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This paper describes an innovative technique, thegradient pattern analysis(GPA), for analysing spatially ex-
tended dynamics. The measures obtained from GPA are based on the spatio-temporal correlations between
large and small amplitude fluctuations of the structure represented as a dynamical gradient pattern. By means
of four gradient moments it is possible to quantify the relative fluctuations and scaling coherence at a dynamical
numerical lattice and this is a set of proper measures of the pattern complexity and equilibrium. The GPA tech-
nique is applied for the first time in 3D-simulated molecular chains with the objective of characterizing small
symmetry breaking, amplitude and phase disorder due to spatio-temporal fluctuations driven by the spatially
extended dynamics of a relaxation regime.

I Introduction

Spatiotemporal systems driven away from thermodynamic
equilibrium can form complex structures when forced be-
yond a critical threshold. The spatiotemporal dynamics of
such nonequelibrium structures have been the subject of nu-
merous experimental and theoretical investigations, notably
in extended neutral and ionized fluid flows, lasers and opti-
cal electronics, oscillated granular layers, molecular clusters
and percolative systems [1-5]. There are systems in which
the instantaneous patterns are disordered, but they retain suf-
ficient phase coherence that the time-averaged images re-
veal spatially regular and quasi-periodic structures. In the
more general case the global structures can exhibit com-
plex spatio-temporal dependencies reflecting many struc-
tural nonlinear properties as spatio-temporal fluctuations,
symmetry breaking under energy dissipation, scaling coher-
ence and structural entropy.

Thus, quantitative characterization of spatio-temporal
patterns is clearly essential to the understanding of spatio-
temporal phenomena. An important question in this prob-
lem concerns the long-term evolution of the pattern proper-
ties. Usually, the classical measures of complex extended

variability do not take into account the directional informa-
tion contained in a vectorial field: the main source of spatio-
temporal variability. Moreover, since spatio-temporal infor-
mation is even more accessible through high resolution dig-
itized images, the need for sensitive techniques working in
the real space is evident [6].

The gradient pattern analysis(GPA) is an innovative
technique, which characterizes the formation and evolution
of extended patterns based on the spatio-temporal correla-
tions between large and small amplitude fluctuations of the
structure represented as a gradient field. Here we report,
mainly, the performance of this new technique in character-
izing nonlinear emergence of ordered structures as from ran-
dom initial condition, a macroscopic signature calledspatio-
temporal relaxation(STR). Usually, the STR is a complex
spatio-temporal regime described by means of the corre-
lation among many localized dynamics. Here we analyze
the STR regime observed from a simulated short chain-
molecule system [4]. The chain molecules model consists
of a sequence of CH2 groups, which are treated as united
oscillons. The mass of each molecular oscillon is 14 g/mol
and they interact via bonded potentials (bond-stretching,
bond-bending, and torsional potentials) and a non-bondend
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Lennard Jones potential. The system, at first, is randomly
distributed configuration of 100 short chain molecules, each
of which consists of 20 oscillons, at 700-300 K bath temper-
ature. The local fluctuation of this molecular system is given

by τi,j = 2π
[
(I/ki,j)

1/2 + ∆i,j

]
with ∆i,j = R/k2

i,j

whereI is the moment of inertia of the system,ki,j is the
local term of Lennard-Jones potential and∆i,j is the term
related to the local fluctuations of the rigidity (R) of the
chains. More details on the system simulation is given by
Fujiwara et al. [4,7].

In Figure 1 shows the chain of 3D-configurations at var-
ious times at T=400 K. At the early time, the spatiotemporal

configuration is disordered. As time elapses (mainly after
t ∼ 102ps), growth of local orientationally-ordered struc-
tures is observed in several positions. At last (t ∼ 103

ps), several clusters coalesce into a large structure and a
highly ordered pattern is formed. This 3D STR regime is
also well characterized as a similar stepwise behaviour tak-
ing the 2D cross section from the middle of the system (See
Fig.2). Therefore, it becomes interesting to characterize
such extended dynamics by means of measures that produce
scalar moments from two-dimensional patterns (operations
<2 7→ <), consequently obtaining an easily temporal rep-
resentation of their corresponding dissipative correlations
working under far-from-equilibrium conditions.

Figure 1. A spatio-temporal sequence, visualized from the top of the structure, of 100 small chains for T=400K at several
instants.R andr are, respectively, the global scale and an arbitrary local scale.

Figure 2. (a) Interacting CH2 chains (b) A straight section of the model, (c) Fluctuation field of the chain rigidity (values of∆i,j in z).

