
Brazilian Journal of Physics, vol. 34, no. 3A, September, 2004 889

Vacuum Polarization Effects in Relativistic Nuclear Pairing
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In the present work we discuss the contribution of the vacuum polarization on the nuclear pairing, in the context
of the relativistic Hartree-Fock-Bogoliubov (HFB) approximation. The polarization effects on the pairing, as a
function of Fermi momentum, is shown with the scalar and vector meson-nucleon coupling constants scaled by
a parameter x. We have obtained that the nuclear pairing is affected by the vacuum polarization.

1 Introduction

Relativistic models of nuclear pairing have been developed
within the framework of mean field theory through the
BCS and the Hartree-Fock-Bogoliubov (HFB) approxima-
tions. A precise relativistic description of pairing correla-
tions, the Dirac-Hartree-Fock-Bogoliubov (DHFB) approx-
imation, was developed by Bailin and Love[1] and, later
applied to nuclear matter[2, 3]. In these calculations the
pairing gaps obtained were found to be much larger than
those furnished in nonrelativistic models by using realistic
potentials. These discrepancies were resolved in Ref.[4], by
associating the pairing vertex function with the low-energy
two-nucleon1S0 virtual state. On the other hand, the HFB
theory is a relatively simple approximation neglecting any
contribution to the nucleon-nucleon interaction beyond the
bare potential. In order to account for many nuclear proper-
ties, it is necessary to go beyond the pure BCS or HFB ap-
proximations and add other effects to the nucleon-nucleon
interaction, such as medium effects on the meson propaga-
tion.

In the present work, we develop an effective relativis-
tic σ − ω nucleon-nucleon interaction that includes RPA
medium modifications of the meson propagator and use it
to study their effect on pairing in the1S0 channel. In norel-
ativistic calculations the medium effects modify the effec-
tive nucleon-nucleon interaction by adding a repulsive term,
thus causing a reduction in the1S0 gap. In Ref.[5] we have
described part of this calculation which did not include the
pure vacuum contribution. This term is divergent and we
must to use a renormalization scheme to render it finite.
We found in that paper that the results were opposite to the
nonrelativistic calculations. Here we have included the vac-
uum terms and have studied their contributions to the meson
propagator and their consequencies on the pairing gap.

2 Relativistic random-phase approxi-
mation - RPA

In this section, we calculate the full meson propagator for
spacelike momenta in the one-loop approximation. Much
of the formalism described here was developed by Chin[6]

and by Horowitz et al.[7]. Due to its lack of covariance,
the nuclear medium allows the mixture of mesonic fields of
different Lorentz structure through the nucleon loops. This
effect is included in the meson propagator as an infinite sum
over ring diagrams, which consist of repeated insertions of
the lowest-order one-loop proper polarization. This diagra-
matic representation including the polarization tensor can be
written analytically using Dyson’s equation for an extended
meson propagator which is given by,

Da
b = Da

0 b + Da
0 c Πc

d Dd
b (1)

whereDa
0 b is the noninteracting meson propagator with in-

dices extending from one to five andΠ is the renormalized
proper polarization tensor. Since we have both scalar and
vector mesons in our model, besides being affected by the
presence of the nuclear matter, the meson propagator must
take into account the mutual interaction of the respective
fields, called scalar-vector mixing. This effect is forbidden
in the vacuum due to covariance. However, it is permitted
in the medium and we will see later that it is important in
the study of nuclear stability. Using the Feynman rules, we
obtain the polarization tensor from the ring diagram. It can
be written as,

Π(q)a
b = −iλ

∫
d4k

(2π)4
Tr[ΓaG(k)ΓbG(k + q)] (2)

whereλ is the isospin degeneracy factor. The vertex func-
tions are represented by theΓ’s that, in theσ − ω model are
given by,Γs = gsI andΓv = −gvγµ with gs andgv the
scalar and vector coupling constants. The nucleon propaga-
tor G(k) may be written, in general, as a sum of Feynman
GF (k) and density-dependentGD(k) contributions as,

G(k) = GF (k) + GD(k),

GF (k) = (γµk?
µ + M?(k))

