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In this paper a brief overview of anomalous behavior resulting from the two-gap superconductivity inMgB2

is given. We focus on two characteristic effects: an anomalous enhancement of the upper critical field by
nonmagnetic impurities and nonequilibrium interband phase textures which appear as a result of interband
breakdown caused by electric field. Both effects distinguishMgB2 from the existing low-Tc and high-Tc

superconductors.

1 Introduction

The discovery of the two-gap superconductivity inMgB2[1,
2, 3] (and perhaps inNbSe2 [4]) has brought to focus new
effects of unconventional pairing and multicomponent order
parametersψ with internal degrees of freedom [5, 6]. In
particular,MgB2 has two different s-wave superconducting
gaps∆σ(0) ≈ 7.2mV and∆π(0) ≈ 2.3mV residing on dis-
connected sheets of the Fermi surface (FS), which comprises
nearly cylindrical 2D parts formed by in-planeσ antibond-
ing pxy orbitals of B, and a more isotropic 3D tubular net-
work formed by out-of-planeπ bonding and antibondingpz

orbitals of B. For two weakly coupled s-wave order param-
etersψ1 = ∆1e

iθ1 andψ2 = ∆2e
iθ2 , the internal degree of

freedom is the interband phase differenceθ(r, t) = θ1 − θ2.
In this case, in addition to the phase-locked states (θ = 0, π),
peculiar phase texturesθ(r, t) and collective modes [5] oc-
cur.

This paper addresses new electromagnetic effects, which
principally result from the two-band superconductivity,
makingMgB2 unique among the existing superconductors.
Such effects manifest themselves in the following areas: 1.
High-field superconductivity in dirty two-gap superconduc-
tors due to their anomalous response to nonmagnetic im-
purities. [7] This makes it possible to greatly increase the
upper critical fieldHc2 by alloying MgB2 and optimizing
the ratio of intraband scattering rates, as has already been
observed. [8] 2. Interband tunneling and intrinsic Joseph-
son effect, which give rise to dislocation-like phase textures
in the order parameter, and interband breakdown caused by
the electric field. [9] These textures manifest themselves in
new effects in nonlinear electromagnetic response.

2 High-field superconductivity

So far all attempts to increaseTc of MgB2 by doping have
been unsuccessful, while the significant potential ofMgB2

for applications is still limited by rather low upper critical

fieldsH⊥
c2(0) ' 3− 5T andH

||
c2(0) ' 15− 19T of MgB2

single crystals [3, 10], where⊥ and|| correspond toH per-
pendicular and parallel to the ab plane. As far asHc2 is
concerned, it can be increased by nonmagnetic impurities,
following the well-known route for dirty one-gap supercon-
ductors in which the zero-temperatureHc2(0) and the slope
H ′

c2 = dHc2/dT at Tc are increased proportionally to the
normal state residual resistivityρ:

Hc2(0) = 0.69TcH
′
c2, H ′

c2 = 4eckBNF ρ/π, (1)

whereNF is the density of states at the FS and−e is the
electron charge. The same approach has also been applied
to MgB2 in which scattering was introduced by irradiation
or atomic substitutions on both B and Mg sites [3]. For
instance, in c-axis orientedMgB2 films [11], ρ was in-
creased from∼ 1µΩcm to more than200µΩcm, resulting
in H ′

c2⊥ ≈ 1T/K and H ′
c2‖ ≈ 1.8T/K, while reducingTc

down to≈ 31K. Based on these numbers, the extrapola-
tion (1) givesH⊥

c2(0) ≈ 20T, still below Hc2(0) ≈ 30T of
Nb3Sn. However, Eq. (1) significantly underestimates the
actualHc2 in two-gap superconductors, thusHc2 of MgB2

can exceedHc2(0) of Nb3Sn even forH ′
c2⊥ ≈ 1T/K which

have already been achieved[11, 8].
The Fermi surface ofMgB2 provides three different im-

purity scattering channels: intraband scattering withinσ and
π FS sheets, and interband scattering. Intraband scattering
reduces the intrinsic anisotropy of∆σ and∆π with no effect
of Tc, while the pairbreaking effect of interband scattering
is weak due to orthogonality ofσ andπ orbitals[12]. The
multiple scattering channels provide the essential flexibility
to increase theHc2 of MgB2 to a much greater extent than
in one-gap superconductors not only by the usual increase of
ρ, but also by optimizing relative weights ofσ andπ scatter-
ing rates by selective atomic substitution on B and Mg sites.
This follows from recent calculations ofHc2 from the Us-
adel equations in which all scattering channels inMgB2 are
accounted for via the electron diffusivity tensorsDαβ

m for
each m-th FS sheet and the interband scattering ratesγmm′ .
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The Usadel equations for two-gap superconductors are: [7]

