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We review the concept of the Bose metal state which arises in 2D superconductors in the quantum limit where
vortex loops can grow spontaneously in (2+1) dimensions and, as zero point motions become larger, eventually
lead to an insulating state. A nonlocal Coulomb charging term in a Josephson array type model leads to an ef-
fective transverse gauge field which can suppress the condensate of vortices in the superinsulating state leading
to an intermediate Bose liquid which is not superfluid at T=0, the Bose metal state. We comment on recent
work on this state and on other non-superfluid Bose liquids.

1 Formulation instead the Cooper pair densify,; acquires a non-zero
ground state expectation value. In a path integral picture,
We start from a 2D Josephson junction array model which these quantum fluctuation effects may be represented in

can be expressed in terms of the Hamiltonian: terms of the infinite world lines for the Cooper pair bosons
which occur in the superfluid state becoming finite loops
H=—J Y cos(di — diya) + Vo Y _(6n:)° (hence localized) in the insulator state.
i

<i,@> In a dual picture, the effects of quantum zero point mo-

tion on the superfluid state may be expressed in terms of

+V Z (6n; + 5m+a)2 — ﬂZ on; — uNng (1) the growth of vortex loops in (2+1) dimensions. The criti-
p cal point is reached when the entropic contributions of the
. ) . vortex loops to the ground state path integral overcome the
whered denotes the nearest neighbor vector to sitand  energetic costs, and a “spaghetti” transition occurs in which

on; = (n; —no) with n; the number density operator which ¢ insylating state is filled with vortex loops of infinite ex-
is conjugate to the phasg of the superconducting order tansion.

paramter andy, the average density of Cooper pairs. The
on; satisfy the commutation relations

<i,@>

The physics in the dual picture may be expressed in
terms a set of vortices at positions of chargeq; = +q
and massn, interacting via a transverse gauge field:)

[m, 5] = 103 5. @) with Hamiltonian:
In the casd/’; = 0, the physics of this model is equiva- 1 ) F
lent to that of a (2+1) dimensionalY’ model and exhibits " = 3 > P +2mqid (i)’ +2m2 = > qigy In |7 -7
" My 4= m
a second order phase transition7at= 0 from the super- i i#]
conducting state to the insulating state at a critical value of 3)
Vo/J (Doniach 1981). As we shall see below, the action for the gauge field de-

In 1999, Das and Doniach (in a paper which we will re- pends on the strength of the near neighbor repulgiori-or
fer to as DD1j proposed that, as the nearest neighbor repul- V1/Vo sufficiently large (i.e. under strong coupling condi-
sion paramete¥; is increased, a strong coupling phase tran- tions) it will turn out that the condensate of infinite vortex
sition occurs to a phase diagram in which a new Bose metalloops in the insulating state will be depleted at value¥pf
phase appears @t = 0 in between the superconductng state above those where the Cooper pair world lines form finite
and the insulating state. loops leading to loss of superconducting coherence of the
Here we review the properties of this Bose metal state superfluid state. Then a new state is reached in which nei-
and discuss its relation to various investigations more re-ther the Cooper pair world lines are infinite (ie superfluid
cently carried out by other authors. phase coherence) nor are the vortex loops infinite (as they
would be in the “superinsulator staté’where they form a
condensate of vortices). The resulting quantum fluid state
2 Strong Coupling transition will turn out to have finite resistance @t= 0 due to uncon-
densed free vortices, so represents the Bose metal state.
In the insulating phase of the junction array model the long The physics of this “vortex superfluid” depletion de-
range phase coherence of the superconducting order paranpends in an essential way on the strength of interaction with
eter is destroyed by quantum zero point fluctuations andthe transverse gauge field as will be further discussed below.
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So presumably this would not manifest itself in a perturba- agator and the boson propagator are treated on an equal ba-
tive approach to simple boson models such as as that dissis. The highest frequency contributions to the one-loop in-
cussed by Phillips and Dalidovich (2062)here the trans-  sertions are integrated out giving an effective field theory
verse gauge field effects are not considered. for the remaining fields with renormalized superfluid frac-
tion and compressibility. The process is repeated till only
) the smallest frequency components of the propagators re-
3 Coupling to the transverse gauge main. The authors study the resulting phase diagram and
field argue that ifn; vanishes while the compressibility, of the
bose liquid remains finite, then the system will be unsta-

The appearance of time delayed plasma oscillations of theble through a second order transition to the formation of a
model as expressed through the transverse gaugedfield ~ °mogeneous non-superfluid which they then refer to as a
equn.(3), arises from the non-local character of the Coulomp™metallic state. Their result is in contrast to the arguments
charging term in (1). This was shown in DD1 to have two mad(_a in the Feigelman et .al paper where they use a sglf-
effects: it gives rise to a finite vortex mass which is propor- CONSistent approach to estimate the effects of the coupling
tional to the non-local coupling consta¥it, thus tending to of the vortices to the transverse gauge field on the gauge

inhibit the zero point motion of the vortices, and it induces field propagator. (Note, however that Jack and Lee con-

a time delay in the propagation of plasmon waves, ie phaseSider a model in which the bare interactions between vor-

modes of the system. The net result of this is that the IorOIO_tices are short ranged, not coulombic as for the case studied

agator for the transverse gauge field in (3) satisfies by Feigel_man etal, an_d Wh.iCh we cons_idered in DD1.) This
self-consistent approximation lead Feigelman et al, to con-

