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Vacuum Polarization Effects in Relativistic Nuclear Pairing
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In the present work we discuss the contribution of the vacuum polarization on the nuclear pairing, in the context
of the relativistic Hartree-Fock-Bogoliubov (HFB) approximation. The polarization effects on the pairing, as a
function of Fermi momentum, is shown with the scalar and vector meson-nucleon coupling constants scaled by
a parameter X. We have obtained that the nuclear pairing is affected by the vacuum polarization.

1 Introduction and by Horowitz et al.[7]. Due to its lack of covariance,
the nuclear medium allows the mixture of mesonic fields of

Relativistic models of nuclear pairing have been developeddifferent Lorentz structure through the nucleon loops. This

within the framework of mean field theory through the effectis included in the meson propagator as an infinite sum

BCS and the Hartree-Fock-Bogoliubov (HFB) approxima- over ring diagrams, which consist of repeated insertions of

tions. A precise relativistic description of pairing correla- the lowest-order one-loop proper polarization. This diagra-

tions, the Dirac-Hartree-Fock-Bogoliubov (DHFB) approx- matic representation including the polarization tensor can be

imation, was developed by Bailin and Love[l] and, later written analytically using Dyson’s equation for an extended

applied to nuclear matter[2, 3]. In these calculations the meson propagator which is given by,

pairing gaps obtained were found to be much larger than

those furnished in nonrelativistic models by using realistic D, =D 4+ D8 I 4 D¢, (1)

potentials. These discrepancies were resolved in Ref.[4], by

associating the pairing vertex function with the low-energy where®g ; is the noninteracting meson propagator with in-

two-nucleon! S, virtual state. On the other hand, the HFB dices extending from one to five afflis the renormalized

theory is a relatively simple approximation neglecting any proper polarization tensor. Since we have both scalar and

contribution to the nucleon-nucleon interaction beyond the vector mesons in our model, besides being affected by the

bare potential. In order to account for many nuclear proper- presence of the nuclear matter, the meson propagator must

ties, it is necessary to go beyond the pure BCS or HFB ap-take into account the mutual interaction of the respective

proximations and add other effects to the nucleon-nucleonfields, called scalar-vector mixing. This effect is forbidden

interaction, such as medium effects on the meson propagain the vacuum due to covariance. However, it is permitted

tion. in the medium and we will see later that it is important in
In the present work, we develop an effective relativis- the study of nuclear stability. Using the Feynman rules, we

tic o — w nucleon-nucleon interaction that includes RPA obtain the polarization tensor from the ring diagram. It can

medium modifications of the meson propagator and use itbe written as,

to study their effect on pairing in theS, channel. In norel-

ativistic calculations the medium effects modify the effec- .

tive nuclec_)n—nucleon |_nteract|on by adding a repulsive term, (q)" , = —i)\/ TrG)D,G(k +q)] ()

thus causing a reduction in tA&, gap. In Ref.[5] we have (2m)*

described part of this calculation which did not include the i ) )

pure vacuum contribution. This term is divergent and we WhereA is the isospin degeneracy factor. The vertex func-

must to use a renormalization scheme to render it finite. tions are represented by thes that, in theo — w model are

We found in that paper that the results were opposite to thediven by,I's = g.I andI', = —g,7, with g, andg, the

nonrelativistic calculations. Here we have included the vac- Scalar and vector coupling constants. The nucleon propaga-

uum terms and have studied their contributions to the mesonfor G(k) may be written, in general, as a sum of Feynman

propagator and their consequencies on the pairing gap. G (k) and density-depende6t” (k) contributions as,

2 Relativistic random-phase approxi- Gk) = G"(K)+G"(h),

1
. a _ * *
mation - RPA Gk = Ok M) Gy e
D * *
In this section, we calculate the full meson propagator for GZ(k) = (v + M7 (k)
spacelike momenta in the one-loop approximation. Much (X . -
; o x b0k — Ep)Cke — [E) 3)

of the formalism described here was developed by Chin[6] Ex
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wherek?, = (ko — g, VO, E) andE; = VE2 + M*2. The We can write the polarization tensor in a matrix form similar
Feynman propagator describes the propagation of virtualto that of Eq.(9).
particles and antiparticles while the density-dependent term

correctsG*" for the propagation of holes inside the Fermi o, IIm
sea. This term also correc? (k) for the Pauli exclu- In* 4(q) = < ! ) , (12)
sion principle and vanishes at zero baryon density. With the 7, I

above form of the baryon propagator, each polarization in- o )

sertion can be divided into two parts: the Feynman term or Baryon current conservation implies the following con-
vacuum polarization part and a density-dependent part. TheStraints on the one-loop polarization insertions,

scalar and vector parts of the vacuum polarization are given

by,
q ", = 1" ,¢"=0
. d*k Beoo= 0.
M) = gl [ G TG (G (k+ ). Gl =0 (13)
) d'k To simplify the calculations, it is convenient to work
m , :—f,A/iT “Gr(k)y Gr(k + q)l4 _ piity the caic ’ . .
r () v (2m)4 " Gr (k) Gr(k+ 9)) in a frame in whichq is along the z-axis, that is; =