ωf1 − 1
2
Dαβ

1 [g1ΠαΠβf1 − f1∇α∇βg1] =

ψ1g1 + γ12(g1f2 − g2f1) (2)

ωf2 − 1
2
Dαβ

2 [g2ΠαΠβf2 − f2∇α∇βg2] =

ψ2g2 + γ21(g2f1 − g1f2), (3)

Eqs. (2) and (3) are supplemented by the self-consistency
equations for the order parametersψm = ∆m exp(iθm),

ψm = 2πT

ωD∑
ω>0

∑
m

λmm′fm′(r, ω), (4)

Here |fm|2 + g2
m = 1, the band index m runs from 1 and

2, Nm is the partial density of states,Π = ∇ + 2πiA/φ0,
A is the vector potential,φ0 is the flux quantum, andω =
πT (2n + 1), n = 0,±1, ..., and the matrix elements of the
BCS coupling constantsλmm′ are given byλσσ ≈ 0.81,
λππ ≈ 0.285, λσπ ≈ 0.119, andλπσ ≈ 0.09 [13] (the in-
dices 1 and 2 correspond toσ andπ bands, respectively).
The Usadel equations were recently used to calculate vor-
tices inMgB2.[14] The values ofγmm′ andDαβ

m can be
either calculated from first principles or extracted from the
observedHc2(T ) andρ(T ) curves [7]. For the 2Dσ band,
the principal valueD(c)

σ along the c-axis is much smaller
than the in-planeD(a)

σ andD
(b)
σ , but the anisotropy inDαβ

π

for the 3Dπ-band is much weaker.
Solving Eqs. (2)-(4) [7, 14] forγmm′ = 0, yields the

following equation forH⊥
c2:

a0[ln t + U(h/t)][ln t + U(ηh/t)] +
a2[ln t + U(ηh/t)] + a1[ln t + U(h/t)] = 0, (5)

wherea1 = 1 + λ−/λ0, a2 = 1 − λ−/λ0, a0 = 2w/λ0,
λ0 = (λ2

− + 4λ12λ21)1/2, λ± = λ11 ± λ22, w = λ11λ22 −
λ12λ21, η = D2/D1, h = Hc2D1/2φ0Tc, t = T/Tc,
andψ(x) is the di-gamma function. For equal diffusivities,
η = 1, Eq. (5) reduces to the one-gap Maki-deGennes equa-
tion ln t + U(h/t) = 0. To account for the dependence of
Hc2(θ) on the angle betweenH and the c-axis,D1 andD2

in Eq. (5) should be replaced by the angular dependent dif-
fusivitiesD1(θ) andD2(θ) for both bands[7]:

Dm(θ) = [D(a)2
m cos2 θ + D(a)

m D(c)
m sin2 θ]1/2 (6)

Eqs. (5) and (6) describe a rather anomalous behavior,
depending on the material parameterη = D1/D2 which
can be varied by disordering either B or Mg sublattices. In
the case of large difference betweenD1 and D2, the de-
pendenceHc2(T ) can exhibit a significantupward curva-
ture, because the slopeH ′

c2 atTc is inversely proportional to
themaximumdiffusivity, while Hc2(0) is inversely propor-
tional to theminimumdiffusivity. Thus,Hc2(0) can be much
higher than the one-gap extrapolation (1) suggests. Figs. 1
and 2 show good fit of Eqs. (5) and (6) to pulse high-field

measurements ofHc2(T ) on resistive220µΩcm c-axis ori-
ented film [8], which has very highHc2(T ) exceedingHc2

of Nb3Sn. The fit in Figs. 2 and 3 also revealed that theπ
band is this film is much dirtier(Dπ ' 0.1Dσ) than theσ
band, which may be due to distorted and buckled Mg sub-
lattice [16].
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Figure 1. Temperature dependence ofH⊥
c2(T ). The data points

show experimental data for dirty220µΩcm film and epitaxial
MgB2 film [8], and the solid curve is calculated from Eq. (5)
with D
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π = 0.12D

(ab)
σ .

