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The Bose metal - A Commentary
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We review the concept of the Bose metal state which arises in 2D superconductors in the quantum limit where
vortex loops can grow spontaneously in (2+1) dimensions and, as zero point motions become larger, eventually
lead to an insulating state. A nonlocal Coulomb charging term in a Josephson array type model leads to an ef-
fective transverse gauge field which can suppress the condensate of vortices in the superinsulating state leading
to an intermediate Bose liquid which is not superfluid at T=0, the Bose metal state. We comment on recent
work on this state and on other non-superfluid Bose liquids.

1 Formulation

We start from a 2D Josephson junction array model which
can be expressed in terms of the Hamiltonian:

H = −J
∑

<i,~a>

cos(φi − φi+~α) + V0

∑

i

(δni)2

+V1

∑

<i,~a>

(δni + δni+~α)2 − µ̄
∑

i

δni − µNn0 (1)

where~α denotes the nearest neighbor vector to sitei, and
δni = (ni−n0) with ni the number density operator which
is conjugate to the phaseφi of the superconducting order
paramter andn0 the average density of Cooper pairs. The
δni satisfy the commutation relations

[δni, φj ] = iδi,j . (2)

In the caseV1 = 0, the physics of this model is equiva-
lent to that of a (2+1) dimensionalXY model and exhibits
a second order phase transition atT = 0 from the super-
conducting state to the insulating state at a critical value of
V0/J (Doniach 1981)1.

In 1999, Das and Doniach (in a paper which we will re-
fer to as DD1)2 proposed that, as the nearest neighbor repul-
sion parameterV1 is increased, a strong coupling phase tran-
sition occurs to a phase diagram in which a new Bose metal
phase appears atT = 0 in between the superconductng state
and the insulating state.

Here we review the properties of this Bose metal state
and discuss its relation to various investigations more re-
cently carried out by other authors.

2 Strong coupling transition

In the insulating phase of the junction array model the long
range phase coherence of the superconducting order param-
eter is destroyed by quantum zero point fluctuations and

instead the Cooper pair densityδni acquires a non-zero
ground state expectation value. In a path integral picture,
these quantum fluctuation effects may be represented in
terms of the infinite world lines for the Cooper pair bosons
which occur in the superfluid state becoming finite loops
(hence localized) in the insulator state.

In a dual picture, the effects of quantum zero point mo-
tion on the superfluid state may be expressed in terms of
the growth of vortex loops in (2+1) dimensions. The criti-
cal point is reached when the entropic contributions of the
vortex loops to the ground state path integral overcome the
energetic costs, and a “spaghetti” transition occurs in which
the insulating state is filled with vortex loops of infinite ex-
tension.

The physics in the dual picture may be expressed in
terms a set of vortices at positions~ri of chargeqi = ±q
and massmv interacting via a transverse gauge field~a(~x)
with Hamiltonian:

H =
1

2mv

∑

i

(~pi
2+2πqi~a(~ri))2+2π2 ρ̄

m

∑

i 6=j

qiqj ln |~ri−~rj |.

(3)
As we shall see below, the action for the gauge field de-

pends on the strength of the near neighbor repulsionV1. For
V1/V0 sufficiently large (i.e. under strong coupling condi-
tions) it will turn out that the condensate of infinite vortex
loops in the insulating state will be depleted at values ofV0

above those where the Cooper pair world lines form finite
loops leading to loss of superconducting coherence of the
superfluid state. Then a new state is reached in which nei-
ther the Cooper pair world lines are infinite (ie superfluid
phase coherence) nor are the vortex loops infinite (as they
would be in the “superinsulator state”2b where they form a
condensate of vortices). The resulting quantum fluid state
will turn out to have finite resistance atT = 0 due to uncon-
densed free vortices, so represents the Bose metal state.

The physics of this “vortex superfluid” depletion de-
pends in an essential way on the strength of interaction with
the transverse gauge field as will be further discussed below.
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So presumably this would not manifest itself in a perturba-
tive approach to simple boson models such as as that dis-
cussed by Phillips and Dalidovich (2002)3 where the trans-
verse gauge field effects are not considered.

