1158 Brazilian Journal of Physics, vol. 34, no. 3B, September, 2004

Introduction to Statistical Mechanics of Charged Systems

Yan Levin
Instituto de Fsica, Universidade Federal do Rio Grande do Sul
Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil

Received on 10 May, 2004

The paper is the summary of lectures given @o&arlos, Brazil during th2004 Summer School on Statistical
Mechanics. My objective was to provide the students with some basic tools necessary to study the thermody-
namics of Coulomb systems. | have restricted myself to simple models and techniques, which nevertheless,
when used correctly can give a clear insight into the fundamental physics behind various complex phenomena
that appear when the interactions between the system’s constituents are dominated by the long ranged Coulomb
force.

1 Introduction have restricted the presentation to simple models and tech-
nigues, only mentioning in passage the more advanced ap-

Electrostatic interactions are ubiquitous. Yet, our under- proaches, such as integral equations and field theories.

standing of the thermodynamics of these systems is far from  During the preparation of the mini-course | have relied

complete. Even such seemingly simple question as whetheheavily on the recent review which | wrote for the Institute

or not a symmetric electrolyte or plasma can undergo aof Physics Publishing, entitle&lectrostatic correlations:

liquid-gas phase separation has been conclusively resolvedrom plasma to biologyReports on Progress in Physié$,

only very recently [1, 2, 3]. Even though, the universal- 1577-1632, (2002).

ity class of the phase transition still remains a source of

ongoing debate [4]. For strongly asymmetric system such

an aqueous colloidal suspension with monovalent salt even? ldeal gas

the existence of the liquid-gas phase transition still remains

unsettled [5]. For two dimensional plasma, in which ions Lets begin by considering the gas&fnon-interacting par-

interact through a logarithmic potential, in addition to the ticles confined to a box with dimensiodsx L x L. The

liquid-gas phase separation, one also finds a metal-insulatoHamiltonian for this system is

transition, commonly designated as the Kosterlitz-Thouless

transition [6]. The importance of this lies in the fact that 1 & 5 - 5

the phase transitions in many two dimensional models can H= om ij ~ "om Zvj : @

be mapped directly onto the metal-insulator transition of the J=1 J=1

two dimensional Coulomb gas. An example of these are:

the roughening transition of a crystal interface [7], super-

fluid *He films, two dimensional crystalline solids, etc [8].

Besides the question of thermodynamic stability, statis- Hip = B )

tical mechanics of Coulomb systems can lead to a number '

of surprising conclusions [5]. Thus it is actually possible the solution to which can be written in the form of a product

for two like-charged colloidal particles inside a suspension

containing electrolyte to attract one another. The mecha- V(X1, Xp.. XN) = ¢1(x1)d2(X2)..on(xn) . (3)

nism of attraction is purely electrostatic and is not due to

some other, yet unknown, force. Another curious finding, Quantum mechanical particles are indistinguishable, so

is that the electrophoretic mobility of a highly charged col- that the wave function should be symmetric (for bosons)

loidal particle can actually become reversed, if the suspen-or antisymmetric (for fermions) under the permutation

sion contains multivalent counterions. Thus, if the electric of indices. Eq. (3) must, therefore, be suitably sym-

field is applied to the suspension, the particle will driftin the metrized/antisymmetrized following the usual quantum me-

direction opposite to the one expected based on their barechanical procedure.

charge. Substituting Eq.(3) into the Schroedinger equation (35)

The goal of the mini-course was to provide the students we find that functions; (x) satisfy the Helmholtz equation
with the basic tools needed to understand the thermodynam-
ics of charged systems. Because of the time constraint, | V20;(x) = —kj¢,(x) (4)

The wave function (x;,xs2..xy) Satisfies the
Schroedinger equation
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where the eigenvaluk is determined from the boundary where = 1/kgT and Tr is the sum over all the possi-
conditions. If we suppose that the probability of finding a ble quantum states of the particles in the box. The partition
particle outside the box is zero, then the solution to Eq.(4) function can be rewritten as

has the form

N
. . . 1 _8E,
o(x) = Asin(kyx) sin(kyy) sin(k.z) , 5) Q= il H Tr e PP | 9
=1
where to simplify the notation we have dropped the particle !
indexj. The eigenvalu&® = k7 + k) + kZ, where where we first perform the trace over all the accessible quan-
— tum states of a particlg and only then perform the product
ki = L’ , (6) over all the particles. Furthermore, since all fkigoarticles

are indistinguishable and have the same accessible quantum
with i = {z,y,2} and{n;} are the integer labels of the states

guantum states of a particle. For a given distribution of par- Q= 1 T ,ﬁEl)N (10)
ticles among the quantum states, the energy in the box is - NI ( re ’
i\f: 72 XN: where
E=) Ej=——>» k. ) R,
= 2m Br=— (k2 +k2+K2) (11)
The partition function with possible values of; given by Eq.(6). The trace over
1 the quantum states can be done by transforming the sum into
Q= ﬁTr e PE (8) an integral,
]
—BE, o~ e _ (LY [ ~BE,
Qi=Tre = ) ;n e =(z) | dkydkydk.e . (12)
|
The integration can now be easily performed by going to the and the pressure is
spherical coordinates yielding,
oOF
0, = L73 2rm\ ¥/? _ K (13) P = v kgTp , (19)
1 — h3 ﬂ - A3 )
_ For interacting particles the canonical partition function
whereV = L3 is the volume of the box and can be written as
h
A= ———, (14) dp™ dx™
V2rmkgT Qn(V,T) = %Q—BIE , (20)
is the thermal de Broglie wavelength. The canonical parti- '
tion function for V non-interacting particles is then where
N 2
VN . p;
Qn(V.T) = s - (15) E_;%+H(x17xQ,...xN) (21)

The Helmholtz free energy for the ideal gas is ] ] ) ]
andH is the potential energy of interaction between the par-

BF = —InQn , (16) ticles.
which with the help of the Stirling approximation reduces to

BF = Nln(pA®) — N, @7y 3 Symmetric electrolyte

wherep is the density of the particles in the box. Given the
free energy, all the thermodynamic functions can be easily
calculated. For example the internal energy is

Consider the simplest model of an electrolyte solutidf:

ions idealized as hard spheres of diametearrying charge

+¢q at their center confined to volumié& The charge neutral-
OpF 3 ity of solution requires thalv, = N_ = N/2. The solvent

E= B §NkBT ’ (18) will be modeled as a continuum of dielectric constant
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The Hamiltonian for this system is
H= EZ 79 4 EZv(x- ) (22)
2 — |X7;7j‘ 2 — B .
1,3 ¥ K
wherex; ; = [x; — x;|, andv(x; ;) is the potential of hard-
core repulsion between particleand;. Following the com- '
mon nomenclature, we refer to the “Hamiltonian” where in .
reality we mean only the potential part of the total energy. X
The notation is a form of shorthand, since the integration ?
over momenta in the partition function completely decou-

________

ples from the integration over the positions of the particles,

gnd Car! be performed explicitly. Th'“_'s’ the free ene_rgy _Of an Figure 1. The configuration of closest approach between two op-
interacting system can always be written as a combination ofpositely charged ions. The dashed curve delimits the region into
the free energy of an ideal gas, plus the excess contributionvhich no ions can penetrate, due to the hard core repulsion.
coming from the interactions between the particles.