0 10 20 30 40
0

5

10

15

20

25

30

35

40

45

50

T, Kelvin

H
c2||

, T
es

la

MgB
2
          

7 µΩ cm 

(b) 

H || ab 

MgB
2
 single crystal 

MgB
2

220 µΩ cm 

Figure 2. Temperature dependence ofH
‖
c2(T ). The data points

show experimental data for dirty220µΩcm film and epitaxial
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Figure 3. Temperature dependence of the anisotropy parameter
H
‖
c2(T )/H⊥

c2(T ). Solid squares and empty triangles correspond
to the dirty220µΩcm and the epitaxialMgB2 film, respectively.
The curve 1 is calculated from Eqs. (5) and (6) withD
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Eqs. (5) and (6) also describe an unusual temperature
dependence of the anisotropy parameterγ(T ) = H

‖
c2/H⊥

c2

different from the predictions of the anisotropic one-gap GL
theory in whichγ(T ) =const. Because the 2Dσ band in
MgB2 results inD

(c)
σ /D

(a)
σ ¿ D

(c)
π /D

(a)
π , γ(T ) can ei-

ther increase as T decreases ifDπ > Dσ, or decrease as
T decreases ifDπ ¿ Dσ. The first case is characteristic of
cleaner samples [10], whereas the second case was observed
on dirty films, as shown in Fig 3. The anisotropy of the lower
critical field Hc1(T ) is different from that ofHc2(T ) [15],
as evident from the London penetration depth tensorΛαβ in
the dirty imit [7]:

Λ−2
αβ =

4π2e2

c2

(
N1D

αβ
1 ∆1th

∆1

2T
+ N2D

αβ
2 ∆2th

∆2

2T

)
. (7)

ForMgB2, the tensorΛ−2
αβ is a sum of the diffusivitiesDαβ

1

andDαβ
2 with markedly different anisotropies and absolute

values. Thus,Λαβ is always limited by the cleanest band
with the maximumdiffusivity, so the ratioHc1(θ)/Hc2(θ)
not only becomes dependent on the field orientation, but its
angular dependence turns out to be different at different T.

The two-band superconductivity inMgB2 provides a
new way to boostHc2, because a higherHc2(0) is possible
for a given slopeH ′

c2 at Tc. For example, ifH ′
c2 = 1T/K

and Tc = 40 K, the theory predictsHc2(0) >40 Tesla,
which exceedsHc2(0) of Nb3Sn, even thoughH ′

c2 is still
smaller than 2 T/K characteristic of many low-Tc and high-
Tc materials. ForH ′

c2 = 1T/K, the shortest GL in-plane
coherence lengthξ(0) = [φ0/2πTcH

′
c2]

1/2 ≈ 3 nm for the
σ band is still large enough to ensure no significant mag-
netic granularity and weak link behavior at grain boundaries.
Thus, there are no inherent limitations to further increase
of H ′

c2 toward the high-Tc level of 2 T/K by proper alloy-
ing or by quenched-in lattice disorder inMgB2 with the
account of its complex substitutional chemistry. [17] For
H ′

c2 ' 2T/K, the fieldHc2(0) would approach the param-
agnetic limit of' 70 Tesla, in which case a more general
Eliashberg theory should be used to include strong coupling
and spin effects.

3 Intrinsic Josephson effect and inter-
band phase textures

To calculate the interband phase texturesθ(r, t), we derive
the equations of motion forθ and the electric fieldE at
T ≈ Tc from the time-dependent Ginzburg-Landau (TDGL)
equations,Γm(∂t − 2πciϕ/φ0)ψm = −δF/δψ∗m. Hereϕ
is the electric potential,Γm are damping constants, and the
free energyF =

∫
d3r(f1 + f2 + fm + fint) contains the

magnetic partfm = |∇ × A|2/8π, the GL intraband part
fm, and the interband energyfint:

c

fm = αm|ψm|2 +
βm

2
|ψm|4 + gm

∣∣∣∣
(
∇+

2πi

φ0
A

)
ψm

∣∣∣∣
2

, (8)

fint = γ(ψ1ψ
∗
2 + ψ∗1ψ2)/2 = γ∆1∆2 cos θ, (9)

d

The current densityJ is a sum of supercurrent and the nor-
mal current,

Js = −8π2c(g1∆2
1Q1 + g2∆2

2Q2)/φ2
0 + σE, (10)

whereQm = A − φ0∇θm/2π, σ is the normal conductiv-
ity, and the supercurrent is a sum of independent intraband
contributions. Static Eqs. (8)-(10) were also derived from
the microscopic Usadel equations [7].