II The gradient pattern analysis for-
malism

II.1 The gradient moments

A spatially square extended pattern in two dimensions
(x, y) is represented by the square matrix of amplitudes
M = L`×`{M(1, 1), ...,M(i, j), ..., M(`, `)} | M ∈ <,
essentially a square lattice,L, if the two dimensions,x and
y, are discretized intò × ` pixels, with i = 1, ..., ` and
j = 1, ..., `. Thus, a dynamical sequence ofN lattices,
L0,L1, ...,LN , is related to the temporal evolution of a vi-
sualized amplitude envelopeMx,y,t. Usually, each ampli-
tude intensityE(i, j) reflects a local measurement of spa-
tially distributed energy, as for example scalar relative ve-

locity, concentration rate, etc. The spatial fluctuation of the
global patternM(x, y), at a given instantt, can be char-
acterized by its gradient vector fieldGt = ∇[M(x, y)]t.
The local spatial fluctuations, between a pair of pixels, of
the global pattern is characterized by its gradient vector at
corresponding mesh-points in the two-dimensional space.
In this representation, the relative values between pixels
(∆M ≡ |M(i, j) − M(i + n, j + n)|) are dynamically
relevant, rather than the pixels absolute values. Note that, in
a gradient field such relative values,∆M, can be character-
ized by each local vector norm and its orientation.

In view of GPA formalism a gradient vector fieldGt =
∇[M(x, y)]t, is composed byV vectorsr where a vec-
tor ri,j is represented, besides its location (i,j) in the lat-
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tice, by its norm (ri,j) and phase (φi,j), so that associated
to each position in the lattice we have a respective vector
(ri,j = (ri,j , φi,j)). Thus, a given scalar field of absolute
values can be represented by a gradient field for the local
amplitude fluctuations, and this gradient pattern can be rep-
resented by a pair of matrices, one for the norms and an-
other for the phases. A natural subsequent representation is
by means of a complex matrix, where each element corre-
sponds to the respective complex numberzi,j representing
each vector from the gradient pattern. Thus, a given ma-
tricial scalar field can be represented as a composition of
four gradient moments: first order,g1, is the global repre-
sentation of the vectors distribution; second order,g2, is the
global representation of the norms; third order,g3, is the
global representation of the phases; and fourth order,g4, is
the global complex representation of the gradient pattern.
Considering the sets of{ri,j} and{φi,j} as discrete com-
pact groups, spatially distributed in a lattice at instant t, the
gradient moments are equivalent toHaar-like measures,h,

which has the basic property of being, at least, rotational
invariant:

g
(t)
1 ≡ h1({(r1,1, φ1,1), ..., (ri,j , φi,j), ..., (r`,`, φ`,`)}t),

(1)

g
(t)
2 ≡ h2({(r1,1), ..., (ri,j), ..., (r`,`)}t), (2)

g
(t)
3 ≡ h3({(φ1,1), ..., (φi,j), ..., (φ`,`)}t), (3)

g
(t)
4 ≡ h4({(z1,1), ..., (zi,j), ..., (z`,`)}t). (4)

From the definition of the gradient momentsgζ , with
ζ = 1, ..., 4, it is possible to represent the gradient field
Gt = ∇[M(x, y)]t as a set of four gradient moments:
Gt ≡ (g1, g2, g3, g4)t (see Figure 3).
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Figure 3. A schematic representation of the Gradient Pattern Analysis of a matricial scalar field:(a) an arbitrary normalized extended scalar
field; (b) the corresponding gradient pattern of the amplitude fluctuations; (c) the norm and the phase of the fluctuations; (d) the complex
representation of the fluctuations.

II.2 Computational operations to extract the gradient
moments

II.2.1. The first gradient moment

As we are interested in nonlinear spatio-temporal struc-
tures we have introduced a computational operator to es-
timate the gradient momentg1 based on the asymmetries
among the vectors of the gradient field of the scalar fluc-
tuations. A global gradient asymmetry measurement, can
be performed by means of the asymmetric amplitude frag-
mentation (AAF) operator[8,9]. This computational oper-
ator measures the symmetry breaking of a given dynami-
cal pattern and has been used in many applications [9-14].
From the∇(M) the symmetric pairs of vectors (i.e., the
pairs of vectors that have the same modulus but opposite
directions) are removed, obtaining the asymmetric field of
vectors∇A(M). The measurement of asymmetric spatial
fragmentationga

