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The two-dimensional spin-1 Baxter-Wu model is studied by using Monte Carlo simulations. The standard
single-spin-flip Metropolis algorithm is used to generate the configurations from which the order parameter,
specific heat and magnetic susceptibility are measured. The finite-size scaling procedure is employed in order
to get the critical behavior. Extensive simulations show that the critical exponents are different from those of
the spin-1/2 model suggesting that the spin-1 model is in a different universality class.

1 Introduction

The Baxter-Wu model is a system of spins defined on a two-
dimensional triangular lattice with the classical spin vari-
ables s; taking only integer values. It was first introduced
by Wood and Griffiths [1] as a model which does not exhibit
invariance by a global inversion of all spins. The system is
described by the Hamiltonian

H=-J Z 8i8;Sk, (D)

<ijk>

where the coupling constant .J is positive and the sum is over
all triangles made up of nearest-neighbor sites on the trian-
gular lattice. For the spin-1/2 model, where s; = +£1, the
exact solution obtained by Baxter and Wu gives kpT./J =
2/In(1++/2) and o = v = 2[2]. The system has also been
studied with quenched impurities by Monte Carlo [3] and
Monte Carlo renormalization group approaches [4]. Con-
formal invariance studies [5, 6] have shown that the pure
spin-1/2 Baxter-Wu and the four-state Potts models have the
same operator content and are in the same universality class.
More recently, the short time critical dynamics has been in-
vestigated through the relaxation of the order parameter at
the critical temperature by Monte Carlo simulations [7]. On
the other hand, for spin values greater or equal to one there
are neither exact solutions nor even much approximate ap-
proaches. It is the purpose of this work to study the model
above for the spin-1 case by using Monte Carlo simulations,
where the variables s; take the values s; = —1,0, 1.

Monte Carlo methods [8, 9] form the largest and most
important class of numerical methods used for solving sta-
tistical physics problems. The basic idea behind Monte
Carlo simulation is to simulate the random thermal fluc-
tuation of the system from state to state over the course
of an experiment. Performing a high-precision finite-size
scaling analysis using standard Monte Carlo techniques is
very difficult due to constraints on the available computer
resources. The introduction of histogram techniques to ex-
tract the maximum information from Monte Carlo simula-

tion data at a single temperature enhances the potential res-
olution of Monte Carlo methods substantially [10, 11]. In
this sense, we apply the histogram techniques together with
the Metropolis simulation algorithm in order to investigate
the thermal behavior of the spin-1 Baxter-Wu model defined
by Eq. (1) by considering the specific heat, order parameter
and magnetic susceptibility. Our main interest is to obtain,
through a finite-size scaling analysis, the phase transition
temperature as well as the critical exponents of the model.

In the next section we present the thermodynamic quan-
tities and the details of the simulations. In section III we
discuss the results and in section IV we summarize our con-
clusions.

2 Simulation background

The simulations have been carried out by using the single-
spin-flip Metropolis algorithm. In the course of the simu-
lations we considered triangular lattices with linear dimen-
sions L x L and fully periodic boundary conditions for sys-
tem sizes of length 18 < L < 108. Due to the fact that
the system has, in addition to the ferromagnetic phase (with
all spins up), three different ferrimagnetic phases with three
different sublattices (one sublattice up and spins on the other
two sublattices down) the allowed values of L are always a
multiple of 3. In this way, all ground states of the infinite
lattice would fit on any finite lattice. Following equilibra-
tion (which comprised 6 x 10* MCS) runs comprising up to
5 x 105 MCS (Monte Carlo steps per spin) were performed.
Histogram reweighting [10, 11] and finite-size scaling tech-
niques were used to precisely locate the second-order phase
transition. Regarding the histograms, great care has been
taken in order to assure the reliabily of the extrapolated re-
sults for all lattice sizes.