1
k?2

µ −M?2(k) + iε
,

GD(k) = (γµk?
µ + M?(k))

× iπ

E?
k

δ(k?
0 − E?

k)θ(kF − |~k|) (3)
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wherek?
µ = (k0 − gvV 0,~k) andE?

k =
√

~k2 + M?2. The
Feynman propagator describes the propagation of virtual
particles and antiparticles while the density-dependent term
correctsGF for the propagation of holes inside the Fermi
sea. This term also correctsGF (k) for the Pauli exclu-
sion principle and vanishes at zero baryon density. With the
above form of the baryon propagator, each polarization in-
sertion can be divided into two parts: the Feynman term or
vacuum polarization part and a density-dependent part. The
scalar and vector parts of the vacuum polarization are given
by,

ΠF
s (q) = −ig2

sλ

∫
d4k

(2π)4
Tr[GF (k)GF (k + q)],

Πµ
F ν(q) = −ig2

vλ

∫
d4k

(2π)4
Tr[γµGF (k)γνGF (k + q)].(4)

This term describes the self-energy correction to the meson
propagator due their coupling to nucleon-antinucleon exci-
tations. This contribution to the polarization insertion is di-
vergent and must be renormalized. The density-dependent
part, on the other hand, is finite and is formed of products
of Feynman and density-dependent terms. Its scalar, vector
and mixed parts are given repectively by,

Πs(q) = −ig2
s

∫
d4k

(2π)4
Tr[ GD(k) GF (k + q)

+ GF (k)GD(k + q)], (5)

Πµ
ν(q) = −ig2

v

∫
d4k

(2π)4
Tr[γµGD(k)γνGF (k + q)

+ γµGF (k)γνGD(k + q)], (6)

ΠM
µ (q) = −igsgv

∫
d4k

(2π)4
Tr[γµGD(k)GF (k + q)

+ γµGF (k)GD(k + q)]. (7)

These describe the coupling of the meson to particle-hole
excitations and also correct theNN̄ contribution for Pauli
blocking. The interacting modes are obtained from the poles
in the meson propagator by solving Eq.(1). Solving formally
the meson propagator by inverting Eq.(1) we obtain,

(D−1)a
b = (D−1

0 )a
b −Πa

b. (8)

Since we want to includeσ andω mesons as well as their
mixing, it is convenient to use a meson propagator in the
form of a5×5 matrix. The non-interacting meson propaga-
tor is given by a block-diagonal matrix as,

Da
0 b =

(
Dµ

0 ν 0
0 ∆0

)
, (9)

where the noninteracting propagators for theσ and ω
mesons are given respectively by,

∆0(q) =
1

q2
µ −m2

s + iε
, (10)

Dµ
0 ν(q) =

(
δµ

ν − qµqν

m2
v

) −1
q2
µ −m2

v + iε
. (11)

We can write the polarization tensor in a matrix form similar
to that of Eq.(9).

Πa
b(q) =

(
Πµ

ν Πm
ν

Πµ
m Πs

)
, (12)

Baryon current conservation implies the following con-
straints on the one-loop polarization insertions,

qµΠµ
ν = Πµ

νqν = 0
qµΠµ

m = 0. (13)

To simplify the calculations, it is convenient to work
in a frame in whichq is along the z-axis, that is,q =
(0, 0, q3, q4) with q2

µ = q2
4 − q2

3 . Within this reference frame
and with the symmetry of the loop integrals, the polariza-
tion matrix is constituted of two blocks. A diagonal one,
called the transverse block, and a non-diagonal one, called
the scalar-longitudinal block. Substituting this in Eq.(8) we
obtain a meson propagator matrix where the mass of the
transversal modes is obtained directly from the first block
which has a simple form given by,

m?2
t = m2

v + Πt. (14)

For the scalar and longitudinal modes mass it is necessary to
diagonalize the second block,. The modes are the eigenval-
ues given by,

m?2
l

m?2
s

}
=

m?2
ω + m?2

σ ±
√

(m?2
ω −m?2

σ )2 − 4Π2
m

2
(15)

wherem?2
σ = m2

s + Πs andm?2
ω = m2

v + Πl are the scalar
and longitudinal mass respectively, and

Πl = − (
Π3

3 + Π4
4

)
and Πm =

√
−q2

q3
Π4. (16)