For a bulk, charge neutral system, the electrostatic po- To calculate the electrostatic contribution to the
tential at any poink inside the electrolyte is constant and Helmholtz free energy, let us fix one ion of charge at the
can be set to zero. This means that the mean-field contribu-0rigin » = 0 and see how the other ions distribute around
tion to the free energy vanishes and the excess free energy i§: see Fig. 1. Inside the regidh < r < a there are no
due to positional correlations between the ions of the elec-Other charges except for the one fixed at the origin, and the
trolyte. The electrostatic free energye! = F — Fy, ( Fy electrostatic potentiab(r) satisfies the Laplace equation,

is the free energy when all the electrostatic interactions are 2.
Vp=0. (30)
turned off) follows from,

For r > a the electrostatic potential satisfies the Poisson
—BH .
e_ﬁFez QN fdxlde...dee (23) equation

T QY% [dxidxy...dxye=BHo 4
QY [dxidxs...dxye 0 V3¢ = _ipq(r) , (32)
where N
1 where the charge density can be expressed in terms of the
Ho = 9 Z”OXMD : (24) charge-charge correlation functiogs. (r) = g__(r) and
I g+—(r) = g—4(r)
Lets define ‘
vi(x) =) \ q:x-\ ’ (25) Pq(r) = ap+9++(r) — ap-g+-(r) . (32)
it ' The average densities of positive and negative iong are
as the potential that iofi feels due to interaction with all N, /V,p_ = N_/V; pL = p_ = p/2.
other ions located &fx;}. The average electrostatic poten- The correlation functions can be written in terms of the
tial felt by ionj is potential of mean force;;
1/)' _ fdxldxz"'dXij (Xj)eiﬁH (26) gLJ (T) = ‘7Bwij (’I“) ) (33)
T dxidxs...dxye PH 7 _ _
J dxadxsdxe where3 = 1/kgT. Thew;;(r) is the work required to
and we see that bring ionsi andj from infinity to separation- inside the
electrolyte solution. In their paper Debye anddkel [9]
9 In Qﬁ(l)\/ = —B; . (27) made an implicit approximation_ of replqcing the potential
Jdg;  Qn of mean force by the electrostatic potential
Using the definition of the Helmholtz free energy, Eq. (27) wij(r) = qjdi(r) , (34)
can be written as
oF -y 28) whereg; is the charge of’th ion andg;(r) is the electro-
Jq; 7 static potential at distanaefrom the ion: fixed at the origin

r = 0. With this approximation, Eq.(31) reduces to the non-

Integrating Eq. (28), the electrostatic free energy inside theIinear Poisson-Boltzmann equatioR B),

electrolyte is
4 _ dmpq .

1 V2 = —— [gpye 1% —gp_etP??] = —=sinh(Bg¢) .

P = Ng [ w00 29) | K

0

) o . Debye and kckel proceeded to linearize this equation.
This equation is known as the Debye charging process [9]. Technically, linearization is only valid iigp < 1, how-
ever, being practically minded Debye anddkel linearized
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first and worried about the consequences later. As wasof the standard virial expansion [11]. The total free energy

noted later by Onsager, linearization of Eq.(35) is a neces-of the electrolyte,F', is the sum of electrostatic Eq. (41),

sary step in order to produce a self-consistent theory[10].and entropic contributions. The entropic contribution to the

The linearized Poisson-Boltzmann equation reduces to thefree energy arises from the integration over the momentum

Helmholtz equation degrees of freedom in the partition function Eq. 20, and is
equivalent to the free energy of an ideal gas,

Vi =K, (36)
where the inverse Debye length is BFE = N, In[py A% — Ny + N_In[p_A%] — N_
g_l 47Tq2p (37) = Nln[pA3/2] - N ) (43)
=R = .
P kpTe where the de Broglie thermal wavelength is given by

Eq.(14).

The Laplace equation (30) fer< a« and the Helmholtz The osmotic pressure of the electrolyte is

equation (36) fon- > a must be integrated, subject to the
boundary condition of continuity of the electrostatic poten- OF
tial and the electric field across the boundary surfaeea. P=—ouy (44)
Forr < a the electrostatic potential is found to be
which can also be expressed in terms of the Legendre trans-

p<(r) = 4 _9r ) (38) form of the negative free energy density [2],
er (14 ka)
while forr > a, P=—f+up, (45)
0(ka)e " e where the chemical potential is
o> (r) = 2Blsa)e™™ ;o 0(@) = —— . (39)
er (1+=x)

— 8i = g (46)

Equation (39) shows that the electrostatic potential produced r= ON v  op-

by the central charge is exponentially screened by the sur- ) . .

rounding ionic cloud. Because of the hardcore repulsion It iS @ simple matter to see that belozlv the lcr|t|_cal tem-
the screening, however, appears only at distances larger thaR€raturel. the total free energy” = F<** + F fails to

r = a. This accounts for the presence of geometric factor be a convex function of the electrolytg .concentrauo'n. This
6(ka) in Eq. (39). The screening of electrostatic interactions implies the presence of a phase transition. Alternatively the
inside the electrolyte solutions and plasmas is responsiblePh@se separation can be observed from the appearance of a

for the existence of thermodynamic limit in these systems Van der Waals loop in the osmotic pressure Eq. (45), below
with extremely long range forces. the critical temperatur&,.. The critical parameters are de-

The electrostatic potential (r), Eq. (38), consists of ~ termined from

two terms: the potential produced by the central igar, g—P =0, (47)

and the electrostatic potential induced by the surrounding P

ionic cloud, " a92p 0 48
=L (40) o = (48)

(14 ka)
The electrostatic free energy can now be obtained using the N€ COexistence curve can be obtained using the standard

Debye charging process Eq. (29). While performing the Maxwell construction. It is convenient t02define*the recgiuced
charging, it is important to remember that\q) = Ax(q).  €mperature and density & = kpTae/q” andp” = pa”.
Defining the free energy density gs—= F/V, the integral The critical point of the plasma, within thB H theory, is

in Eq. (29) can be performed explicitly yielding found to be located at [1, 2]

o BF B B (ka)? T = —, (49)
Gf¢ = VT il [ln(naJr 1) — ka+ | 16
(41) and
For large dilutions Eq. (41) reduces to the famous Debye «_ L (50)
limiting law, Pe = Gar -

