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In this paper we review the trajectory of a model proposed by Stauffer and Weisbuch in 1992 to describe the
evolution of the immune repertoire and present new results about its dynamical behavior. Ten years later this
model, which is based on the ideas of the immune network as proposed by Jerne, has been able to describe a
multi-connected network and could be used to reproduce immunization and aging experiments performed with
mice. The immunization protocol is simulated by introducing small and large perturbations (damages), and in
this work we discuss the role of both. Besides its biological implications, the physical aspects of the complex
dynamics of this network is very interestingper se. In a very recent paper we studied the aging effects by using
auto-correlation functions, and the results obtained apparently indicated that the small perturbations would be
more important than the large ones, since their cumulative effects may change the attractor of the dynamics.
However our new results indicate that both types of perturbations are important. It is the cooperative effects
between both that lead to the complex behavior which allows to reproduce experimental results.

I Introduction

The main task of the immune system is to protect the organ-
ism against dangerous elements:antigens(virus, bacteria,
poison, cell residues, etc). Depending on the antigen the im-
mune system may elicit different kinds of responses: the
cell-mediated immune response or the humoral response.
The models discussed in this paper are related to the humoral
responses generated by B cells (one of the main classes of
lymphocytes), which are the cells that produce the antibod-
ies. The antibodies produced by a given population of B
cells are replicas of its molecular receptor. Each molecular
receptor exhibited by a given B cell population recognize
different recognition sites (epitopes) of the antigen by lock-
key interactions.

The clonal selection theory [1] is the most accepted the-
ory about the B cells and was proposed by Burnet in1959.
It states that the antigen chooses by pattern recognition the
clones of B cells (population of B cell and antibodies) that
will proliferate. In order to recognize any foreign (or dan-
gerous) element the immune repertoire must be complete.
According to estimates the human immune system is able
to express at least the order of1011 different receptors [1].
Due to the completeness of the repertoire, the immune sys-
tem would be able to recognize and be recognized (recog-
nizing epitopes of its own antibodies), therefore the same
mechanism of recognition should work for both antibody-
antigen and antibody-antibody reactions. In 1974 Jerne [2],
taking into account these different mechanisms, suggested
that when the antigen is presented to the organism it will ac-

tivate a set of clones of B cells, leading to the production of
specific antibodies; those antibodies will in turn be recog-
nized by a second set of clones activating them, and so on.
Due to the interplay of the mechanisms of activation and
suppression, this chain of reactions will be finite, prevent-
ing the “information” from “percolating” through the entire
system. Therefore the immune system would function as a
functional network [2], with complexity comparable to the
nervous system. Since its proposal, only few evidences sup-
port the existence of the immune network theory [3, 4], and
those evidences suggest that if the network exists only20%
of the lymphocytes will be activated, while the rest of the
clones will form a pool of immunocompetent lymphocytes
that are able to recognize any antigen.

In what follows we define in section II a model intro-
duced by Stauffer and Weisbuch in 1992 [5], which incor-
porates the main concepts of Jerne’s immune network the-
ory. In section III we review the main results obtained in the
literature, focusing on both the physical [6, 7] and biologi-
cal aspects [8], since among many other attempts to model
what an immune network could be, this was the first that
could reproduce the behavior of a real immune system. In
section IV we present new results about the short and long
time behaviors of the multi-connected network under small
and large perturbations. We also discuss the results obtained
about the aging effects in a very recent work [9] on the light
of these new results. In our concluding remarks (section V)
we address the future prospects from the physical and bio-
logical points of view.
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II The Model

In 1992 Stauffer and Weisbuch (SW) [5] introduced a cel-
lular automata model to describe the evolution of the B cell
repertoire. This model was inspired in a previous one (based
on a difference equation approach) introduced by de Boer,
Segel and Perelson (BSP) [10] using a shape-space formal-
ism to describe a large-scale immune network. Using a dis-
crete shape-space formalism SW associate each point of a
d-dimensional space to a different molecular receptor (or a
clone of B cell). In this way each receptor is characterized
by d properties, and its neighbors in the shape space will
correspond to molecular receptors that differ from it by one
of these properties (according to the estimates based on a
continuous approach [11], if the notion of shape space is
relevant, thend ≥ 5).