1 (usually called, theasymmetric amplitude
fragmentationFA) is defined as:

ga
1 ≡ (C − VA)/VA | C ≥ VA > 0, (5)

whereVA is the number of asymmetric vectors andC is the
number of correlation bars generated by a Delaunay triangu-
lation having the middle point of the asymmetric vectors as
vertices. The Delaunay triangulationTD(C, VA) is a frac-
tional field with dimension less than two - the lattice dimen-
sion [8]. When there is no asymmetric correlation in the
pattern, the total number of asymmetric vectors is zero, and
then, by definition,ga

1 is null. For a giveǹ × ` lattice size,
while a random and totally disordered pattern has the high-
estga

1 value, a totally ordered and locally symmetric pattern
(e.g. an extended Gaussian or Besselian envelope) hasga

1

equals to zero; and complex patterns composed by locally
asymmetric structures has specific nonzero values ofga

1 .

II.2.2. The fourth gradient moment

In this paper we are not interested in measurements of
the second and third gradient moments because still there
are no formal computational operators to calculate them in
the literature. However, from a generalization of the concept
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of degeneracyW , given by the multinomial coefficient for-
mula, and normally used to deduce the expression of Shan-
non’s entropy of positive scalar fields, such as numerical lat-
tices, Ramos et al.[9] have introduced a computational op-
erator to estimate the modulus and phase related to the com-
plex form of the fourth gradient moment,g4. Considering
the gradient∇(M) defined above,W (z1,1, . . . , z`,`) may
be generalized as follows:

W (z1,1, . . . , z`,`) ≡ Γ(z)
Γ(z1,1) . . . Γ(z`,`)

, (6)

wherez =
∑

i,j zi,j . Using Stirling’s approximation, we
immediately have

z−1 ln W −→ Sz = −
∑

i,j

zi,j

z
ln(

zi,j

z
) . (7)

We can easily verify that this complex entropic form
(CEF), Sz ≡ g4 = |g4|eiΦg4 , is invariant under rotation
and scaling of the gradient field. Extensive applications of
CEF in chaotic coupled map lattices [9] and on solutions
of the Swift-Hohenberg equation [10] have shown that: (i)
the|g4|measurement is very sensitive to the spatio-temporal
relaxation processes preserving the information on nonlin-
ear local amplitude fluctuations and (ii) theΦg4 measure-
ment characterizes, by means of phase disorder, the transi-
tions from amplitude to phase dynamics. In the presence of
spatio-temporal nonlinear fluctuations, such measures from
a gradient field on a lattice is more robust than derivative
measures and spatial correlation lengths. Particularly, sev-
eral calculations on random patterns have shown that, in
particular,g1 andΦg4 are much more sensitive and precise
in characterizing asymmetric structures than the correlation
length measures [8,9].

II.2.3. Gradient scale invariance

Whenever the statistics for the configurations of a com-
plex gradient pattern (composed byVA asymmetric vectors
distributed in a global 2D-scaleR × R) has the property
that, by scaling the normalized gradient momentsḡζ , one
can make the analysis for a smaller sub-pattern (local arbi-
trary scaler - See Fig. 1) exactly matching that of a larger
scale, then thegradient statisticsis said to be scale invariant.

At a possiblegradient critical point, the two-point cor-
relation function for localmacroscopicobservable (here, the
ḡζ gradient moments),G(r,R) = 〈ḡζ(r)ḡζ(R)〉, tall off as
some power of|r − R|, that is〈ḡζ(r)ḡζ(R)〉 ∼ |r − R|−λ,
where the statistical average, indicated by the brackets, is
over the fluctuation of norm, phase and symmetry of the gra-
dient field∇[M(x, y)]t. Note that, also a time-dependent
correlation function can be defined.

This formalism implies that the fundamental assump-
tion of renormalization group theory can be considered into
the context of the gradient pattern analysis. A direct conse-
quence is that in a Landau-Ginzburg approach the gradient
momentsḡζ will describe local disorder that are averages
over larger and larger scales. As the scales become much

larger than a characteristic correlation length, the averages
over different domains become statistically independent and
the concept offixed pointcan be considered into the GPA
formalism.

III Results and interpretation

Next we show the characterization of extended relaxation
regimes by means ofGt(ga

1 , |g4| andΦg4 ). We applied the
CEF and AAF operators on the spatio-temporal series, par-
tially illustrated in Fig. 1. For a proper application of the
operators [8,9], the relaxation process is described by a se-
quence of many lattices (here, 20 frames), each of which
consists of a64× 64 matrix of real values, representing the
sectional state of the system at a given instant. In Figure
4 is shows, for the time-step 15, the asymmetric gradient
field and its correpondent triangulation field, from where,by
means of CEF and AAF computational operators, it is pos-
sible to determine the gradient momentsg1, |g4| andΦg4 .