3 p\3/2 It is interesting to note that at criticality = 1/a. This
Bfel ~ BET ™ (?) . (42) means that in spite of a very low concentration of electrolyte

T at the critical point, the screening remains very strong. We
Given the free energy, the limiting laws for the osmotic pres- also observe that the reduced critical temperature for the
sure and activity can be easily found [2]. electrolyte is almost an order of magnitude lower, than for
The free energy is not analytic at= 0. The singularity systems in which the particles interact by the short-ranged

at p = 0 is a consequence of long-range Coulomb inter- isotropic potentials. Since the critical point within the

actions, which also manifest themselves in the divergencetheory occurs at extremely low density, we are justified in
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neglecting the excluded volume contribution to the total free of the critical exponents, at least for symmetric 1:1 elec-

energy. trolytes. Indeed the most recent simulations suggest that
Phase separation of an electrolyte or of a two compo- the Coulombic criticality belongs to the Ising universality

nent plasma is the result of an electrostatic instability arising ¢/ass [4].

from the strong positional correlations between the oppo-

sitely charged ions. This mechanism is very different from . Ca

the one driving the phase separation in systems dominated4 The Bjerrum association

by the short ranged isotropic forces. In that case the ther- . . .
modynamic instability is a consequence of the competition TheDH theqry presented n t_he previous section was based
on the linearization of the Poisson-Boltzmann equation. In

tsjiitxveen the interparticle attraction and the hardcore repul—vieW of the strong screening and the rapid decrease of the

) electrostatic potential away from the central ion, such a lin-
The reduced temperature can be writteff'as=a/Az,  earization can be justified at intermediate and long distances.
whereAp = ¢°/kpTe is the Bjerrum length. For water at |t js clear, however, that the linearization strongly dimin-
room temperaturép ~ 7 A. This means that one would jshes the weight of configurations in which two oppositely
need ions of size less thani A, in order to observe phase  charged ions are in a close proximity. Linearization underes-
separation at room temperature. This is clearly impossibletimates the strength of electrostatic correlations which result

since the minimum hydrated ionic size is abaut- 4 A.  jn dipole-like structures. At low reduced temperatures char-
Therefore, in order to see phase separation, one is requiregcteristic of the critical point, these configurations should

For water such large values afz correspond to temper-  way of doing this, while preserving the linearity of the the-
atures well below the freezing. An alternative is to work ory s to postulate existence of dipoles whose concentra-
with organic solvents which have dielectric constants sig- tjon is governed by the law of mass action. In the leading-
nificantly lower than water. This was the strategy adopted order approximation the dipoles can be treated as ideal non-
by K.S. Pitzer in his stu'd|es of ionic crltlcallty [12, 13, 14]. interacting specie [17, 18, 19]. The total number of particles
Pitzer used liquid salt triethyl-n-hexylammonium triethyl-n- 7 — pV is then subdivided into monopoles, = p;V
hexylboride(Ns226 B22gs) in the diphenyl ether. With this  and dipolesv, = p,V. The particle conservation requires
he was able to observe the critical point at room tempera-that, N — N1 + 2N,. The free energy of the mixture is
ture. Pitzer's work has provoked a lot of stimulating contro- g — pent | pent | pel whereFe and F¢"* are the en-
versy because his measurements suggested that the Coulorggpic and the electrostatic free energies of the monopoles,
bic criticality belonged to a new universality class [15]. At given by the Egs. (41) and (43), but witi — N; and

first sight this might not seem very surprising, after all the , _, ,  “The entropic free energy of dipoles is,
Coulomb force is extremely long ranged. On further reflec-

tion the situation is not so clear. Although the bare interac- BES™ = Nyln[paA®/Co] — Ny, (51)
tion potential between any two ions is long ranged, inside . . . ) .
the electrolyte solution it is screened by the surrounding Where the internal partition function of a dipole is,
particles, as is seen from Eq. (39). The effective interac- R 82
tion potential, therefore, is short ranged, which should place ¢(R) = 471'/ r2dr exp (q> . (52)
the ionic criticality firmly in the Ising universality class. In a er
fact all the theoretical arguments lead to this conclusion, At jow temperatures, the precise value of the cutBfft
which seems to be contradicted by the Pitzer's experiments.ynich the two ions can be considered to be associated is
In principle, it is possible that one has to be very close t0 ot very important. Following the original suggestion of
the critical point before the Ising behavior becomes appar-gjerrum[17] we can take this value to be the inflection point
ent. However, even this conclusion is hard to justify theo- of the integral in Eq. (52)Rz,; = Ag/2. This choice cor-
retically. Estimates of the Ginzburg criterion suggest that regponds to the minimum of integrand in Eq. (52), which
the width of the critical region for the Coulombic criticality iy turn can be interpreted as the probability of finding two
should be comparable to that of systems with short rangedypnositely charged ions at the separatioriThe minimum
isotropic interactions [1, 16]. The situation remains unclear. then correspond to a liminal between bound and unbound
An alternative to working with electrolyte solutions is configurations. A much more careful analysis of the dipo-
to study molten salts, which are classical two componentlar partition function has been carried out by Falkenhagen
plasmas. In this case the dielectric constant can be taken t@and Ebeling based on the resummed virial expansion [19].
be that of vacuum, and ions are no longer hydrated. TheThey found that that the low temperature expansion of the
reduced critical temperatufB* = 1/16 and the character-  Bjerrum equilibrium constant is identical to the equilibrium
istic ionic diameter of abou? A, imply that at criticality constant which can be constructed on the basis of the re-
Ap =~ 30, which means that the critical point for a molten summed virial expansion. Since we are interested in the low
salt is located at abou#000K. It is, indeed, very hard temperature regime where the critical point is located, the
to study critical phenomena at such high temperatures! ItBjerrum equilibrium constant, = ¢2(Rg;), will be suffi-
seems, therefore, that we are stuck with the low dielectric cient.
solvents. An alternative is the computer simulations, which It is important to keep in mind that at this level of ap-
are becoming sufficiently accurate to allow measurementsproximation the electrostatic free enerdyf™* is only a



Yan Levin 1163

function of the density of free unassociated igns since As before, we shall approximate the potential of mean
the dipoles are treated as ideal non-interacting specie. Thdorce by the electrostatic potential and then linearize the
concentration of dipoles is obtained from the law of mass Boltzmann factor. Fixing one ion at= 0, the electrostatic

action potential for distances < « satisfies the Laplace equation
M2 = pg + p— (53) Cu
where the chemical potential of a spesiis Vi = —T'5(X) ) (58)
_oF (54) while for » > a the potential satisfies the Helmholtz equa-
Hs = anN, Iv - tion V2¢ = k24, with the inverse Debye length now given
b
Substituting the expression for the total free energy into the y .
law of mass action leads to o — Cagq®p (59)
1 k?BTE ’
p2 = 1/’142 et (55) wherep = p, + p_. These equations must be solved sub-
_ o ject to the boundary conditions of the continuity of the elec-
where the excess chemical potentialis = 9/ /9p;. trostatic potential and the electric field across the excluded