G Hw, k) = w? + k> (4) clude that the transition may be first order or, as discussed
o . . in DD1, Kosterliz-Thouless like. Based on the on experi-
wherecp is the plasmon velocity. In the limit; — 0, mental results of Mason and Kapitulfiles will be further

m, — 0 and (3) reduces to the usual vortex formulation giscyssed below, the transition appears to be second order.
of the Bose superfluid iri2 + 1) D where the vortices are  Thys the results of Jack and Lee provide arguments which
coupled through the long range Coulomb potential. help rationalize the experimental findings.

The effects of these time delayed interactions on the  1he contrasting case in whiehdiverges at finite:, sig-
super-insulator state of the liquid of vortex loops was origi- s 4 tendency to phase separation. This may be a signal of
nally studied by Feigelman et'dh a 1993 paper. Inthis pa- 4 first order transition region in the phase diagram. For our
per the vortices are represented as a gas of bosons. In applys,aqel (equn (3)) (equivalently, the model studied by Feigel-
ing their results to our model, we treat the vortex loops as a4 et al) we start from a model with long range Coulomb
two component plasma of vortices and antivortices. Feigel- repulsion between vortices of the same sign. Hence phase
man et al show that as the strength of the coupling of the separation would be too costly in energy and the system
gauge field to the vortices is increased, the density of the, o4 instead be expected to have a modulated density,
superfluid condensate, is decreased. In our case this Cor- yhjich would result in some kind of supersolid phase. So the

responds to a reduction of the superinsulator density. Theienqgency to phase separation found in the Jack-Lee calcula-
physics of how this occurs may be understood by thinking {jons may also signal a first order transition to this phase.

in terms of the dephasing due to random Aharonov-Bohm In their paper, Jack and Lee consider both the propa-

(AB) phases:xp(i [ a- dl ) experienced by avortex as are- gating gauge field model discussed above, and a model in
sult of the slpwly varying transverse gauge field acting onit. which the gauge field fluctuations are overdamped. They
As we discuss in our (2001) paper (Das and Doniach fing that the presence of gauge field damping increases the
(2001) - referred to as DD2), when the gauge field fluc- gyperinsulator density reduction effects, thereby enhancing
tuations become very large, the AB phases may become ofhe tendency of the system to form a metallic state. This
orderr. In this case the vortices may be thought of as locally s in line with the idea that the effects of Caldeira Leggett
transmuting from bosons to fermions thus strongly reducing type dissipation may be expressed in terms of a transverse
the density of the superinsulator condensate. As the vortex(‘:]auge field as discussed in DD2. Thus damping of vortex
— gauge field coupling (which goes as the vortex mass andmotion may in general be expected to have tendency to re-

is proportional tdl, /) is further increased, a phase transi- qyce the vortex condensate and thus promote the formation
tion occurs to a state in which the vortex loops are no longer 5f the Bose metal stafe

infinite and the system starts to acquire a finite resistivity at

T = 0. The properties of this Bose metal state are discussed

in d_etai_l in DD1. It appears to _be a new_form of quantum 4 Scaling behavior at the SG~ BM
liquid distinct from a superfluid in which, in the absence of ]

disorder, the phase fluctuations7at= 0 have zero gap and and BM « INS boundaries

the anomalous dispersion relatiop o k3.

Recently, the self consistent calculation of the transverseThe experimental manifestations of the Bose metal (BM) ap-
gauge field induced reduction of the superinsulator den- pear most strongly in the scaling behavior of the resitivity as
sity due to Feigelman et al (1993has been examined in the two phase boundaries to the BM state are approached
more detail by Jack and Lee (2002)ho use a renormal-  from within the state. Here we summarize the results dis-
ization group argument in which both the gauge field prop- cussed in DD1 and DD2 for completeness.
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The SG— BM boundary.

As the superconducting state undergoes a transition t
the BM state, we expect the resistivity to reflect that of a set
of vortex loops moving in the quasi-random fluctuations of
the gauge field. Thus the resistivity of the charged Cooper
pair bosonsp,. is given in terms of the conductivity;, of
the dual vortex variables via

®)

since it is the flux transport resulting from the motion of the
unbound vortices which gives rise to a voltage across the
sample.s, is given by the Drude formula,, = n, s 7, /M,
wheren,, ¢ is the density of free vortices (more precisely, of
those vortex loops which are longer than the mean free path
so that different parts of the loop are uncorrelated) apts

pe = (h/4e*)a,

the transport time. We measure the transport time in terms

of the normal core size of the vortice& whereg, is the
Ginzburg-Landau coherence length. Then

pe < R (1, 5&5).- (6)
whereRg = h/4%2 = 6.45KQ.
n, £&5 diverges as
g€ ~ (/€4 ~ (5 = D ™

as the superconducting boundary us approached, wRere
is the critical resistance at the S€BM phase boundary,
andv is the correlation length exponent.