Next we will express the full meson propagator in its spec-
tral form using the eigenvectors obtained obtained above,

Da
b = − ea

1 e1b

q2 −m?2
t

− ea
2 e2b

q2 −m?2
t

− qa
µ qνb/q2

q2 −m2
v

− ηa
1 η1b

q2 −m?2
l

+
ηa
2 η2b

q2 −m?2
s

. (17)

To complete these expressions we must evaluate the one-
loop polarization contribution and obtain the modified me-
son masses. Integrating in the angular variables and taking
the momentum q to be purely, space-like,qµ = (0, qs, 0, 0),
we find
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Πs(qs) =
2g2

sλ

π2

∫ kf

0

k2 dk

Ek

{
1
2
− q2

s + 4M?2

8kqs
ln

qs + 2kf

qs − 2kf

}

Πl(qs) =
2g2

vλ

π2

∫ kf

0

k2 dk

Ek

{
1
2
− q2

s − 4E2
k

8kqs
ln

qs + 2kf

qs − 2kf

}

Πt(qs) = −g2
vλ

π2

∫ kf

0

k2 dk

Ek

{
1
2
− q2

s + 4k2

8kqs
ln

qs + 2kf

qs − 2kf

}

Πm(qs) =
gsgvλM?

qsπ2

∫ kf

0

k dk ln
qs + 2kf

qs − 2kf
. (18)

d

The NN̄ contributions to the one-loop polarization in-
volve integrals that are divergent. They can be made finite
by subtracting the appropriate counterterms[7],

ΠRF (q) = ΠF (q)− CTC. (19)

For the scalar vacuum polarization the counterterms nec-
essary to render this component finite are given by[8],

ΠRF
s (q) = ΠF

s (q)− α2 − α3φ0 − 1
2
α4φ

2
0 − ζsq

2. (20)

For the vector vacuum polarization integral we proceed as in

the previous case where only one counterterms is necessary
to render this term finite,

ΠRF
µν (q) = ΠF

µν(q)− q2 ∂

∂q2
ΠF

µν |q2=0,M?=M . (21)

All counterterms used here were evaluated by choosing
the renormalization point atq2 = 0. This choice is suit-
able to describe the effective interaction in the ground state
of nuclear matter, whereq2 is small. After evaluating the
integrals in Eq.(4) we obtain,

c

ΠRF
s (qs) = λ

g2
s

4π2

[
3M2 + 13M?2 − 12M?M +

4
3
q2
s

− 1
2
(q2

s + 6M?2) ln
M?2

M2

− (q2
s + 4M?2)3/2

2qs
ln

qs +
√

q2
s + 4M?2

qs −
√

q2
s + 4M?2

]
(22)

and,

ΠRF
v (qs) = −λ

g2
v

36π2

[
12M?2 − 5q2

s − 3q2
s ln

M?2

M2

+
3(q2

s − 2M?2)
√

q2
s + 4M?2

qs

× ln
qs +

√
q2
s + 4M?2

qs −
√

q2
s + 4M?2

]
(23)

d
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where we takeq0 = 0.

The sum over ring diagrams to all orders produces an
extremely strong polarization, causing an instability in the
ground state of nuclear matter. We introduce a free parame-
ter x, which scales the coupling constants in the polarization
equations and thereby reduces its effect. For the free mesons
masses we use

ms = 550 MeV and mv = 773 MeV (24)

which reproduce nuclear saturation at a density correspond-
ing to a Fermi momentum of 1.36 fm−1 and nuclear a matter
binding energy of 15.75 MeV per nucleon.