Figure 4. An output example from the GPA of frame 15. (a) The
asymmetric gradient field for the amplitude and phase fluctuations
taken on the middle cross section of the 3D system. (b) The asym-
metric triangulation field for the calculation of the gradient moment
g1.

The global relaxation process may or not be dominated
by the amplitude dynamics and also by the influence of the
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boundary on the local pattern equilibrium. For local abnor-
mal relaxation there are many small sub-relaxation regimes
which affect the global pattern equilibrium (characterized
when the time derivative of the gradient moments (gζ) is
null). An useful description of the relaxation process is
given by: (i) the temporal variation of|g4| shows the influ-
ence of the amplitude dynamics on the STR evolution; (ii)
the equilibrium pattern (local and global) is characterized by
the dynamics in the planeg1 × Φg4 .

The short chain-molecule system quickly evolves from a
totally disordered state to a state exhibiting several domains
of oriented structures with quasi-regular hexagonal bound-
ary. The molecular oscillons interact slowly until only one
domain with the same orientation and typical aspect ratio is
resulted. Figures 5a-b illustrate the results of gradient pat-
tern analysis applied to these data. In Figures 5a, we plot the
values of|g4| for each frame in the series. The molecular
x-y layer starts with disordered oscillatory amplitude mov-
ing to quasi-ordered oscillatory amplitudes. During the first
integration steps, there is a variation in the maximum am-
plitude of the oscillons, while the system nucleates to cellu-
lar structures. This situation is accurately characterized by
the time evolution of the gradient moment|g4|, as shown
in Fig.5a. After some randomaccomodation(into the in-
terval 1 ps≤ t ≤ 5 × 102 ps) of the system, due to the
spatio-temporal potential arrangement, the effective relax-
ation starts and reaches therelaxation straight lineshowed
in Fig. 5a, characterized by|g4| = 0.945 ± 0.009. Fig-
ure 5b shows that the global pattern becames approximately
stable around a fixed point in theg1 × Φg4 space. From
previous application of GPA on chaotic coupled map lat-
tices and amplitude equations [9,10] it means that for the
molecular oscillons analysed here there is a meta-stable am-
plitude dynamics represented in theg1 × Φg4 space (Fig.
5b). From the temporal behaviour of|g4| we found the tran-
sition from the dominant norm regime to the dominant phase
regime well characterized in the meta-stableg1×Φg4 space
dynamics. During the relaxation the phase correlations be-
come stronger and the averaged equilibrium pattern shows,
approximately, a characteristic local geometric scale invari-
ance responsable for the global pattern symmetry.

IV Concluding remarks

The spatio-temporal relaxation into a stable state takes place
when the system is instantaneously changed into a nonequi-
librium state, and this universal regime is often observed in
many physically different systems [e.g., 1-15]. Therefore
when a extended system is driven far from equilibrium, it
will evolve to a minimum energy state in a stepwise relax-
ation and, generically, this self-organized behaviour is in-
dependent of the types of oscillons and the nature of their
interactions.

Figure 5. Dynamical behaviour of the gradient moments calcu-
lated for the cross sections of the data shown in Figure 1. (a)
Time evolution of the gradient moment|g4|, showing the transition
(vertical dashed line) from the amplitude dynamics to the normal
STR regime; (b) The pattern equilibrium dynamics in the plane
g1 × Φg4 , where are shown the values (g1, Φg4 ) for the first and
the last five time-steps (the last three are in the circle).

In short, the gradient pattern analysis specifies quanti-
tatively the relative fluctuations and scaling coherence at a
dynamical numerical lattice and this is a proper measure of
the global pattern variability due to small fluctuations in the
lattice gradient field. The gradient pattern analysis is still
under detailed investigation in order to make more precise
the concept of characterizing spatio-temporal disorder (non-
linear pattern equilibria, topological intermittency, entropy
and chaos) in extended systems. In this sense such gradient
moments and their characteristic two-point correlation func-
tions can be considered as a plus to other spatio-temporal
measures (e.g. disorder functions [15]). A natural way of
extending the GPA application would be analysing magneti-
zation patterns on a two-dimensional Ising lattice character-
izing the rate of spatial variation (the gradient) of the mag-
netization. This new phenomenological approach is also in
progress and will be communicated later.
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