This term describes the self-energy correction to the meson(0, 0, s, ¢4) With ¢2 = g3 — g3. Within this reference frame
propagator due their coupling to nucleon-antinucleon exci- ahd with the symmetry of the loop integrals, the polariza-
tations. This contribution to the polarization insertion is di- tion matrix is constituted of two blocks. A diagonal one,
vergent and must be renormalized. The density-dependen€alled the transverse block, and a non-diagonal one, called
part, on the other hand, is finite and is formed of products the scalar-longitudinal block. Substituting this in Eq.(8) we

of Feynman and density-dependent terms. Its scalar, vectoPbtain a meson propagator matrix where the mass of the
and mixed parts are given repectively by, transversal modes is obtained directly from the first block

which has a simple form given by,

d*k
2
Hs(q) - 195 / (27’(’)4 TT[ GD(k) GF(k + q) m:Q = m% + Ht~ (14)
+ GF(k)Gng/: 0l; ) For the scalar and longitudinal modes mass it is necessary tc
I ,(q) = —z’gﬁ/ 4TT['YuGD(k)’YVGF(I€ +9q) d|agonallze the second block,. The modes are the eigenval-
(2m) ues given by,
+ ’YNGF(k)'VVGD(k + q)]v (6)
, . d*k
Hﬁ{(Q) = —lgsgv/ WTT[WMGD(/“)GF(]? +4q) ml*z } _ me2 +mi2 £/ (mp2 —mi2)2 — 4112, (15)
m*
+ WGr(k)Golk+q) ) : ?
These describe the coupling of the meson to particle-holeywherem*2 = m2 + IT, andm*2 = m2 + 11, are the scalar
excitations and also correct tfé/N' contribution for Pauli  and longitudinal mass respectively, and

blocking. The interacting modes are obtained from the poles
in the meson propagator by solving Eq.(1). Solving formally
the meson propagator by inverting Eq.(1) we obtain, \/qu

I =—(I* 3 +11*,) and I, = I*. (16)

q3
@ "= (D) s — "y, 8
Since we want to include andw mesons as well as their
mixing, it is convenient to use a meson propagator in the
form of a5 x 5 matrix. The non-interacting meson propaga-
tor is given by a block-diagonal matrix as,

Next we will express the full meson propagator in its spec-
tral form using the eigenvectors obtained obtained above,

De, - ed ew eSey a0 qub/d
DH T2 %2 42 _ap*2 2 a2
so= (27 2) © ¢omit o @ omit g —m]
0 o 771 M1b 4 772 120 (17)
where the noninteracting propagators for theand w @ -m? g2 —mr?

mesons are given respectively by,

To complete these expressions we must evaluate the one
Aolg) = 1 (10) loop polarization cont_ribu_tion and obtain th_e modified me-
q2 —m?+ ie’ son masses. Integrating in the angular variables and taking
a'q 1 the momentum q to be purely, space-liké,= (0, ¢, 0, 0),
DYy ,(q) = (5“ o ”) Z . (A1) we find
12

2 2 ;
ms mg +1€
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k *
() = 2g§A/4fk2dk 17q§+4M21nq5+2kf
s 2 /o B 2 8kqs qs — 2ky
202\ [Fr k2 dk (1 @2 —4E2 . ¢, +2k
(gs) = g%/\/ d { e by & + f}
s 0 By 2 8kqs qs — 2ky
2 ky 1.2 1 2 4 AL2 )
M) = -2 [T s,
m 0 Ek 2 8kqs q572/€f
gsguAM* /’“f qs + 2k
M,(g) = 22— k dk In 18
(gs) P T (18)

The NN contributions to the one-loop polarization in- the previous case where only one counterterms is necessary
volve integrals that are divergent. They can be made finiteto render this term finite,
by subtracting the appropriate counterterms[7],

I (q) = 1T (q) ~ CTC. (19)

For the scalar vacuum polarization the counterterms nec-
essary to render this component finite are given by[8],