We want to analyze the effects on nuclear pairing of the
effective interaction obtained by using the extended meson
propagator of Eqs. (1) and (17). We use the pairing model
developed on Refs.[3] and [4]. This model uses a Dirac-
HFB approximation for symmetric nuclear matter that with
Hermiticity and transposition invariance conditions, as well
as the requirements of invariance under Lorentz and parity
transformation, reduce the possible form of the self-energy
in symmetric nuclear matter to

Σ(k) = ΣS(k)− γ0Σ0(k) + ~γ.~kΣT (k); (25)

while the1S0 pairing field takes the form

∆(k) = [∆S(k)− γ0∆0(k)− iγ0~γ.~k∆T (k)]~τ .n̂, (26)

where the orientation in isospin̂n, is arbitrary. The Dirac
pairing field can be reduced to an effective nonrelativistic
pairing gap function of the form

∆ = ∆g~τ .n̂, (27)

where the gap function∆g is given by

∆g =
M?

E
∆0 −∆s − i

k

E
∆T . (28)

An important feature of the pairing self-consistency
equation is its reduction to a Beth-Salpeter equation in the
vacuum. It has been shown in [4] that the vacuum solution
dominates the behavior of the pairing gap function at low
densities. The1S0 channel of the two-nucleon system, does
not possess a bound state in the vacuum. Instead it has a
virtual state atKv ≈ −0.05i fm−1. We constrain our cal-
culation to be consistent with this. We introduce a cutoffΛ
in the momentum integrals which we fix, so as to obtain the
virtual state in the correct position.
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Figure 1. Pairing gap including the medium plus the vacuum con-
tribution to the polarization tensor.

In Fig. 1, we plot the pairing gap as a function of the
Fermi momentum for values of the free parameterx = 3.4.
The curve withx = 0 corresponds to the HFB calculation
with no medium corrections. We note that the medium po-
larization contribution causes a slight increase of the pair-
ing gap. This is because, in theσ − ω model, the polariza-
tion effects enhance the attraction and diminish the repul-
sion between the nucleons. This make the effective nucleon-
nucleon interaction more attractive and yields a larger pair-
ing gap. On the other hand, we note that the vacuum polar-
ization partially cancels this effect, decreasing the medium
contribution We also note in Fig. 1 that the pairing gap in-
cluding vacuum polarization drops more rapidly than the
pairing gap with the medium contribution alone at high den-
sity. This is also a result of the partial cancellation of the
medium contribution by the vacuum one.

The changes in the pairing gap due to the polarization
are opposite those found in the nonrelativstic case. Nonrel-
ativistic calculations [9, 10] have consistently found the po-
larization effect to diminish the pairing gap. To see whether
this is possible here, we analyze the low-density limit of the
polarization equations atqs = 0, given by,

Πs(0, kf ) = −g2
sλ

π2
kfM? (29)

Πl(0, kf ) =
2
3

g2
vλ

π2
kfM? (30)

The scalar contribution is negative while the longitudinal
and mixed ones are positive. Substituting these expressions
on Eq.(15) and expanding the square root, considering the
Πm term small when compared tom2

v −m2
s, we obtain,

m?2
l = m2

v + Πl − Π2
m

m2
v + Πl −m2

s −Πs

m?2

s = m2
s + Πs +

Π2
m

m2
v + Πl −m2

s −Πs
. (31)

Assuming the meson masses to take their usual values,
the last term on the two expressions is quadratic in the Fermi
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momentum and thus negligible when compared to theΠl

andΠs terms at low densities. We thus conclude that the
vector meson mass will increase while the scalar meson
mass will always decrease, at least at low density. To re-
produce the nonrelativistic results in our model, we would
have to change the signs of the polarization contributions
thus permitting the scalar meson mass to increase and the
vector meson mass to diminish. Thus, the polarization cor-
rections of theσ − ω model cannot reproduce the nonrela-
tivistic results under any circumstances.

We conclude that particle-hole excitations of the effec-
tive meson propagator make the effective nucleon-nucleon
interaction in symmetric nuclear matter more attractive, and
in consequence, increasing the pairing gap. On the other
hand, nucleon-antinucleon excitaton partially cancels this
contribution. Thus, we show that the simple sum of ring
diagrams of the RPA is insufficient to reproduce the non-
relativistic results. This might be due the pointlikeσ me-
son which make the effective nucleon-nucleon interaction
too atractive. To solve this problem we intend to subtitute
theσ meson by a two pion exchange model including other
nucleonic degrees of freedon such the delta resonance. An-
other soluction would be to consider nucleonic substructure
using a quark-meson coupling model.
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