3 Coupling to the transverse gauge
field

The appearance of time delayed plasma oscillations of the
model as expressed through the transverse gauge field~a in
equn.(3), arises from the non-local character of the Coulomb
charging term in (1). This was shown in DD1 to have two
effects: it gives rise to a finite vortex mass which is propor-
tional to the non-local coupling constantV1, thus tending to
inhibit the zero point motion of the vortices, and it induces
a time delay in the propagation of plasmon waves, ie phase
modes of the system. The net result of this is that the prop-
agator for the transverse gauge field in (3) satisfies

G̃−1(ω, k) = ω2 + c̃2
P k2 (4)

where c̃P is the plasmon velocity. In the limitV1 → 0,
mv → 0 and (3) reduces to the usual vortex formulation
of the Bose superfluid in(2 + 1)D where the vortices are
coupled through the long range Coulomb potential.

The effects of these time delayed interactions on the
super-insulator state of the liquid of vortex loops was origi-
nally studied by Feigelman et al4 in a 1993 paper. In this pa-
per the vortices are represented as a gas of bosons. In apply-
ing their results to our model, we treat the vortex loops as a
two component plasma of vortices and antivortices. Feigel-
man et al show that as the strength of the coupling of the
gauge field to the vortices is increased, the density of the
superfluid condensate,ns is decreased. In our case this cor-
responds to a reduction of the superinsulator density. The
physics of how this occurs may be understood by thinking
in terms of the dephasing due to random Aharonov-Bohm
(AB) phasesexp(i

∫
~a · d~l ) experienced by a vortex as a re-

sult of the slowly varying transverse gauge field acting on it.
As we discuss in our (2001) paper (Das and Doniach

(2001)5 - referred to as DD2), when the gauge field fluc-
tuations become very large, the AB phases may become of
orderπ. In this case the vortices may be thought of as locally
transmuting from bosons to fermions thus strongly reducing
the density of the superinsulator condensate. As the vortex
– gauge field coupling (which goes as the vortex mass and
is proportional toV1/J) is further increased, a phase transi-
tion occurs to a state in which the vortex loops are no longer
infinite and the system starts to acquire a finite resistivity at
T = 0. The properties of this Bose metal state are discussed
in detail in DD1. It appears to be a new form of quantum
liquid distinct from a superfluid in which, in the absence of
disorder, the phase fluctuations atT = 0 have zero gap and
the anomalous dispersion relationωk ∝ k3.

Recently, the self consistent calculation of the transverse
gauge field induced reduction of the superinsulator den-
sity due to Feigelman et al (1993)4 has been examined in
more detail by Jack and Lee (2002)6 who use a renormal-
ization group argument in which both the gauge field prop-

agator and the boson propagator are treated on an equal ba-
sis. The highest frequency contributions to the one-loop in-
sertions are integrated out giving an effective field theory
for the remaining fields with renormalized superfluid frac-
tion and compressibility. The process is repeated till only
the smallest frequency components of the propagators re-
main. The authors study the resulting phase diagram and
argue that ifns vanishes while the compressibility,κ, of the
bose liquid remains finite, then the system will be unsta-
ble through a second order transition to the formation of a
homogeneous non-superfluid which they then refer to as a
metallic state. Their result is in contrast to the arguments
made in the Feigelman et al paper where they use a self-
consistent approach to estimate the effects of the coupling
of the vortices to the transverse gauge field on the gauge
field propagator. (Note, however that Jack and Lee con-
sider a model in which the bare interactions between vor-
tices are short ranged, not coulombic as for the case studied
by Feigelman et al, and which we considered in DD1.) This
self-consistent approximation lead Feigelman et al, to con-
clude that the transition may be first order or, as discussed
in DD1, Kosterliz-Thouless like. Based on the on experi-
mental results of Mason and Kapitulnik7 as will be further
discussed below, the transition appears to be second order.
Thus the results of Jack and Lee provide arguments which
help rationalize the experimental findings.

The contrasting case in whichκ diverges at finitens sig-
nals a tendency to phase separation. This may be a signal of
a first order transition region in the phase diagram. For our
model (equn (3)) (equivalently, the model studied by Feigel-
man et al) we start from a model with long range Coulomb
repulsion between vortices of the same sign. Hence phase
separation would be too costly in energy and the system
would instead be expected to have a modulated density,
which would result in some kind of supersolid phase. So the
tendency to phase separation found in the Jack-Lee calcula-
tions may also signal a first order transition to this phase.