Thus in general we can write

Ro ~ Rg(R,/R. —1)*. (8)
For a pure system, the boundary has the character of
(2+1)D XY model so that ~ 2/3. In disordered systems
such as thin films, we expeetto deviate from this value. As
discussed in DD1, this scaling behavior fits quite well with
the data of Jaeger et al (198@)n theR,, dependence aRg
for disordered gallium films.

In finite applied magnetic fields, we can apply the same
formula in terms of the density of free vortices injected by
the field: £, scales ag, ~ (H — H.) " whereH, is
the critical field for the S&BM transition. Hence for the
magnetic field scaling we have

Ro ~ (H — Hy)? 9)

The BM«< INS boundary.

As the magnetic field is further increased, the quantum
zero point motion of the vortices grows till eventually they

0,

é{;ov
le
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Since the voltage measured is a result of free vortex
motion, we argue that resistance scalesRasv V2/Q?
whereV represents the voltage induced by the vortex mo-
tion: V = (h/2e)2mnyLv with v the vortex velocity and
L the distance over which they move. Thénscales as
L ~ & ~ QY% whereQ is the frequency scale for the
diverging correlation length. Sinc@v? ~ €, v scales as
v ~ V. As the boundary is approached we assume that
the fraction of vortices which participate in the dissipative
process scales as ~ |6|* whered ~ (H — H.) measures
the distance to the boundary of the superinsulator phase anc
« is an exponent to be determined. Putting these together
we find R ~ §2¢ /Q1+2/2,

At temperaturdl’, the divergence of is cut off by T so
thatQ) ~ T and the scaling fuction must vary with7*/*
leading to
RT'2/2 /5% = f(5/T"/"%) (10)

wheref is the scaling function. At low T, the resistance sat-
urates at finite values independenffo$o f (z) — x—v(3+2)

in this limit. Finally, since the resistance is non-criticalfas

is tuned through ¢, we find thaa = v(z + 2) so that the
scaling formula ends up as

Tl/VZ
0

The data of Mason and Kapitulnik (1999%pr MoGe films

fits this two parameter scaling formula quite remarkably
well with z = 1, v = 4/3 leading toa = 2 (see figure in
DD2). Thus the argument for a Bose metal state is strongly
substantiated by the observed scaling with field and temper-
ature.

R| YD = f(5/TV77). (11)

The exciton Bose liquid

Recently Paramekanti et al (2002)have described a

el model in which a non-superfluid Bose liquid is sta-
atT = 0 under appropriate conditions. In this model,
instead of a Josephson junction coupling between quantum
rotors, a “ring-exchange” plaquette operator couples sites of
a square 2D lattice. In the quantum rotor representation the
starting Hamiltonian is

P n)? = K cos(Aaye,)  (12)

wherer is a site index and

Azy¢r =¢r — Gryg — d)rﬂi + ¢r+i+g' (13)
¢, andn,. are conjugate variables:
[(,ZSH TLT/] = i(gr’rl. (14)

The ¢, are taken to b@r periodic so that the eigenvalues of

condense into a superinsulator state. As discussed abovehe number operators, are integers with mean boson den-

there is theoretical evidence that this too will be a second

sity nn, which is generally taken to have the value- % for

order phase transition. At the present time there is no sys-the half-filling case.

tematic theory of the scaling at this boundary, so we repeat

the heuristic discussion from DD2 where we argue that this
boundary should be characterized by two parameter scaling

If we think in terms of rotor raising and lowering opera-

tors:

. bi =i b, = e r (15)

)
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then the interaction term takes the form whereA is a scaling dimension.
K ; + The quantum liquid also appears to be unstable to trans-
Hinte = ) Z(brb7‘+n‘cbr+@+gbr+z} + h.c), (16) formations into both superconducting (boson condensate)
r and insulating states (vortex condensate) depending on de-
which has the effect of tunneling a boson to the right on tails of the parameters. Thus there are very interesting re-
a given row while simultanoeusly moving one to the left semblances between the states of this non-superconducting
on the same plaguette one row up. Thus this HamiltonianBose liquid model and the Bose metal model of DD. It
has the remarkable property of conserving boson numberwould be worth while pursuing this resemblance to see
on each row and each column of the square lattice. Think-whether addition of usual Josephson coupling terms to the
ing of b' as creating a particle aridas creating a hole in  ring exchange coupling of the EBL model could link the
the uniform background boson denity, tHkx,; leadstothe  two different models, each of which exhibits a stable non-
propagation of particle hole pairs, or “exciton” like objects superconducting Bose liquid stateZat= 0.
from one side of the plaquette to the other. For this reason
the authors term the quantum liquid phase of this model asAcknowledgment
the “exciton Bose liquid”, or EBL.
These properties lead to an unusual set of collective pha- We thank Nadya Mason and Aharon Kapitulnik for

son modes for the model. On expanding the Lagrangian ofmany discussions, and the US department of Energy for sup-
the model port via the Complex Materials program at SSRL/SLAC. D.
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1 d’k > dw
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