The critical point can be located from the study of the con- yolume region. For < a, Eq. (59) can be easily integrated
vexity of the total free energy as a function of ion concentra- yielding

tion p. There is, however, a simpler way [2]. We observe that q 1

at Bjerrum level of approximation, dipoles are ideal non- ¢<(r) = e(d —2) r(d-2) +y. (60)
interacting specie. This means that they are only presen . -

as spectators and do not interact with the monopoles in an;F orr = a the electrostatic potential is
way. This implies that only the monopoles can drive the b= (r) = AG(r) (61)
phase separation. Thus, at the critical point the temperature

must still beT; = 1/16 and the density of monopoles must whereG(r) is the solution of

still remainpi, = 1/64m, as in the case of the puie H

theory. The corresponding density of dipoles at criticality VG — K*G = —4(r) . (62)

is then given by Eq. (55), with* = 1/16 = 0.0625 and ) ) )

Pi. = 1/64m = 0.00497. We find that at the critical point The integration constantg a”?' A are detgrmmed from
the density of dipoles i3, ~ 0.02. In the vicinity of the the boundary conditions. Taking the Fourier transform of

critical point there are many more dipoles than monopoles, Ed- (62) we obtain,

5./ Pi. = 4. Within the Bjerrum approximation the non- e—iar g

linear correlations, in the form of dipoles, do not affect the G(r) = /ﬁ—qd . (63)

critical temperature, but strongly modify the critical density, g + K2 (2m)

pe = pic + 2p3. = 0.045. In spite of the crudeness of 14 perform the integration we rewritg as

approximations, the location of the critical point agrees rea-

sonably well with the Monte Carlo simulations [20, 3, 21], da [ (s —iqr
* * H G(r) = — dae q ar

Tr = 0.051 andp} = 0.079. The coexistence curve, how- 2m)d J,

ever, is found to have an unrealistic “banana” shape [2]. . o _ _

To correct this deficiency one must go beyond the “ideal” Interchanging the limits of integration,

dipole approximation and allow for the dipole-ion interac- ] . oo

tion [1, _2]. Most of the fundamental physics of electrostatic G(r) = 7{1/ daeo" / dqldqg...dqde*aqgfiq'r )

correlations, however, is already captured at the level of the (2m)? Jo —o0

Bjerrum approximation. _ . (89)
The integral overy can now be done easily since it involves

only integration of decoupled Gaussians,

(64)

5 Plasma in d-dimensions

Gir) — 1 * dae™* "1 66
The theory presented above can be easily extended to ar- (r) = (4m)d/2 [, ad/? ’ (66)
bitrary dimensions [22]. Specifically in d-dimensions the
Poisson equation becomes, The above integral can be performed using the modified
Bessel functions, yielding
C
Vi =——"p,, (56) . 1 mydr .
(r) = (2m)4/2 (;) g71(’f7”) : (67)
where i
Cy = 2 (57) The boundary conditions determine the integration constants
I'(d/2) to be,
is the surface area of sphere in d-dimensio@s: = 2, 4-=1 (2m)%2 (68)

Cs = 4w, Cy = 272, etc T e (m)d/zK% (ka)



1164 Brazilian Journal of Physics, vol. 34, no. 3B, September, 2004

and Not withstanding the apparent complexity of the Eq. (70),
B q Kg_z(m) (69) the integration can be done explicitly using the identities re-
Y= T eqd—2 (d—2)Ka(rka) " lating Bessel functions of different orders. The electrostatic

) . free energy density for a d-dimensional plasma is found to
The free energy can now be obtained using the Debye charghe [22]

ing process
o N¢? 1 /\K%_Q()\/-@a)d)\
== (d — 2)ead—2 /0 Ka(Aka) (70)
|
ol 1 Ka\ /2 (ka)?
Bl = g {(d 2)In {cd (5) Kg(na)] +35 } . (71)
|
Ind =3, C3 = 4, in Eq. (71) becomes,
2
Ks(z) = \/ge_m {x_l/Q + $_3/2} . (72) Bret = 27rla2 {ln[’iaKl(’W)] + (/;c;) } : (73)

. i The second term of Eq. (73) diverges in the limit that
and the free energy density reduces to the one found earliers _, ; This divergence of the free energy, however, does
Eq. (41). not influence the pressure which remains well defined. This

Itis now possible to study the thermodynamic stability is becausgra)? ~ p, which means that the contribution
of a general d-dimensional plasma against a liquid-gas phasgg the electrostatic free energy coming from this term is vol-
separation [22]. A particularly interesting case is a plasma yme independent, and will vanish when derived with respect
in two dimensions, to which we shall now turn our attention. o volume. In fact it is quite straightforward to see the origin

of the divergence appearing in Eq. (73). Recall that the bare
Coulomb potential between two ions in the d-dimensional

6 Two-dimensional plasma and the electrolytels,

Kosterlitz-Thouless transition o(r) = # , (74)

The 2d plasma has attracted much attention over the yeargee Eq. (60). In the limid — 0, Eq. (74) can be expanded
because various important physical systems can be mappegh powers ofs yielding

directly onto it. Examples include superfldide films, two-
dimensional grystalline solids, andY magnets [8]'. Al- . o(r) = qiqj (1 () + 0(5)) . (75)
though a continuous symmetry can not be broken in two di- €

mensions [23], if the Hamiltonian of a system is invariant . N
under an Abelian group, a finite temperature phase transitionTherefore’ thg divergence appearing in Eq.(73} can be tracec
! back to the divergence found in Eq. (75). This divergence

is possible. This transition occurs as the result of unbinding is easilv renormalized away by redefining the point of zero
of the topological defects or “charges”. The defect-mediated y y by 9 P

phase transitions belong to the universality class of the two-Potential. Thus if in d-dimensions the bare electrostatic po-
dimensional plasma tential is redefined as [22]

Thirty years ago Kosterlitz and Thoule$&T") have (r) = — qiq; 11 (76)
presented a renormalization group study of the 2d wir) = e(d—2) \rd-2  qd-2)°
plasma [6]. They concluded that at sufficiently low tem- o ) ] .
perature, the 2d plasma becomes an insulator. All the posi-t_he .I|m|t 0 — 0is well defined, and the electrostatic poten-
tive and negative ions pair-up forming dipoles. The metal- tial in 2d reduces to
insulator transition was found to be of infinite order, char- _ 945 1
acterized by an essential singularities in the thermodynamic wlr) = n(r/a) .

