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Polydisperse Packings
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The manufacture of high resistance concrete or hard ceramics needs extremely dense granular packings. They
can only be realised when the size distribution of grains is strongly polydisperse. Typically powerlaw dis-
tributions give the best results. We present a simple packing model for polydisperse distributions, namely a
generalized reversible parking lot model. We also discuss the perfectly dense limit, namely Apollonian pack-
ings in three dimensions and show in particular the existence of space filling bearings rotating without slip and
without torsion.

I Introduction

The search for the perfect packing has a long history [1] and
although much is known about monodisperse or bidisperse
systems, the real challenge lies in polydispersity. Materials
of very high resistance made of an originally granular mix-
ture as it is the case for high performance concrete (HPC) [2]
and for hard ceramics are manufactured by trying to reach
the highest possible densities. From the fracture mechanics
point of view, higher densities imply less and smaller micro-
cracks and therefore higher resistance and reliability. This
goal can be reached as shown clearly for the case of HPC
by mixing grains of very different sizes (gravel, sand, ordi-
nary cement, limestone filler, silica fume), where the size
distribution of the mixture follows as closely as possible a
powerlaw distribution. In fact it is known that configura-
tions of density one are obtained for spherical particles in
so-called Apollonian packings (albeit not yet physically re-
alisable) and constitute the idealized final goal of a com-
pletely space filling packing having absolutely no defects.

In the studies presented here, on the one hand we gen-
eralize a toy model for granular compaction, namely the re-
versible parking lot model to size distributions following a
powerlaw. On the other hand we will discuss possible dif-
ferent realisations and self similar packings in three dimen-
sions.

II A reversible parking lot model for
polydisperse size distributions

Parking lot models have served as simple representations of
compaction phenomena. Ben-Naim and Krapivski [3] intro-
duced a reversible parking lot model to describe the com-
paction dynamics of monodisperse packings. They found
an asymptotically logarithmic approach to a final density
which was confirmed experimentally by Knight et al. [4].
The model is defined within a one-dimensional interval on

which particles of fixed size are randomly absorbed with a
ratek+ and desorbed with a ratek−. The density reached af-
ter an infinite time depends on the ratiok−/k+ and is unity
when this ratio vanishes.

For strongly polydisperse size distributions, this model
must be considerably modified in order to still make sense
[5].

• A finite reservoir of particles must be considered in
order to keep the distributions the same and this reser-
voir must be essentially not larger than the actual par-
ticles one would need to fill the interval.

• The system must be initialized very carefully by
putting first the large particles, otherwise small par-
ticles will create huge voids.

• A size dependent desorption probability must be con-
sidered, otherwise the large particles will easily leave
the system without being able to be reinserted.

Our model is defined in the following way: Letri be the
diameter of the ith-particle. Then the reservoir is filled with
K particles following a distribution proportional tor−b

i for
ri ∈ [rmin, rmax] and fulfilling the constraint

∑K
i ri = l

wherel is the length of the interval. The system is initial-
ized by inserting the particles according to their size, starting
with the largest one. Each particle getsI attempts to find a
free space in the interval and when it does, it will be left
there. IfI is large enough, most particles will actually al-
ready be placed in this initial state. Once this procedure is
finished, i.e. all particles in the reservoir have had theirI
attempts, the real compaction dynamics is switched on by
choosing randomly one of the remaining particles from the
reservoir and attempting to absorb it and then choosing ran-
domly a particle in the interval with probabilityp(r) in order
to desorb it. Each such step is called a time unit and typically
we performt = 109 such units. The desorption probability
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is defined through

p(r) =
K1∑

i=1

′(hi − r)/l (1)

whereK1 is the number of particles on the interval,hi the
size of the ith-hole and the prime at the sum denotes that the
sum only goes over positive terms and the negative ones are
discarded.
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Figure 1. Density as function of time.