In their paper, Jack and Lee consider both the propa-
gating gauge field model discussed above, and a model in
which the gauge field fluctuations are overdamped. They
find that the presence of gauge field damping increases the
superinsulator density reduction effects, thereby enhancing
the tendency of the system to form a metallic state. This
is in line with the idea that the effects of Caldeira Leggett
type dissipation may be expressed in terms of a transverse
gauge field as discussed in DD2. Thus damping of vortex
motion may in general be expected to have tendency to re-
duce the vortex condensate and thus promote the formation
of the Bose metal state7.

4 Scaling behavior at the SC↔ BM
and BM ↔ INS boundaries

The experimental manifestations of the Bose metal (BM) ap-
pear most strongly in the scaling behavior of the resitivity as
the two phase boundaries to the BM state are approached
from within the state. Here we summarize the results dis-
cussed in DD1 and DD2 for completeness.
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TheSC↔ BM boundary.

As the superconducting state undergoes a transition to
the BM state, we expect the resistivity to reflect that of a set
of vortex loops moving in the quasi-random fluctuations of
the gauge field. Thus the resistivity of the charged Cooper
pair bosons,ρc is given in terms of the conductivity,σv of
the dual vortex variables via8

ρc = (h/4e2)σv (5)

since it is the flux transport resulting from the motion of the
unbound vortices which gives rise to a voltage across the
sample.σv is given by the Drude formulaσv = nvfτtr/mv,
wherenvf is the density of free vortices (more precisely, of
those vortex loops which are longer than the mean free path,
so that different parts of the loop are uncorrelated) andτtr is
the transport time. We measure the transport time in terms
of the normal core size of the vortices,ξ2

0 whereξ0 is the
Ginzburg-Landau coherence length. Then

ρc ∝ RQ(nvfξ2
0). (6)

whereRQ = h/42
e = 6.45KΩ.

nvfξ2
0 diverges as

nvfξ2
0 ∼ (ξ0/ξ+)2 ∼ (

Rn

Rc
− 1)2ν (7)

as the superconducting boundary us approached, whereRc

is the critical resistance at the SC↔ BM phase boundary,
andν is the correlation length exponent.

Thus in general we can write

R2 ∼ RQ(Rn/Rc − 1)2ν . (8)

For a pure system, the boundary has the character of a
(2+1)D XY model so thatν ' 2/3. In disordered systems
such as thin films, we expectν to deviate from this value. As
discussed in DD1, this scaling behavior fits quite well with
the data of Jaeger et al (1986)9 on theRn dependence ofR2

for disordered gallium films.
In finite applied magnetic fields, we can apply the same

formula in terms of the density of free vortices injected by
the field: ξ+ scales asξ+ ∼ (H − Hc0)−ν0 whereHc0 is
the critical field for the SC↔BM transition. Hence for the
magnetic field scaling we have

R2 ∼ (H −Hc0)2ν0 (9)

The BM↔ INS boundary.

As the magnetic field is further increased, the quantum
zero point motion of the vortices grows till eventually they
condense into a superinsulator state. As discussed above,
there is theoretical evidence that this too will be a second
order phase transition. At the present time there is no sys-
tematic theory of the scaling at this boundary, so we repeat
the heuristic discussion from DD2 where we argue that this
boundary should be characterized by two parameter scaling.

Since the voltage measured is a result of free vortex
motion, we argue that resistance scales asR ∼ V 2/Ω2

whereV represents the voltage induced by the vortex mo-
tion: V = (h/2e)2πnfLv with v the vortex velocity and
L the distance over which they move. ThenL scales as
L ∼ ξ ∼ Ω−1/z whereΩ is the frequency scale for the
diverging correlation length. Sincemv2 ∼ Ω, v scales as
v ∼ √

Ω. As the boundary is approached we assume that
the fraction of vortices which participate in the dissipative
process scales asnf ∼ |δ|α whereδ ∼ (H −Hc) measures
the distance to the boundary of the superinsulator phase and
α is an exponent to be determined. Putting these together
we findR ∼ δ2α/Ω1+2/z.