:‘unc_nonsa Th? _KT an da_ly_S|s, hO\INever,hwar? restrlctedhto tf;]e Within the Debye-Hickel approximation the free energy for
ow ionic densities and it Is not clear what happens when t ©particles interacting through this potential is finite and is

concentration of charged particles is increased. To study th'sgiven by

we can apply to the 2d plasma the theory developed above. o 1
Lets define) = d—2, then in the limity — 0 the free energy Bf¢ = 55 Infwak(ka)] - (78)

(77)
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The electrostatic contribution to the chemical potential and The thermodynamic equilibrium requires that for fixed vol-

the pressure can now be calculated. We find ume and number of particles the Helmholtz free energy be
minimum. This is equivalent to the law of mass action
Budt = opf! _ _ka Ko(ka) (79) Eq. (53), which upon the substitution of free energy sim-
+ Op+ dmp* K1 (ka) plifies to Eq. (55). In the limit of small concentrations, the
excess chemical potential can be expanded in powers of
and yielding
. 1 ka Ko(ka ~
BPq? = 5 In[ka K1 (ka)] + e Klgfwg , (80) Buc® = _27{* [ve + In(ka/2)] , (87)

where the reduced density and temperature in 2d are definedVhereyz is the Euler constant. Substituting Eq. (87) into
as:p* = pa? andT* = kpTe/q?, respectively. In the limit ~ EQ. (55), we find that the concentration of dipoles in the

of large dilutionp — 0, the pressure inside the plasma is limit p — 0 scales as
0(T*)
1 p2 ~ p 5 (88)
BPa? = (1 - ) p*+0(p?) . (81) !
AT where .
We observe that fol* < 1/4, the pressure at low density 0T") =2~ 57 - (89)

of electrolyte is negative, signifying presence of a thermo-

dynamic instability. The critical point is located gt = 0 1 — 0 the law of mass action can not be satisfied. This

andTF = 1/4. ForT < 1/4 the 2d plasma phase sepa- : :
¢ L c . means that in the temperatur nsi I *), for
rates into two coexisting phases one of which has zero den- eans that in the temperature density pla#e, p*), fo

. - ; L sufficiently small densities, the lifE* = 1/4 corresponds
rsrlltz)i/d[:Z]- This is clearly an artifact of the approximations to the critical locus of metal-insulator transitions. Below this
" , . - line, and for sufficiently small ionic concentrations, no free
While the pebye—HckeI theory is sulficient to account monopoles can exist. All the ions are paired up into neutral
for glectrostauc _correlauons on Ipng length scales, due tOdipolar pairs. The critical line terminates at the tricritical
its linear nature it fails for short distances. On short length _ . .
. . . point located aff’;,, = 1/4 and
scales, the correlations manifest themselves in the form of
dipolar pairs of positively and negatively charged ions. As . e~4E
in the case of 3d electrolyte we should, therefore, separate Peri = g =~ 0.003954 . (90)
the total density of hard discs into the density of monopoles . )
p1, and dipolesps, so thatp = p1 + 2p». At the level ForT™ < 1/_4 andp* > p;,; there is a phfase separation
of Bjerrum approximation the dipoles are treated as ideal P&tWeen an insulating vapor and a conducting liquid phases,
non-interacting particles. The electrostatic free energy thenF19- 2.
comes only from the interactions between free un-associated
ions, and is given by Eq. (78) with

2m¢*p1
= ’/ . 82 *
a kgTe (82) TKT

For T < 1/4, the exponend(T™*) < 0, and in the limit

conductor

The total free energy density fs= ™ + f5™ + fe, _ p>0

where insulator 1

BIT™ = prIn[p1A?/2] — py (83) /=0
and

815" = p2nfpaAt/Ca] — pa . (84)

\
The internal partition function for a 2d dipole is o) o
R Bq? r Figure 2. Phase diagram for the two dimensional plasma within the
G(R) =2m rdr exp T In (*) . (85) Debye-Hickel-Bjerrum approximation. We expect the fluctuations

to renormalize the Kosterlitz-Thouless line, shifting it from its hor-
izontal position and making it density dependent. The topology of

We note that for low temperatureB; < 1/2, the integral in the phase diagram should, however, remain the same.

Eq (85) converges uniformly & — oc. In this regime it is
possible, therefore, to define the internal partition function  As the critical line is approached from high tempera-
of dipole as tures, the Debye length diverges as

2%
¢ = Cofoo) = 27T (86)

1—27" " ¢p =kt~ e/ (91)
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where located at: = 0 between the two dielectric half-spaces. For
c(p) = lln Ptri 92) z < 0 the dielectric constant is and forz > 0 the dielec-
Pr=3 p )’ tric constant is». Since the half-spaces do not contain any

free charges, the electrostatic potential everywhere satisfies
T_T the Laplace equatioW?¢ = 0. The electrostatic free en-
KT . . .. . .

=7 (93) ergy is obtained by fixing one particle and calculating the
N . i induced potential resulting from the redistributions of other
The critical exponent i’ = 1. The Kosterlitz-Thouless  jons in thez = 0 plane. Itis convenient to adopt the cylin-
(KT) renormalization group theory [6] predict the same be- grical coordinate systento, ¢, z), so that the fixed ion is
havior for¢{, except thaty = 1/2. The KT theory, how-  |gcated ap = 0, » = 0. Using the azimuthal symmetry and
ever, leaves unanswered the question of what happens to thiye fact that the electrostatic potential vanishes at infinity,

metal-insulator transition for higher plasma concentrations. ihe solution to Laplace equation can be written as [31]
The current theory, on the other hand, shows that the critical

line terminates in a tricritical point, after which the metal-

insulator transition becomes first order [22]. This topology

is also consistent with the findings of Monte Carlo simula-

tions [24, 25]. A more sophisticated theory introduced by and

Minhagen [26], leads to a very similar phase diagram, ex- oo

cept that the tricritical point is replaced by a critical end-  ¢,(p, 2) = / As(k)Jo(ko)e ™ dk for 2>0 |,

point. 0 95
We see that the electrostatic correlations are even more here.. is the B | functi f ord (95)

important in 2d than in 3d. While in three dimensions the w eTrre]z (}(I) IS ; eksse dLj:;C ;ﬂon 0 obr %r Z€r0. df

electrolyte phase separates into the coexisting liquid and ga§he € functionsd, (k) and A (k) can be determined from

phases, both of which contain monopoles and dipoles, in two bogndary gond|t|ons, which are: continuity of the elec-
)}rostatlc potential,

and
t

b1(0,2) = ooAl(k)Jo(kg)ekz dk for z<0, (94)
0

dimensions the low density vapor phase does not contain an
free charges and is an insulator. $2(0,0) = 61(0,0) (96)

. and discontinuity of the displacement field acrosszhe 0
7 Confined one Component plasma plane. The discontinuity results from the inhomogeneous
distribution of interfacial charge induced by the fixed ion,
In 1971 Crandall and Williams suggested that electrons
trapped on the surface of liquid heliufHe can crystal- [e2E2(0, 2) — e1Eq1 (0, 2)] - v = 4moq (o) - (97)
lize, forming a two dimensional Wigner crystal [27]. Eight
years later this order-disorder transition was observed experFrom charge neutrality thaverageinterfacial charge is
imentally by Grimes and Adams [28]. In this system elec- zero, so that, (o) is the result of ionic correlations,
trons obey the classical mechanics, since the Fermi energy
@s muc_h sma_llerthahBT. Similar crystallization can occur q(0) = M _ g0 + qoePa90) (98)
in the inversion layer near the surface of a semiconductor, 2mo
however, in this case the quantum effects are important an
the electrons form a degenerate quantum gas [29].

