originated in iron
monosulfide precipitates on the ocean floor, whose pores,
lined with certain lipids, may have provided the first simple
cell-like structures.

We have already shown that due to hydrophobic
interactions[25] those peptide chains that are near hydropho-
bic surfaces may adsorb on such surfaces at least within
given temperature intervals. It may be conjectured that rock
surfaces, with some lipids present, are favorable sites for
adsorption, and act as guides for the peptide chains, helping
them to fold. Upon folding, as a result of the reduction in
entropy, heat will be given off, mostly to the surface of the
rock. For special sequences, with specific intra-chain inter-
actions, this folded state will be stable. If, now, the surface
on which the proteins have adsorbed is heated, say by the
emission of a hydrothermal vent [65], the chain will detach
itself from the rock surface. If it is carried along by convec-
tive currents away from the heated wall, and in particular
towards a cooler pocket, where, say it encounters a region
of with a high pH, which lowers the denaturation temper-
ature, this is where it will unfold, absorbing heat from its
surroundings.

This, in fact describes an adsorption-refrigeration cy-
cle driven by low quality heat [66-71]. The efficiency of
such a refrigeration cycle operated by proteins undergoing
a folding-denaturation transition would depend strongly on
two parameters: the entropy gap between the folded and un-
folded states of the amino-acid chain, and the rate of the
folding-unfolding transition. One may now hypothesize that
the accidental establishment of such a refrigeration cycle
provided an evolutionary advantage to those RNA molecules
that coded proteins that were efficient coolants, since, in an
overheated environment, lower temperatures could enhance
the replication rates of RNA. This completes the hypercycle.

If this scenario is correct, the fates of RNA chains would
from then on be bound with the synthesis- and eventual
evolution- of polypeptides. Those RNA sequences would be
selected for, that were able to synthesize proteins that folded
into lower entropy states, and did this in a very short time.
Present day biological proteins have unique ground states
leading to large entropy gaps. Small single domain proteins
fold into their secondary structures within milliseconds [72],
or even faster [73].

What we would like to emphasize here is the point of
view that simple chemical and physical processes which set

the stage for biological evolution, must already have pro-
vided a great deal of variety and complexity upon which the
fortuitous emergence of self-replicating entities posessing a
hereditary code could elaborate.
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