For weak interband coupling,γ ¿ α1,2, the gaps∆1,2

are not affected by the phase textures, in which case the
equation of motion forθ = θ1 − θ2 become [9]

τθ θ̇ = L2
θ∇2θ + sign(γ) sin θ + αθdivJs, (11)

where the relaxation timeτθ, the decay lengthLθ, and the
charge coupling parameterαθ are given in Ref. [9]. As
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follows from Eq. (11), theθ-mode does not contribute to
the static magnetic response, since divJs = 0 for any dis-
tribution of bulk supercurrents. However, theθ-mode inter-
acts with a nonuniform electric field due to nonequilibrium
charge imbalance, divJs = −σdivE. This happens near the
normal current leads, where the difference in the injected in-
traband charge densities provides the driving termαθdivE
in Eq. (11) due to the bands asymmetry,Γ1g2 6= Γ2g1.
Static distributionsθ are described by the sine-Gordon equa-
tion L2

θ∇2θ = sign(−γ) sin θ, which has a single-soliton
or staircase solutions similar to the vortex solutions in long
Josephson contacts [18]. However, theseθ-solitons differ
from the Josephson vortices, because they do not carry mag-
netic flux and do not interact with magnetic fields and su-
percurrents, but can be driven by a nonequilibriumcharge
densityinjected from normal electrodes. Thus, equilibrium
nonuniform solutionsθ(x) are always energetically unfa-
vorable as compared to the phase-locked states,θ = 0 for
γ < 0, or π for γ > 0, yet dynamic or quenched phase
textures can be generated during current-induced interband
breakdown.

(b)

S

(a)
N N

NN
(c)

Figure 4. Geometries in which the interband phase breakdown
could occur. Here N labels normal electrodes, gray domains show
phase solitons moving along thin arrows, and block arrows indicate
current directions. Static phase textures form in microbridges (a)
and point contacts (b), while in the four-terminal geometry (c) the
solitons and antisolitons continuously annihilate in the center.

The equation forE has the form [9]

τeĖ + E− L2
egraddivE + αe∇θ̇ = τeJ̇/σ, (12)

whereJ(t) is the driving current density,Le is the electric
field penetration depth,τe is the charging time constant ob-
tained in Ref. [9], and the coupling termαe∇θ̇ describes an
electric field caused by moving phase textures.

Eqs. (11) and (12) which describe nonlinear electro-
dynamics of a two-gap superconductor at fixed gaps∆1,2

were used to calculateθ(x, t) in a current-carrying micro-
bridge of length2a (Fig. 4). Below the critical current
densityJt the bridge is in a phase-locked state, except lo-
calized phase kinks at the edges. ForJ > Jt, the interband
breakdown causes periodic generation ofθ-solitons near the

current leads and penetration of phase textures in the bulk,
as shown in Figs. 5,6. HereJt = 2Lθ/αθ for Lθ À Le, and
Jt = Le/αθ tanh(a/Le) for Lθ ¿ Le [9].
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Figure 5. Formation of a soliton chain in the right half(0 < x < a)
of the bridge of length 2a afterJ(t) was turned on from0 to
1.025Jt at t = 0, andLe = a/10, Lθ = 0.1Le. Times and
distances are normalized toτθ and a, respectively.
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Figure 6. Moving soliton shuttle in the right half of the horizontal
leg (0 < x < a) in the four-terminal geometry shown in Fig. 4c.
J(t) was turned on from 0 to1.012Jt at t = 0, and the rest is the
same as in Fig. 5.

Eqs. (11) and (12) were solved numerically for the
bridge (Fig. 4a) whereE(x, t) andθ(x, t) are even and odd
functions of x, respectively,E(±a, t) = E0, E′(0, t) = 0,
θ(0) = 0, θ′(±a, t) = 0, and supercurrents in both bands
vanish at the normal electrodes,J = σE. In this caseθ-
solitons first appear at the bridge edges, but forJ > Jt,
they are pushed to the bulk by the strong gradient ofE(x).
Then the next soliton forms near the edge and the process re-
peats periodically, resulting in the propagation of two soliton
chains from the opposite current leads as shown in Fig. 5.
After the first two solitons in the chains collide in the center
they stop, while new solitons keep entering the bridge. Dur-
ing this soliton pileup, the mean slopeθ̄′(t) increases, reach-
ing a critical valueθ̄′c ' αθJ/L2

θ (for J À Jt) at which
the soliton generation at the edges stops and a static texture
forms. During the soliton penetration,t < tc ∼ τθaθ̄′c/2π,
a transient resistance and voltage oscillations are generated.
A similar behavior occurs at the point contact (Fig. 4b),
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in which concentric soliton shells propagate into the bulk,
forming a static structure.