The trapped electrons above the ligélde can be mod-
eled as a confined quasi-two-dimensional plasma of parti-
cles interacting byl /r potential. This model is also appro-
priate for the study of correlations between the condense
counterions on the surface of colloidal particles.

dThe first term of Eq. (98) is the surface charge density of
the fixed ion, the second term is due to the uniform negative
background, while the last term is the surface charge density
of ions confined to the interface. We have, once again, ap-
dproximated the potential of mean force by the electrostatic
potential. In the spirit of Debye-titkel theory we shall now

The average spacing between the confined electrons i%i)nearize the Boltzmann factor. The surface charge density

d = (mo)~Y/2, wheres is the average surface density, "ECOMes 45(0)  ed(0,0)
o = N/A. The dimensionless quantity parameterizing the oq(0) = 50 9 )\’ , (99)
strength of electrostatic interactionslis= ¢2/ekpTd. For Te TAGC
an infinitesimally thin layer separating two mediums of di- Where

kBTG

electric constants; ande,, the important parameter is the Aao = 7 (100)

average dielectric constant= (e; + €2)/2. It has been ob- 2nq*o

served in computer simulations [30] that the@d'P crys- is the Gouy-Chapman length.

tallizes into triangular Wigner crystal fdr > 130. This The continuity of the electrostatic potential requires that

value is also in a close agreement with the experiments of 4, (k) = A,(k). Substituting Egs. (94) and (95) into

Grimes and Adams. Eq. (97) and using Eq. (99), we find the electrostatic po-
We can gain much insight into thermodynamics of 2d tential over the full range-oco < z < oo to be

OCP using the, now familiar, Debye-itkel theory. Our By

model consists of a plasma of point particles of chayge _4q > —k|z|

and of a neutralizing background, confined to an interface ¢(e,2) = € /O k+ Ao Jolke)® k- (101)
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For z = 0 the integral can be performed explicitly yielding  potential felt by the central ion due to other particles. In the
limit ¢ — 0, the electrostatic potential reduces to

q7o(0/Acc)
= 102
o) =" (102) 6(0,0)~ L+~ In(g/22cc) . (105)
€0 EAGC
where the functions, (=) are defined as [32], The first term of this expression is the potential produced
- by the central ion, while the second term is the induced po-
(w) = 1— Uy [H, () — N, ()], (103) tential felt by the fixed ion. We note that the induced po-

tential is actually divergent in the limig — 0. This is a
_ ) consequence of the failure of linearization of the Poisson-
with H,(z) and N, (z) being the Struve and the Bessel Bgjtzmann equation. The linear equation allows for a much

functions of order, respectively. For large values of closer mutual approach between two ions, than is actually
70 & 1/22, so that asymptotically, possible. A suitable cutoff must, therefore, be introduced
) into the linear theory to to account for the omitted non-
#(0,0) ~ (e ) (104) linearity of the Boltzmann factor. It is reasonable to pos-
€0? tulate that the distance of closest approachetween the

two ions is such that their electrostatic energy of repulsion is

We conclude that in the case of a confined plasma there is;omparable to their characteristic kinetic (thermal) energy,
no exponential screening, instead the electrostatic potential

is purely algebraic and has the form of a dipole-dipole inter- C kT 106
action [33]. eh VB (106)
There is a well known argument in the condensed matter
physics going back all the way to Bloch [34], Peierls [35]
and Landau [36] in the 1930’s, which states that a continu-
ous symmetry can not be broken in two dimensions. This
means that there can not exist a true two dimensional crys- . 4
talline order, since it requires breaking translational sym- v I Nele. In(As/2ac) (107)
metry. The argument was made rigorous by Mermin, who
proved it for particles interacting by short-ranged poten-
tials [23]. Itis quite simple to see how this conclusion arises.
Suppose that there is a 2d crystal, one can then calculate th
mean-square displacemefitof one particle from its equi-
librium position due to thermal fluctuations. It is found that
5% ~ T'In L, whereL is the characteristic crystal size. For BFe )
L — oo, the mean square displacement diverges for any fi- — (). (108)
nite temperature, implying that in thermodynamic limit a 2d , i )
crystal is unstable to thermal fluctuations. Although there is Ed- (108) is precisely the leading order term of the resumed
no true long-range order in two dimensions for systems with Virial €xpansion obtained by Totsuji [37, 38]. _
short-range forces, there exists a pseudo-long-range order Forlow temperatures, theC'P crystallizes into a trian-
characterized by an algebraically decaying correlation func-9ular lattice. The Madelung energy of this lattice is,
tions. Itis not clear, however, to what extent this conclusion BU
applies to the 2dC P, whose particles interact by a long- —~ = —1.106103I". (109)
rangedl /r potential. Certainly in this case Mermin’s proof
is no longer valid. However, since the effective interaction This equation provides a surprisingly good fit not only for
potential inside a 2d)C'P decays ad /3, which is short- the free energy of solid, but also for the free energy of fluid
ranged in two dimensions, suggests that there should not bét sufficiently high values of’. Comparing to the results
any long-range order. Whether there is a true long-range©f the Monte Carlo simulations [30] we find that fbr= 5
order or a pseudo-]ong_range order for a€@ P remains the error accrued from using Eqg. (109) to calculate the total
uncertain. Simulations find that fr ~ 130 there is a crys-  €lectrostatic free energy is abdit’o. ForI" = 20 this error
tallization transition. It is, however, difficult to say whether drops to11% and forl" = 50 it goes down ta6%. Recall-
the crystalline state has a true long-range order or a pseudolnd that the crystallization transition occurslats 130, we
long-range order [30]. It is also unclear if the transition See that the Eq. (109) works well into the fluid phase. It is
is of first order or continuous, belonging to the Kosterlitz- reasonable, therefore, to approximate the electrostatic free
Thouless universality class [6, 8]. Existence of the thermo- energy of a fluid fod” > 5 by
dynamic limit for confined 2d plasmas can also be attributed el
to the effective renormalization of the interaction potential
from a non-integrablé /r to integrable (in two dimensions) N
1/r3 form. The reason why the electrostatic free energy of a fluid is so
The Helmholtz free energy of a 2d plasma can be ob- well approximated by the free energy of the crystal, is a con-
tained directly from Eq. (102). We need to know the induced sequence of strong electrostatic correlations.