To each receptor they associate a three-state cellular au-
tomatonB(~r, t) that will describe the concentration of the
population characterized by this receptor~r over the time:
low (B(~r, t) = 0), intermediate (B(~r, t) = 1) and high
(B(~r, t) = 2). Following the ideas of the immune net-
work theory, the interactions among different populations
are based on complementarity (lock-key interaction) and are
defined by deterministic rules. The time evolution of the cel-
lular automaton is based in a deterministic non-local rule:
populationB(~r, t) at site~r is influenced by the populations
at site−~r (its mirror image or complementary shape) and its
nearest-neighbors (−~r + δ~r) (representing defective lock-
key interactions). The influence on the population at site~r
caused by its complementary populations is described by the
field h(~r, t):

h(~r, t) =
∑

~r ′∈(−~r+δ~r)

B(~r ′, t) (1)

where for a given~r the sum runs over the complementary
shape~r ′ = −~r and its nearest neighbors. Due to the finite
number of states of the populationB, the maximum value
of the fieldh(~r) is hmax = 2(2d + 1). The rules are based
on a window of activation for each population which is in-
spired in a log bell shaped proliferation function associated
to the receptor cross-linking involved in the B cell activa-
tion [6, 5, 10]. There is a minimum field necessary to ac-
tivate the proliferation of the receptor populations (θ1), but
for high doses of activation (greater thanθ2) the prolifera-
tion is suppressed. The updating rule may be summarized
as:

B(~r, t + 1) =
{

B(~r, t) + 1 if θ1 ≤ h(~r, t) ≤ θ2

B(~r, t)− 1 otherwise
(2)

but no change is made if it would lead toB = −1 or B = 3.
We define the densities of sites in statei at timet asBi(t)
(i = 1, 2, 3).

The initial configurations are randomly generated ac-
cording to the parameter controlx, which determines the
initial concentrations:B1(0) = B2(0) = x/2, while the
remainingLd(1− x) sites are initiated withB(~r, 0) = 0.

III Results obtained from previous
studies

The above definition of the model corresponds already to the
modified version which has been proposed in Ref. [6]. SW
have shown that for the original version of the model [5],
there is a stable-chaotic transition on the behavior of the dis-
crete system ford ≥ 4, when varying the parameterx. As
pointed out by the authors, according to the characteristics
of those behaviors, none of them would be appropriate to
describe the evolution of the immune repertoire.

One of us has studied how the system attains the chaotic
regime, by studying the transient times and periods of the
original model close to the transition [12]. It was observed
that close to the transition, the system is trapped in cycles
with large but finite periods. In 1995 Zorzenon dos San-
tos and Bernardes [6] introduced the modified version of
SW model described above and have extensively studied
the behavior of this model in the parameter space. Differ-
ently from SW, they obtained [6] a stable-chaotic transition
for d ≥ 2, and mapped all the behaviors on “phase” dia-
grams for different set of parameters, showing that there was
a broad transition region between stable and chaotic behav-
iors.

In the following work [7] Bernardes and Zorzenon dos
Santos have investigated the dynamical behavior of the
model on this broad transition region. They have observed
an aggregation-disaggregation dynamics, with clusters split-
ting and fusing along the time, as a multi-connected net-
work. The authors have also studied the behavior of the sys-
tem in the transition region when subjected to antigen pre-
sentation. The antigen presentation was simulated by flip-
ping randomly chosen populations from the inactive state to
the highly activated state, reproducing in this way the acti-
vation of the populations caused by the presence of an anti-
gen. The results obtained by adopting the standard spread
of damage procedure [13] indicate that after the antigen pre-
sentation, the perturbation first increases and then relaxes af-
ter a few time steps, indicating that some information about
this perturbation is incorporated by the system. These re-
sults suggested that this model would be a good candidate to
model a real immune system behavior. Zorzenon dos Santos
and Bernardes then applied it [8] to reproduce immunization
and aging experiments performed with mice under multiple
antigen presentations [14, 15, 16] obtained by the group of
Nelson Vaz.