A very different kind of soliton dynamics occurs in the
4-terminal geometry (Fig. 4c), for which currents flow in
the opposite directions, making90◦ turns around the cen-
tral stagnation point(x = 0) where∇θ = 0 by symmetry.
In this caseE(x) is an odd functions of x so the driving
charge density divE does not change sign along the hori-
zontal leg of the cross in Fig. 4c, the total charge along
the horizontal leg is compensated by the opposite charge
distributed along the vertical leg. The asymmetry ofE(x)
causes generation of solitons and antisolitons at the oppo-
site current leads, which then move toward the center of the
cross where they annihilate, as shown in Fig. 6. Such con-
tinuous soliton motion takes place if the widthwy of the ver-
tical leg is greater than the widthwx of the horizontal leg,
so that the current density in the horizontal legI/wx ex-
ceedsJt, while the vertical leg remains in the phase-locked
stateI/wy < Jt, where I is the total sheet current. For
a À Le, the soliton-antisoliton annihilation in the center is
unaffected by the charge imbalance near the current leads.

Two different dynamic states represented in Figs. 5
and 6 have clear analogs in the theory of long Josephson
contacts. Namely the transient soliton penetration in the
bridge in Fig. 5 is analogous to vortex penetration in a
long Josephson junction in a magnetic fieldH > Hc1, since
in both cases the driving terms (charge and magnetization
current densities, respectively) are asymmetric functions of
x. By contrast, the soliton dynamics in the 4-terminal ge-
ometry is analogous to the steady-state annihilation of self-
field Josephson vortices and antivortices in a long Josephson
junction with a transport current. Because the total charge
along the horizontal strip in Fig. 4c is nonzero, allθ− soli-
tons are pushed in the same direction (anti-solitons move in
the opposite direction), similar to the flux flow of the Joseph-
son vortices driven by the Lorentz force of the transport cur-
rent.

For J > Jt, the soliton shuttle in Fig. 6 results in con-
tinuous voltage oscillations on the bridge. However despite
the formal analogy with the behavior of a Josephson junc-
tion, the effects considered in this work are due to interband
tunneling [5], so the generation ofθ-solitons does not re-
quire any weak links. Unlike the Josephson vortex, a single
θ-soliton moving with a constant velocityv does not cary
magnetic flux, but the continuous phase slippage near the
normal lead increases the electric field penetration depthL̃e

to L̃e = (L2
e + αeαθ/στθ)1/2 for J À Jt. [9] This ef-

fect increases the excess dc sheet resistance of the strip by
Rex = (L̃e − Le)/σw.

The dynamic phase textures can result in new features
of nonlinear electrodynamics of two-gap superconductors.
In particular, the soft interbandθ-mode could manifest it-
self in rf absorption at frequencies below the small gap∆2.
As follows from Eq. (11), interaction of theθ-mode with

the rf electric fileldE depends on the polarization ofE: if
E(t) is parallel to the sample surface, then divE = 0, thus
the phase mode is not excited by the rf field. However, the
θ-mode contributes to the rf impedance if the rf field has a
component perpendicular to the sample surface.

Other interesting effects could occur in the point contact
geometry (Fig. 4c) in which high current densitiesJ ∼ Jt

near the contact (for example, an STM tip) can be achieved.
If the tip is perpendicular to the film surface of a c-axis
oriented film, then it mainly injects current into the 3Dπ
band, because the c-axis tunneling into the 2Dσ band is
strongly suppressed. The resulting strong charge imbalance
betweenσ andπ bands greatly facilitates generation of con-
centric soliton structures, which can be used to probe the
interband breakdown with point contacts. If the currents are
simultaneously injected from two point contacts and drained
into another current lead, the periodic voltage oscillations
between the contacts occur in a way similar to the above-
described oscillations in a mictobridge.

This work was supported by the NSF MRSEC (DMR
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