In Fig. 1 we see an example for the evolution of the den-
sity as function of time. The first part with the steepest in-
crease corresponds to the initialization (up tot = 107) and
the density reached at this point is calledρinit. From there
we continue using the dynamics with desorption plotting the
data along the same time scale untilt = 109. The full line is
a fit using the equation

ρinit(I) = ρmax − ∆ρ

1 + B · ln(1 + I/τ)
I−fn (2)

while the dotted line is obtained when the quotient in Eq. (2)
is removed,∆ρ,B, τ andfn are essentially fit parameters.
One sees that on a logarithmic time scale eventually den-
sities close to unity can be obtained. A particularly inter-
esting result of this model is presented in Fig. 2 where the
finally reached density at fixedI is shown as a function of
the exponent of the powerlaw size distribution. We see that
there exists an optimal value forb around 1.6. Generalising
the above model to higher dimensions should therefore be a
way to help designers of stronger materials optimizing the
size distribution of the grain mixture.

III Space filling packings

One ultimately wants to reach a packing of density one. Well
known configurations are so-called Apollonian packings in
which a sphere is always placed inside an existing pore such
as to have maximum volume. The new smaller pores created
by this procedure are then again filled with even smaller
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Figure 2. Density after the initialization as function of the exponent
b of the size distribution.

spheres of maximum volume and so on. If one starts with
mutually touching spheres on the vertices of a tetrahedron,
one obtains the classical Apollonian packing [6, 7] which
is known to be self-similar, its size distribution is a perfect
power law with exponent 3.47 and from there results that the
pore volume and the overall surface are fractal with a fractal
dimension of 2.47.

We found four more such self-similar configurations
with different topologies and therefore possibly different ex-
ponents, one based on the cube, two on the octahedron and
one on the dodecahedron and at this point no further self-
similar packings are known [8].

The biggest surprise however is that one of those config-
urations, namely one based on the octahedronal symmetry
is bi-chromatic, this means that two colours suffice to as-
sure that spheres having the same colour never touch. This
is shown in Fig. 3. Its fractal dimension is about 2.54, i.e.
larger than the classical Apollonian one. That means that
a blue sphere only has red neighbours and vice-versa. Fur-
thermore we can prove [9] that if one chooses any axis and
rotates one sphere around it, all the other spheres will roll
without slip at their contacts. The rotation axis of the dif-
ferent spheres are then in general different. If the blue ones
rotate clockwise, the red ones rotate counterclockwise. One
can also show that except for a set of points of measure0, the
contacts have no torsion friction, i.e. that the two spheres in
contact will have equal angle of velocities of opposite sign
in the axis perpendicular to the tangent plane. Therefore
one has essentially only rolling friction which typically is
very small so that this packing is a realisation for a three-
dimensional space filling bearing, actually to our knowledge
the first one ever described.

IV Conclusion

The highest possible densities are reached by polydis-
perse granular packings. We have presented a simple one-
dimensional model, showing that one can logarithmically
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Figure 3. Bi-chromatic packing of fractal dimensions 2.59.

slowly attain densities above 95 % and that one can optimize
this number by tuning the exponent of the distribution. We
have also seen that the idealized completely dense case can
be self-similar in five topologically different configurations,
only one of them having the property of being a bearing, i.e.
allowing for slipless rotations around an arbitrary axis.

A full three-dimensional model or simulation of a sys-
tem is still far from being realised because of the difficulties
to deal with the large amount of very small particles. Our
contributions are just a small step in this direction. From the

theoretical point of view one has also to consider non-self-
similar perfect packings and non spherical particles, under-
stand the settling and demixing dynamics and calculate for
each size the corresponding mobilities. From a numerical
point of view, one has to organize the data hierarchically,
eventually using quad-trees for a generalized linked cell al-
gorithm and consider size classes in representative volume
elements. We think that in the future much progress can still
be achieved.
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S.R. Nagel, Physical Review E,51 (1), 3957 (1995).

[5] M. Wackenhut and H.J. Herrmann, Searching for the perfect
packing. Preprint, 2003.

[6] D.W. Boyd, Math. Comp.27 (122), 369 (1973).

[7] M. Borkovec, W. de Paris, and R. Peikert, Fractals2 (4), 521
(1994).

[8] R. Mahmoodi Baram and H.J. Herrmann, Self-similar pack-
ings in three dimensions. Preprint, 2003.

[9] R. Mahmoodi Baram, H.J. Herrmann, and N. Rivier, Space
filling bearing in three dimensions. Preprint, 2003.