In the experiment of immunization [14] six mice of the
same linage are subjected to the following protocol: the anti-
gen presentations are produced by intra-venal injections of
ova. The time interval between the first and second pre-
sentation is 14 days, but after that the time interval between
consecutive presentations is fixed to 7 days at the same podi-
tion. Before each antigen presentation (except for the first
one) they measure the amount of specific antibodies in the
blood. Among many experiments reported by this group,
Zorzenon dos Santos and Bernardes chose the one showing a
refractory (saturation) behavior related to the immunization
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protocol [14] that could not be explained by clonal selection
theory. However, the aging experiment chosen [15, 16] is
one among others obtained by the group showing the same
result: a reduction on the intensity of the response as the
system ages.

In order to simulate the immunization protocol [8], for
each sample they let the system evolve from its initial con-
figuration to1000 time steps, and associate this time step
to the birth of the simulated mouse. Then random small
perturbations, in size and location in the shape-space (us-
ing different time intervals between them), are produced in
order to simulate the noise to which the immune system is
subjected due to the environment, food ingestion, etc. By
using the arbitrary scale of 1 day corresponding to 5 time
steps, it is possible to simulate independent antigen presen-
tations without over-exciting the system [7]. The immuniza-
tion protocol is simulated by large perturbations (one order
of magnitude greater than the small ones) being produced
periodically every 7 days at the same position. The protocol
was simulated for different samples (10) of young and old
mice (8 and 24 weeks, respectively). The results could be
interpreted on the light of the immune network theory, the
refractory behavior being associated to the saturation of the
multi-connected network in incorporating information about
the perturbation, and the aging effects related to the loss of
plasticity of the system.

Since there are only few evidences that support the exis-
tence of the immune network, this model played a very im-
portant role in making the connection between some experi-
mental results that could not be explained by clonal selection
theory, and the immune network theory. Moreover the theo-
retical results indicate that under multiple antigen presenta-
tion the saturation is due not only to the number of specific
antibodies produced (as shown in the ELISA experiments)
but also the ability to incorporate information by including
new populations in the network. Since the number of pop-
ulations belonging to the network does not change signifi-
cantly during the time evolution, in order to add information,
part of the information already present in the network should
be discarded. Therefore the profile of expressed antibodies
would change after each antigen presentation. This is an as-
pect that comes out of the theoretical results and should be
investigated by the experimentalists when the appropriated
tools become available. The techniques currently available
do not allow to identify the difference among the specific
antibodies. That would be a requirement to verify whether
they change after multiple presentations as suggested by the
model. However, there are some experimental evidences
that it may happen [17].

Once the complex multi-connected network generated
by the model can be used to reproduce the behavior of a real
immune system, it becomes interesting to investigate its dy-
namical properties from the physical point of view. This
investigation will allow to learn about the dynamics of a
(real) complex system operating out of equilibrium. The
characterization of such behavior started with the work of
Bernardes and Zorzenon dos Santos [18], who analyzed the
distribution of cluster sizes and the distribution of the perma-
nence time (i.e. the time interval during which each popula-

tion remains activated or belong to the multi-connected net-
work). They found a characteristic cluster size and a power
law behavior for the distribution of permanence times. The
characteristic cluster size is associated to the loss of plastic-
ity while the power law distribution indicate that the popula-
tions belonging to the network have no typical permanence
time, reflecting the fact the dynamical memory is generated
by incorporating information about the different antigens
presented to the system.