The thermodynamic quantities we measured in our sim-
ulations are the order parameter, defined as the root mean
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square average of the magnetization of the three sublattices

ma2 4+ mp? +mc?
m = 3 ; 2)
where m 4, mp and m¢ are the magnetizations per spin of
the different sublattices, the order parameter susceptibility
defined as

x = BL2 ((m?) = (m)?) . )

where 3 = 1/kpT (with kp the Boltzmann constant and
(...) means an average over the generated Monte Carlo con-
figurations), and the specific heat

C=gL7?((8%) - (B)7) @

where (F) is the mean value of the energy.
According to finite-size scaling theory the critical tem-
perature scales as

Ty =T.+ \L~YV | (5)

where ) is a constant, T, is the critical temperature of the in-
finite system, and 77, is the effective transition temperature
for the lattice of linear size L. This effective temperature
can be given by the position of the maximum of any of the
following quantities: the temperature derivative of m, Inm
or Inm?, the order parameter susceptibility or the specific
heat. The above temperatures are given in units of J/kp. An
independent estimate of v, however, can be made through
the evaluation of the maximum logarithmic derivative of any
power of the order parameter m” since one has

au
(), =2 ©

where a is a constant and U is either Inm or Inm? (or, in
general, Inm™). In addition, the specific heat and the mag-
netic susceptibility scale, at the transition temperature, as

Cox L, yo LV, (7
where « and ~y are the critical exponents of the specific heat
and susceptibility, respectively. From Eqs. (2-7) one can
obtain the critical temperature and critical exponents of the
model.

3 Results

The independent evaluation of the critical exponent v, as ob-
tained from Eq. (6) without any consideration of the critical
temperature 7, is shown in Fig. 1 for the maximum deriva-
tive of the logarithm of m and m? (although other powers of
m can also be used). From both cases one has v = 0.617(4),
which is different from v = 0.666 for the spin-1/2 model.
With v determined quite accurately we proceed to esti-
mate the position of 7. As discussed in the previous sec-
tion, the location of the maxima of the various thermody-
namic derivatives, namely the maximum of the specific heat,
susceptibility, and the derivatives of m and In m and In m2,
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provide estimates for the transition temperature which scale
with system size as Eq. (5). A plot of these estimates is
given in Fig. 2. The results from the linear fit are listed in
Table 1. One can note that they are indeed quite close to
each other and a final estimate is 7. = 1.6607(3).

The logarithm of the maximum value of the specific heat
and order parameter susceptibility as a function of the log-
arithm of L is shown in Fig. 3. From these data one has
a =0.692(8) and v = 1.13(1).
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Figure 1. Logarithm of the maximum values of the derivatives of
Inm and Inm? as a function of the logarithm of the size L. The
straight lines, with slopes corresponding to v = 0.617(3) in both
cases, show the asymptotic behavior of the fits. The errors are
smaller than the symbol sizes.
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Figure 2. Size dependence of the effective critical temperatures (in
units of J/kp) estimated from several thermodynamic quantities.
The lines are fits to Eq. (5) with v = 0.617 obtained from Fig. 1
and the intercepts are given in Table 1. The errors are smaller than
the symbol sizes.
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TABLE 1. Estimated critical temperatures from different
thermodynamic quantities according to the linear fit shown
in Fig. 2.

Quantity T.
C 1.6607(1)
X 1.6605(1)
(4m)  1.6606(1)
d

Inm 1.6609(1)

dlnm?®
() 1.6610(2)
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Figure 3. Logarithm of the maximum values of the specific heat C
and order parameter susceptibility x as a function of the logarithm
of L. The straight lines are fits to Egs. (7) with a/v = 1.121(6)
and v/v = 1.829(9). The errors are smaller than the symbol
sizes.

4 Conclusions

It is clear, from the quality of the above results, that a
well defined second order phase transition takes place in
the model at 7, = 1.6607(3) with critical exponents v =
0.617(3), &« = 0.692(6) and v = 1.13(1), which are indeed
different from the spin-1/2 case, namely v = 2/3, a = 2/3
and v = 7/6. This means that this three spin interaction
model has exponents which depend on the spin value. It is
worth saying that the present model can also have an extra
interaction with a crystal field of the form D isiQ. Thisis a
generalization in the direction of the so-called Blume-Capel
model [12]. What we have done here is studied the special
case D = 0. However, in the limit D — —oo one recov-
ers the spin-1/2 model. From the present results we then
expect that along the second-order transition line for differ-
ent values of D one has a line with varying critical expo-
nents. In addition, as we have shown, a second-order phase
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transition takes place at D = 0 in contrast with the conjec-
ture that the spin-1 Baxter-Wu model is critical only in the
limit D — —oo [13]. Some preliminary results, agreeing
with the picture of a line of second-order phase transition
with varying exponents and the presence of a multicritical
point, for the present system with crystal field interaction,
have already been obtained from conformal invariance with
finite-size scaling theory and the mean field renormalization
group approach [14]. Work in this direction using Monte
Carlo simulations is now in progress.
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