2

This means thatt ~ Ag. We can use this value as the short-
distance cutoff in the calculation of free energy. The induced
potential then becomes

The free energy is obtained through the usual Debye charg-
ing process, Eq. (29). Recalling thag(\g) = A2Ap(q)

and A\cc(\q) = Agc(q)/A\2, where is the charging pa-
?ameter, in the limit of high temperaturés — 0, the re-
duced free energy per particle is found to be

= —1.106103T . (110)



1168 Brazilian Journal of Physics, vol. 34, no. 3B, September, 2004

8 Asymmetric systems 9 Colloidal suspensions

Up to now we have considered only symmetric plasmas andA typical_colloidal suspension often studied exper_imen-
electrolytes. In practice, however, it is unlikely that both t@lly consists of poly3styren4e_su!phonate spheres of diameter
cations and anions have exactly the same size and magnil07m — Lum and10° — 107 ionizable surface groups. Be-
tude of charge. It is, therefore, important to explore the ther- c@use of the large surface charge, the colloidal particles tend
modynamics of a generd : 1 electrolyte in which cations 0 repel each other, forming crystals, even at fairly low vol-
have chargeZq and diameter.., while anions have charge UMme fraction of less thah0%. Using the periodic structure
—g and diametet,. Unfortuna;[ew’ as soon as the asymme- of the lattice, the thermodynamics of a colloidal crystal can
try is introduced, the internal inconsistency enters into the Pe studied fairly straightforwardly. Each colloidal particle
Poisson-Boltzmann equation [10]. Recall that the cation- €N be thought to be confined to a Wigner-Seitz (WS) poly-
anion correlation function can be expressed in terms of thenedral cell. Afurther approximation replaces the polyhedral
potential of mean forcer, _ WS cell by a sphere [39].

g (r) = e Po-() (111) 9.1 Colloidal lattices

We shall model the colloidal particles as hard spheres of ra-
diusa carryingZ ionizable groups of chargeq distributed
uniformly on the surface. The counterions will be ideal-
ized as point particles of chargeq. The suspension of
N, = p,V polyions andN. = ZN, = p.V counteri-
ons is confined to a volumE. As usual, the solvent will
g—(r) =g-4(r) . (112)  be treated as a uniform continuum of dielectric constant
For sufficiently large polyion concentrations colloidal sus-
The Poisson-Boltzmann equation, which serves as the basispension crystallizes. Using the lattice symmetry, we restrict
for the Debye-Huckel theory, approximates the potential of our attention tanecolloidal particle and its counterions in-
mean force byw, _(r) = q_¢(r). The self consistency side a sphericdli’ S cell of radiusR such that
condition, Eg. (112), then requires that

The w,_(r) is the work needed to bring cation and anion
from infinity to separatiorr inside an electrolyte. Clearly
this work is invariant under the permutation of particle la-
belsw, _(r) = w_,(r). This means that

1
G- (r) = g4 (). (113) R
Because of the non-linear nature of thd3 equation this The osmotic pressure inside tHes cell is
condition can not be satisfied except for symmetric elec- OF 1 9Q
trolytes. The linearization prescription intrinsic to the pr = TV T mREQOR (115)
Debye-Hickel theory allows Eg. (113) to hold for ions of
different valence, but with theame ionic diametera, = where the canonical partition function is
Qg -
We see that as soon as the symmetry between the cation 1 R R R BH(x1.%9..%2)

. - . . = — dxq dxs... dxze 1,X2--%2)
and anions is broken the physics and the mathematics of the A3Z 7)), . "
problem becomes significantly more complex. In the limit (116)
of very large asymmetriesy, — oo anda. > a, a new Using the chain rule and the fact that all the patrticles are
simplification, however, enters into the game. identical,

|
aQ 47TR2 R R f —BH(R,x3...X
@ = /W—l)'l dxgl dX3..../a dXZe (B.x2 z) . (117)
[

On the other hand, we recall that the concentration of coun-tain [40],
terions at thé¥ S cell boundary is BP = p.(R) . (119)

The thermodynamics of a crystalline colloidal suspension
now reduces to the calculation of the distribution of coun-
_ terions inside théV' S cell. This can be achieved using a
faR dxy faR dxs... faR dx ze—PH(x1.xz2..xz) simple mean-field picture. The electrostatic potential inside
(118) the WS cell satisfies the Poisson equation (31), with the
Substituting Egs. (117) and (118) into Eq. (115) we ob- counterion charge density approximated by the normalized

) = g i L [ e S x
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spherically symmetric Boltzmann distribution, At lower concentrations, when the crystalline structure
has melted the situation, unfortunately, is no longer so clear
e~ Pasr) (120) cut. In this case a simple picture based on the Wigner-
A7 faR r2dre—Bad(r) Seitz cell is not sufficient and new methods must be devel-
oped [41, 42]. Unfortunately the standard techniques of the
The non-linear Poisson-Boltzmann equation can be Jiquid state theory based on integral equations are power-
solved numerically to yield the electrostatic potential and |ess in the case of highly asymmetric colloidal systems. The
the distribution of counterions inside the cell. In practice it field theoretic methods also fail when applied to this diffi-
is more convenient to work with the electric field cult problem [5]. Furthermore, even the experimental sit-
uation is far from clear. Ise and coworkers claim to have
E(r) = -Vo(r). (121) seen stable clusters of colloidal particles in highly deion-
ized colloidal suspensions. Tagd al. even report an ob-
servation of a full equilibrium vapor-liquid-like phase sep-
4T aration [43]. These experiments, however, have been chal-
= ?[Pq(r) +ap(r)], (122) lenged by Palberg and ¥vth, who demonstrated that the
phase separation observed by Taetaal. was the result
of non-equilibrium salt gradients produced by the ion ex-
Zq change resin [44, 45]. In the colloidal science community
~ 2ol = a)l. (123)  the possibility of a liquid-vapor phase separation in highly
deionized colloidal suspensions has met with a large amount
To simplify the calculations we have uniformly smeared the of scepticism. The usual argument against the phase tran-
charge of the polyion over its surface. Integrating both sidessition is based on the Derjaguin-Landau-Verwey-Overbeek
of Eg. (122) and taking advantage of the divergence theo-(DLV O) colloidal pair potential [46, 47].