0
Hﬁf(q) = Hfju( )_q a 2]'_‘[}“/|q =0,M*=M - (21)

All counterterms used here were evaluated by choosing
the renormalization point af? = 0. This choice is suit-
1044% —¢q?. (20) able to describe the effective interaction in the ground state
2 of nuclear matter, wherg? is small. After evaluating the
For the vector vacuum polarization integral we proceed as inintegrals in Eq.(4) we obtain,

]

5 (q) =1IE (q) — a2 — azdho —

2

4
13 |3M7 A+ 13M* —12M*M + =g

*2

I (q) =

(g2 +4M2)Y2 | g, +\/W

_ (22)

26]5 q / 2 +4M*2

and,

*2

M
RF(g,) = —)\Bg;’r2 [12M*2 5% — 3¢2In —

N 3(q2 — 2M*2)\/q2 + AM*2
qs
G + /2 + 4M*2]

qs — \/ @2 + 4M*2

X In

(23)




892

where we takey = 0.

The sum over ring diagrams to all orders produce:
extremely strong polarization, causing an instability in
ground state of nuclear matter. We introduce a free par:
ter x, which scales the coupling constants in the polarize
equations and thereby reduces its effect. For the free m¢
masses we use

ms = 550 MeV and m, = 773 MeV (24)
which reproduce nuclear saturation at a density corresg
ing to a Fermi momentum of 1.36 fm and nuclear a matte

binding energy of 15.75 MeV per nucleon.
We want to analyze the effects on nuclear pairing of

— HFB
-—- HFB+Med.
— - HFB+Med.+Vac.
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Figure 1. Pairing gap including the medium plus the vacuum con-

effective interaction obtained by using the extended mesontribution to the polarization tensor.

propagator of Egs. (1) and (17). We use the pairing model

developed on Refs.[3] and [4]. This model uses a Dirac-
HFB approximation for symmetric nuclear matter that with
Hermiticity and transposition invariance conditions, as well

In Fig. 1, we plot the pairing gap as a function of the
Fermi momentum for values of the free parametet 3.4.
The curve withz = 0 corresponds to the HFB calculation

as the requirements of invariance under Lorentz and parityWith no medium corrections. We note that the medium po-
transformation, reduce the possible form of the self-energy!a”zat'on contribution causes a slight increase of the pair-

in symmetric nuclear matter to

S(k) = £s(k) — v0Zo(k) + 7.kS7(k); (25)
while thel S, pairing field takes the form
A(k) = [As(k) = 7080 (k) — inoT FAT(K)]7.0,  (26)

where the orientation in isospif, is arbitrary. The Dirac
pairing field can be reduced to an effective nonrelativistic
pairing gap function of the form

A=A TN, (27)
where the gap function\; is given by
M* k
Ay = 7 Ag— Ag — ZEAT. (28)

An important feature of the pairing self-consistency

equation is its reduction to a Beth-Salpeter equation in the

vacuum. It has been shown in [4] that the vacuum solution
dominates the behavior of the pairing gap function at low
densities. Thé.S, channel of the two-nucleon system, does
not possess a bound state in the vacuum. Instead it has
virtual state atk, ~ —0.05¢ fm~!. We constrain our cal-
culation to be consistent with this. We introduce a cutoff

in the momentum integrals which we fix, so as to obtain the
virtual state in the correct position.

ing gap. This is because, in the— w model, the polariza-
tion effects enhance the attraction and diminish the repul-
sion between the nucleons. This make the effective nucleon-
nucleon interaction more attractive and yields a larger pair-
ing gap. On the other hand, we note that the vacuum polar-
ization partially cancels this effect, decreasing the medium
contribution We also note in Fig. 1 that the pairing gap in-
cluding vacuum polarization drops more rapidly than the
pairing gap with the medium contribution alone at high den-
sity. This is also a result of the partial cancellation of the
medium contribution by the vacuum one.

The changes in the pairing gap due to the polarization
are opposite those found in the nonrelativstic case. Nonrel-
ativistic calculations [9, 10] have consistently found the po-
larization effect to diminish the pairing gap. To see whether
this is possible here, we analyze the low-density limit of the
polarization equations gt = 0, given by,

2
IL(0,k;) = —g;,jka* (29)
2000,
WOk = %5k M (30)

The scalar contribution is negative while the longitudinal
and mixed ones are positive. Substituting these expression:
on Eq.(15) and expanding the square root, considering the
I1,,, term small when compared ta? — m?2, we obtain,

17,

m2 +1II; — m?2 — II,
1,

m2 4+ 1 — m2 — 11,

a *2

mf,—kl’[l—

2

X m? + 11, +

m (31)

Assuming the meson masses to take their usual values,
the last term on the two expressions is quadratic in the Fermi
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