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In this work we study the effects of temperature on the equations of state within a relativistic model, with the
inclusion of the baryons of the octet over a wide range of densities. We compare the results of the equation of
state, effective mass and strangeness fraction for the TM1, NL3 and GL sets of parameters.

1 Motivation

A neutron star is born after the gravitational collapse of the
core of a very massive star. We briefly summarize the evolu-
tion process as follows: when massive stars in late stages of
evolution (supergiants) come to a stage that thermal energy
no longer bears the weight of the outer layers, gravity at-
tracts the denser regions to the centre of the supergiant, and
since thermal pressure is lower and lower as it cools, gravi-
tational collapse comes next. Now with a denser and hotter
core, the star starts fusing elements (beginning with hydro-
gen into helium, at T ∼ 107 K), spending most of its life
in this stage until the core contracts to form a white dwarf.
Inverse beta decay lowers the high pressure provided by the
relativistic eletrons in the core and it collapses. This core
implosion takes about 0.5 seconds. The infalling material
rebounce on the core, meets the decompression wave and
ejects all but the core which cools, comes to an equilibrium
composition of neutrons, protons, hyperons and leptons and
is then called a neutron star. In [1] the authors study the
equations of state (EOS) for cold neutron stars in a Thomas-
Fermi framework, with the presence of the baryonic octet.
In this work we study the effects of finite temperature on
the EOS considering the presence of the hyperons of the
octet. We work in the framework of the relativistic nonlinear

Walecka model (NLWM) [2], where hadrons are coupled to
scalar-isoscalar φ, vector-isoscalar V µ and vector isovector−→
b µ meson fields. Temperature effects are taken into ac-

count by including the Thomas-Fermi distribution function
in the EOS. Neutron stars are not made up of neutrons only.
At neutron star densities, although satisfying charge neu-
trality, pure neutron matter is not the lowest energy state.
For this reason we include in the treatment the leptons e−
and µ−, as fermi gases of noninteracting particles. We then
carry out a comparative study of the different results of the
NLWM in the context of some different sets of parameters,
namely: TM1 [3], GL [4] and NL3 [5]. We study the be-
haviour of the effective mass curves of baryons with these
three parameter sets at different temperatures and densities,
whilst performing the calculations through a wide range of
baryonic densities (at least up to ∼6.0 times the saturation
density). We also investigate the strangeness fraction at fi-
nite temperature for the parameter sets used in this work and
finally draw our conclusions.

2 The NLWM at Finite Temperature

The Lagrangian density in the model reads:
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where

Ωµν = ∂µVν−∂νVµ, Bµν = ∂µbν−∂νbµ−gρ(bµ×bν),

and gνB = χvBgv, gρB = χρBgρ and gsB = χsBgs

are the coupling constants of baryon “B ” to the mesons;
MB

∗ = MB − gsBφ, MB is the mass of baryon “B ”, mv ,
mρ and ms are the masses of the mesons.

From the Euler-Lagrange formalism we obtain the equa-
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tions of motion, replacing the meson fields by their mean
values (relativistic mean-field approximation). The equa-
tions of motion reduce to:
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and τ3B is the appropriate isospin projector for the baryon
charge states. The distribuition function for the baryons is

fB± =
1

1 + e[(εB∓νB0)/T ]
. (6)

In the static, homogeneous nuclear matter assumption we
have made, the terms εB and νB0 are given respectively by
εB =

√
p2 + M∗2

B and νB0 = µB − gνBV0 − gρBτ3Bb0.
Since the star has come to equilibrium, particle popu-

lations have come to a stationary number where the total
electric charge is neutral and chemical equilibrium is re-
quired: µΣ0 = µΞ0 = µΛ = µn, µΣ− = µΞ− = µn+µe− ,
µΣ+ = µp = µn − µe− .