At temperatureT , the divergence ofξ is cut off byT so
thatΩ ∼ T and the scaling fuction must vary withδ/T 1/νz

leading to
RT 1+2/z/δ2α = f(δ/T 1/νz) (10)

wheref is the scaling function. At low T, the resistance sat-
urates at finite values independent ofT sof(x) → x−ν(z+2)

in this limit. Finally, since the resistance is non-critical asH
is tuned throughHC , we find that2α = ν(z + 2) so that the
scaling formula ends up as

R[
T 1/νz

δ
]ν(z+2) = f(δ/T 1/νz). (11)

The data of Mason and Kapitulnik (1999)7 for MoGe films
fits this two parameter scaling formula quite remarkably
well with z = 1, ν = 4/3 leading toα = 2 (see figure in
DD2). Thus the argument for a Bose metal state is strongly
substantiated by the observed scaling with field and temper-
ature.

The exciton Bose liquid

Recently Paramekanti et al (2002)10 have described a
novel model in which a non-superfluid Bose liquid is sta-
ble atT = 0 under appropriate conditions. In this model,
instead of a Josephson junction coupling between quantum
rotors, a “ring-exchange” plaquette operator couples sites of
a square 2D lattice. In the quantum rotor representation the
starting Hamiltonian is

H2 =
U

2

∑
r

(nr − n̄)2 −K
∑

r

cos(∆xyφr) (12)

wherer is a site index and

∆xyφr ≡ φr − φr+x̂ − φr+ŷ + φr+x̂+ŷ. (13)

φr andnr are conjugate variables:

[φr, nr′ ] = iδr,r′ . (14)

Theφr are taken to be2π periodic so that the eigenvalues of
the number operatorsnr are integers with mean boson den-
sity n̄, which is generally taken to have the valuen̄ = 1

2 for
the half-filling case.

If we think in terms of rotor raising and lowering opera-
tors:

b†r ≡ eiφr ; br ≡ e−iφr , (15)
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then the interaction term takes the form

Hint = −K

2

∑
r

(b†rbr+x̂b†r+x̂+ŷbr+ŷ + h.c), (16)

which has the effect of tunneling a boson to the right on
a given row while simultanoeusly moving one to the left
on the same plaquette one row up. Thus this Hamiltonian
has the remarkable property of conserving boson number
on each row and each column of the square lattice. Think-
ing of b† as creating a particle andb as creating a hole in
the uniform background boson denity, thenHint leads to the
propagation of particle hole pairs, or “exciton” like objects
from one side of the plaquette to the other. For this reason
the authors term the quantum liquid phase of this model as
the “exciton Bose liquid”, or EBL.

These properties lead to an unusual set of collective pha-
son modes for the model. On expanding the Lagrangian of
the model

Lφ =
∑

r

[
1

2U
(∂τφr)2 + in̄∂τφr −K cos(∆xyφr) ] (17)

to quadratic order, the action becomes

Sphason =
1

2U

∫
d2k

(2π)2

∫ ∞

−∞

dω

2π
[ω2 + Ek]|φ(k, ω)|2

(18)
where

Ek = 4
√

UK| sin(kx/2) sin(ky/2)| (19)

which vanishes on both thekx andky axes. Thus the model
has a continuum of zero gap modes and therefore might be
expected to exhibit conducting properties atT = 0.

Going beyond quadratic order, one sees that vortex con-
figurations in whichφr winds by2π around a plaquette are
finite in energy rather than logarithmic as in the usual bo-
son super fluid models. (However double vortex configura-
tions in which the phase winds by4π may be deformed into
zero vorticity configurations). Thus one may expect ground
states in which, as the kinetic energy term with strengthU
is increased the vorticity will increase, so that eventually a
quantum insulator state will be reached.

We will not go into further details here, but note that the
authors show that, in the quantum liquid state of the model,
the real part of the optical conductivity takes the form

σ(ω) ∝ |ω|2∆−3, (20)

where∆ is a scaling dimension.
The quantum liquid also appears to be unstable to trans-

formations into both superconducting (boson condensate)
and insulating states (vortex condensate) depending on de-
tails of the parameters. Thus there are very interesting re-
semblances between the states of this non-superconducting
Bose liquid model and the Bose metal model of DD. It
would be worth while pursuing this resemblance to see
whether addition of usual Josephson coupling terms to the
ring exchange coupling of the EBL model could link the
two different models, each of which exhibits a stable non-
superconducting Bose liquid state atT = 0.
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