In a very recent work in collaboration with D. Stari-
olo [9] we have used the auto-correlation functions (a com-
mon tool to study aging effects in e.g. glassy systems)
in order to analyze the similarities between the aging ef-
fects in the multi-connected network and in glassy systems.
While in glassy systems the aging effects results from the
loss of plasticity generated by frustration mechanisms, in
the network these effects are caused by multiple pertur-
bations, since in order to incorporate information the sys-
tem has to adapt to (or satisfy) the mechanisms of activa-
tion and suppression of the dynamics. The usual proce-
dure adopted to study glassy systems consists in taking a
“picture” of the system at timetw and calculating the num-
ber of sites that do not change during the following time
steps. In this sense the auto-correlation function is equal to
Ctot(t, tw) = 1 − hd(t, tw) = 1 − HD(t, tw)/N , where
hd(t, tw) [HD(t, tw)] is the normalized (non-normalized)
Hamming distance between the configurations at timest and
tw. According to the results obtained, the system without
any perturbation is driven to a long period attractor after a
long transient time (104 − 105 time steps). All the biolog-
ically relevant effects are observed in the transient time of
the system. In the purely deterministic case, the transient is
simply the time it takes for the system to reach the attractor
(∼ 104 time steps). When subjected to random small per-
turbations, however, the very notion of a transient becomes
fuzzy: results in Ref. [9] show that the system approaches a
cycle, but is deflected from it by the small perturbations
after∼ 103 − 104 time steps. Therefore, the small pertur-
bations will cause the system to change attractors from time
to time due to their cumulative effects. This is reflected in
the decrease of the auto-correlation functions, as can be seen
Fig. 1, where the system leaves the cycle it had approached
until tw = 105 time steps (these results are discussed in de-
tail in Ref. [9]). The analogue observed in glassy systems
corresponds to changes of the system to different minima of
the energy landscape during the relaxation time. Contrary to
one’s initial intuition that the large perturbations would ac-
celerate the de-correlation process, the changes induced by
large perturbations do not lead to this effect. Curiously, the
large perturbations alone (which correspond to the immu-
nizations) lead to a much weaker (slower) de-correlation:
this is due to the fact that they are produced always at the
same sites in shape space. Small perturbations can be more
easily absorbed by the system than the large ones since they
involve only local changes. The results from the autocorre-
lation functions therefore indicate that the system first ap-
proaches a cycle (phase space compression), but after some
time the small perturbations eventually deflect it from the
trajectory to its “natural” attractor [9].
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Figure 1. Densities vs. time (upper panel) and correlations vs.t− tw (lower panel) for a system with small perturbations,L = 50, x = 0.26
andtw = 105. Ctot corresponds to the autocorrelation function defined in the text.C22 measures the autocorrelation only in the subspace
of sites withB(~r, tw) = 2.

IV Results

This scenario provides a possible explanation for the results
regarding the spread of damage in the system, which man-
aged to reproduce the experimental data from immunization
experiments with mice [8]. Fig. 2 shows the time evolution
of the Hamming distance between a system which under-
goes only small perturbations, and its copy, which undergoes
the same small perturbationsand the large periodic immu-
nizations. All curves saturate after some time, just like the
ELISA measurements [8]. More important, however, is the
fact that the value of the saturation depends on theageat
which immunization started. As the age increases, the satu-
ration value decreases, a result which was also observed in
the mice and is interpreted as a sign of loss of plasticity with
age [8]. This might be related to the fact that the system is in
its transient, while trying to reach its long-period attractor.
The “older” the system is, the less configurations available
there are.

If we now repeat the computer experiment of immuniza-
tion (with small and large perturbations) for ages greater
than∼ 103 time steps, we obtain a different result: for older
systems the stationary Hamming distance may increase, as
shown in the rightmost curve of Fig. 2. We argue that the
cumulative effects of the small perturbations could be re-
sponsible for the change of behavior in the rightmost curve
of Fig. 2: for sufficiently old systems, the “noise” of the
small perturbations become more important than earlier in
the transient, and the monotonicity of the stationary value of
the HD with the age at which immunization starts, no longer
holds. This result is summarized in Fig. 3. It is interesting to
point out that this breakdown of the refractoriness induced
by age, takes place on time scales which are comparable
(typically larger than) the life time of the mice.
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The large perturbations, on the other hand, propagate to
the entire system and some of the active populations gen-
erated during the antigen presentation will remain as part
of the network. This mechanism depends on the plastic-
ity of the system or, in other words, will be controlled by
the characteristic cluster size of the system [18]. When we
combine small and large perturbations, the system is driven
to a cycle that incorporates information about the antigen,
but will eventually be deviated from that trajectory as soon
as the cumulative effects of the small perturbations dom-
inate the dynamics [9]. In order to observe theinstanta-
neous effectsof both types of perturbations, we have ana-
lyzed the normalized Hamming distance between the same
system at two consecutive time steps, focusing only on the
subspace of sites withB(~r, t) = 2. This quantity is denoted
by HD22(t, t + 1) and referred to simply as “instantaneous
Hamming distance”. It is plotted in Fig. 4 as a function of
time for different situations.