The expressions for the energy density in this model at
finite temperature reads:

ET =
1
π2

∑
B

∫
p2dp

√
p2 + M∗2

B (fB+ + fB−)

+
1
π2

∑
l

∫
p2dp

√
p2 + m2

l (fl− + fl+) +
m2

v

2
V 2

0

+
ξg4

v

8
V 4

0 +
m2

ρ

2
b2
0 +

m2
s

2
φ2

0 +
κ

6
φ3

0 +
λ

24
φ4

0, (7)

where the distribuition function for the leptons and antilep-
tons are:

fl± =
1

1 + e[(εl∓µl)/T ]
. (8)

where εl =
√

pl
2 + m2

l and µl is the chemical potential of
lepton “l”. The expression for the pressure can also be ob-
tained in a straightforward manner.

3 A comparative study of the TM1,
GL and NL3 sets of parameters

We show now our results for the EOS, effective mass, parti-
cle populations and strangeness fraction in the NLWM with
the three sets of parameters shown in table I.

The EOS for the three sets are shown in Fig. 1. At zero
temperature, we see that GL and NL3 provide us with the
same results up to 3.5 ρ/ρ0, where the EOS for NL3 col-
lapses, while TM1 gives a smoother curve. At 10 MeV, the
GL EOS becomes slightly harder than the NL3 curve. In all
cases the energy density values increase with temperature.

From the values of effective masses given in Fig. 2 we
conclude that GL provides a satisfactory description of the
nuclear matter for a wide range of densities; TM1 fails to
describe the effective mass if hyperons are included, as the
baryonic density comes to ∼ 6.5 times the nuclear saturation
density; NL3 also fails at ∼ 3.5 times the saturation density.
The curves for higher temperatures are virtually the same as
for T=0, so we do not show them here. Notice that TM1
and NL3 only fail because baryons other than protons and
neutrons were included.

From Fig. 3 we see that electrical neutrality is conserved:
positively charged particles have their population increased
as negative hyperons appear. Heaviest hyperons come about
at higher densities, as expected - inner regions of neutron
stars are presumably populated by heavier baryons. We see
in Fig. 4 the particle populations for higher temperatures.
Hyperons turn up at lower densities as temperature increases
and more hyperons show up. The heaviest baryon of the
octet Ξ0 also appears. All plots of particle population that
we show here have been obtained with the TM1 set. For
densities higher than 6.5 ρ/ρ0, only the GL parametriztion
can be used.

Concerning the strangeness fraction shown in Fig. 5, dif-
ferent parameter sets provide different results for its val-
ues. The strangeness fraction reaches almost 1/3 for the GL
parametrization at 10ρ/ρ0 (density of the interior of a pro-
toneutron star). TM1 and NL3 provide remarkably higher
values of strangeness fraction for lower densities. For all
three sets the values have a slight increase with temperature.
We conclude that strangeness fractions are more sensitive to
the parametrization than to temperature.

TABLE 1.The table shows the values for the parameters. All masses are given in Mev.

Force M ms mv mρ gs gv gρ κ/M λ ξ

TM1 938.0 511.198 783.0 770.0 10.0289 12.6139 9.2644 3.04 3.7098 0.0169
NL3 939.0 508.194 782.501 763.0 10.217 12.868 8.948 4.377 -173.31 0.0
GL 938.0 511.198 783.0 770.0 8.175 9.182 9.717 4.524 191.864 0.0
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Figure 1. Energy density in the NLWM in the presence of the octet, at a)T=0, b) 10 Mev with different sets, namely: GL (solid line), NL3
(dashed line) and TM1 (dot-dashed line). At zero temperature the curves with GL and NL3 are coincident.
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Figure 2. Effective mass curves for nucleons in the NLWM model, with parametrizations NL3 (bottom), TM1 and GL (top), at zero
temperature.
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Figure 3. Particle population Yi = ρi/ρB , i=baryons and leptons at zero temperature.
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Figure 4. The same as in Fig. 3 for a)T=10 MeV, b)T=20 MeV.
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Figure 5. Strangeness fractions at 10 and 20 MeV for the three sets of parameters. Left curves for NL3, TM1 in the center and GL in the
right hand side. The lower values for each parametrization stand for the EOS in the NLWM at 10 MeV, higher values for 20 MeV.
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