We start the analysis of Fig. 4 by noticing the behavior
for the purely deterministic case (lower curve): the plot in-
dicates that typically2.6% of the active network (sites with
B(~r, t) = 2) changes at each time step. The end of the tran-
sient is clearly seen att ∼ 15000 time steps (for this particu-
lar realization): the curve then becomes periodic, with a very
long period. Note that the periodicity of the dynamics can
be confirmed by checking that theCtot(tw, t) = 1 for some
t > tw and for sufficiently largetw (see Fig. 1 and Ref. [9]).
To illustrate the periodicity ofHD22(t, t + 1), we plot in
Fig. 5 the return map of the time series fromt = 20000
to t = 25000 time steps (upper plot). The extremely long
period might lead one to suspect, based on the return map,
that the system might be chaotic. This suspicion is ruled
out when one observes the return map fromt = 25000 to
t = 30000 time steps (lower plot). We challenge the reader
to find a discrepancy between the two return maps.
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Figure 5. Top panel: return map ofHD22(t, t+1) from t = 20000
to t = 25000. Bottom panel: return map ofHD22(t, t + 1) from
t = 25001 to t = 30000.

Returning to Fig. 4, notice that the size of the changes
induced by the small perturbations changes near the end of
the transient time (second curve from bottom to top). While
the perturbed system no longer attains the cycle, it can still
feel the effects of the attractor: when close to the cycle, the
small perturbations induce larger changes in the active net-
work at each time step. If subjected only to the large im-
munizations (third curve from bottom to top), the instanta-
neous Hamming distance take typically larger values. This
might suggest a contradiction with the results in Ref. [9], ac-
cording to which the system only with large immunizations
de-correlates slower. But the contradiction is only apparent:
HD(tw, t) measures along term effect, which is dominated
by the small perturbations. Fig. 4, on the other hand, is a
measure of the instantaneous change occurring in the sys-
tem, i.e. a short term effect. Finally, one can combine both
types of perturbation (upper curve), the result being even
larger instantaneous changes.

Another aspect of Fig. 4 that should be noted is an in-
teresting interplay between the perturbations. In what fol-
lows, we refer to the typical values of the four curves in
Fig. 4 (for larget), from bottom to top, asd (“determinis-
tic”), s (“small”), l (“large”) and ls (“large and small”) —
therefored < s < l < ls, as discussed above. The fact
that ls − s > l − d indicates that the effect of the large
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immunizations (i.e. the instantaneous change it induces) is
boosted by the presence of the small perturbations. The re-
verse is obviously also true: the previous inequality implies
ls− l > s−d, indicating that the small perturbations induce
larger changes in the network if the large immunizations are
present. This signals a cooperative interaction between two
kinds of perturbations which are significantly different in na-
ture, leading to the necessary complexity of behavior which
allows the model to reproduce experiments performed with
real immune systems.

V Concluding Remarks

In this paper we have reviewed the main results from the bi-
ological and physical point of view of a cellular automata
model introduced by SW in 1992. Since it incorporates the
main features of the immune network theory and models
the functioning of a multi-connected network, it emerged
as a candidate to reproduce the basic dynamics of what the
real immune network could be. The model was then used to
model real experiments performed with mice about immu-
nization and aging. The immunization experiments are sim-
ulated by producing small and large perturbations or dam-
ages. In this paper we complement the results of a very
recent work [9] with the study of the role of each kind of
perturbation. The results obtained in the previous work, us-
ing auto-correlation functions, apparently suggested that the
small perturbations would be more important than the large
ones from the dynamical point of view, since their cumula-
tive effects could change the attractor of the dynamics after
a few thousand time steps. However this study was focus-
ing in the long term behavior of the system. Here we have
studied its short term behavior and shown that both types of
perturbation are important: it is theircooperative effectsthat
generate the necessary complexity which allowed to repro-
duce experiments performed with real immune systems.

Despite the understanding of the dynamics we have
achieved up to this point, there are still some points that
should be investigated: what happens when changing the
frequency of presentation of the small perturbations for a
fixed value of the large damages, and how these results will
change when varying the large damage size? This study (al-
ready in progress) will draw a scenario that would allow us
to try to apply this model to reproduce other experimental re-
sults concerning, for instance, cross-reactivity mechanisms
observed in immunization protocols, and tolerance.

The authors acknowledge support from CNPq, Propesq-
UFPE (Programa Enxoval) and PRONEX.
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