pq(r) = ZqN,

The Poisson equation can then be rewritten as
V- E(r)

whereg,(r) is the polyion charge density,

qp(r) =

rem, the electric field at distanedrom the polyion is It is easy to understand the nature of th& VO po-
1 tential based on the Debyetiekel theory. If the size of
E(r)=-—[Zq—a(r)] , (124) colloidal particles is shrunk to zera, — 0, then due to
r screening by counterions, the interaction energy between
where two “point” colloids would be of a Yukawa form,
ot = [ dp,(x) (125) e
] <r Volr) = (Zg)*“— | (129)

is the counterion charge inside a sphere of radiosntered e

on the colloidal particle. Using the gauge in whigfu) = 0 where the inverse Debye length is
the electrostatic potential is

" 1 |AnZ¢?p
o(r) = — / drE(r) (126) p =r= \/E : (130)

and the Poisson-Boltzmann equation reduces to an integraNOW: consider the electrostatic potential outside the fixed
equation for the electric field. Note that Eq. (124) naturally colloidal particle of radius and charge-Zg, Eq. (39)
incorporates the boundary conditions

‘e 02r) =~ T gy = s a3
E(a)=-=— (127)
@ Evidently the factoP(xa) accounts for the fact that screen-
and ing starts only outside the cavity,> a. We also can think
E(R)=0. (128)  of Eq. (131) as the potential of a point particle with an effec-

tive chargel), = Z¢f(xa). An advantage of this alternative

Eq. (124) can be solved iteratively to yield the counterion "% oD | _ ; X
point of view is that the interaction energy for two “point”

density profile from which all other thermodynamic func- . o . h -

tions are straightforwardly determined. particles is simply given by Eq. (129) withg — Q,. This
For aqueous colloidal lattices with monovalent counteri- €2ds directly to the famouS LV O potential

ons, the Poisson-Boltzmann equation is in excellent agree- —rr

ment with the experiments and simulation. TR equa- Vbrvo(r) = (Zq)292(m)e

tion, however, does not account for the correlations between

the counterions and breaks down for low dielectric solvents This potential is purely repulsive [48], which naively sug-

or for aqueous suspensions with multivalent ions. Fortu- gests that a charged colloidal suspension is stable against

nately, in the case of colloidal lattices, it is fairly straightfor- a liquid-gas phase separation. Sogami and Ise, therefore,

ward to account for these effects using the density functionalhave argued that th&® LV O potential must be incorrect,

theory. since it cannot account for the inhomogeneities observed

(132)

€r
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experimentally [49]. In its stead, they proposed a differ- The second integration yields [55]

ent interaction potential derived on the basis of the Gibbs

free energy. The potential found by Sogami and Ise con- 2kpT . 14 e " tanh(Bqus/4)

tains a minimum [49], which implies that at short enough () = q In—— tanh(Bqws/4) ’

separations the two like-charged colloidal particles attract!

What is most surprising is that the attraction appears evenwhere the inverse Debye length is,

for monovalent counterions, i.e in the absence of strong cor-

relations between the colloidal double layers. Furthermore, k= \/8TcAp . (136)

water is an incompressible fluid so that it is difficult to see

how a change of paradigm from Helmholtz to the Gibbs free |, the jimit of large surface potentials this expression sim-

energy can lead to such a profound modification of the in- plifies to

teraction potential. Inconsistency in the results based on the o

Helmholtz and the Gibbs free energies has been carefully o(z) = 2kpT In 1+ 6_ - (137)

reexamined by Overbeek, who has traced the discrepancy to q L—emr

a flaw In the Sogami and Ise’s calculatlons.[SO]. _ For separations from the plane larger than the Debye length,
It is important to stress that the repulsive two-body in- Eq. (137) becomes

teractions do not, in general, preclude the possibility of a

liquid-gas phase separation in a multicomponent fluid. In AkpT

fact van Roij and Hansen found, within the linearized den- P(x) =

sity functional theory, that it is possible for a colloidal sus-

pension with polyions interacting by the repulsitd.V O An important observation is that for large surface potentials,
potential to phase separate into coexisting liquid and 98S3.4,. /4 > 1, the electrostatics away from the plane is com-
phases [51]. Before entering into the discussion of colloidal pletely insensitive to the surface charge density.

m?]fa\tc's'nmietrﬁérzgﬁgigg (t;ck:;?troduce a rll_ewt.funda- Now, let us consider a highly charged colloidal particle

P g€ renormatization. of valenceZ and radiuse inside a symmetrid : 1 elec-

trolyte of concentratior. The electrostatic potential at dis-

9.2 Charge Renormalization tancer from the center of a colloidal particle satisfies the
PB equation (35). For distances> a + £p the electro-
static potential is small and thBB equation can be safely
linearized leading to the Helmholtz equation (36). This can
be easily integrated yielding the electrostatic potential,

(135)

eTrT (138)
q

Although the non-linear Poisson-Boltzmann equation can
not be solved analytically for a spherical geometry, the nu-
merical solution indicates that the electrostatic potential far
from colloidal particle saturates as a function of the bare col-
loidal charge [39]. This suggests that the thermodynamics
of a highly charged colloidal systems can be based on the o(r)=A , (139)
linearized PB equation but with the bare colloidal charge
replaced by an effective renormalized charge. The orig-here 4 is the integration constant. To find its value, lets
inal concept of colloidal charge renormalization is due to restrict our attention to suspensions in which ghe < a.
Alexander et al., but is well predated in the polyelectrolyte |, o4 ctice this is not a very strong restriction. For salt so-
Iiteraturfa, where the p_henomenon is known as the Manninglutions at physiological concentratiofis ~ 8 A while the
counterion condensation [52, 5_3’ 54]. __ characteristic colloidal size is on the orderiobo A. Even

To understand better colloidal charge renormalization, for solutions with very low salt content, in the M range,
let us first consider a uniformly charged plane at fixed po- yhe pebye length is on the order 0 A. Under these con-
tentialq) inside a salt solution of concentrationThe elec-  iiong all the curvature effects associated with the spheri-
trostatic potential at distancefrom the plane satisfies the .5 yeometry of colloidal particle are effectively screened at

PB equation, separations + ¢p < r < 2a, and the electrostatic potential
2¢(z)  8meq is well approximated by that of a uniformly charged plane,
= . sinh(8q¢) . (133)  Eq. (138). Comparing Egs. (138) and Eq. (139) the value

of the integration constant follows directly, and the electro-

Since at the moment we are considering aqueous susperstatic potential at distance > a + £p from the center of
sions containing only monovalent ions, the electrostatic colloidal particle is

correlations are insignificant and the mean-field Poisson-

Boltzmann approximation is sufficient. Multiplying both 4kpTae~ (=)

sides of Eq. (133) byi¢/dzx allows us to perform the first ¢r) = ———— (140)
integration. Since the potential vanishes in the limit> oo, e

we find

This is the asymptotic solution of the full non-line&B
8me equation forxa > 1. Comparing this to the solution of lin-
/ 2
B [@"(@)]" = 8 [cosh(Bg¢) —1] . (134)  earizedPB, Eq. (131), itis evident that the two are identical
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as long ashe bare colloidal charge is replaced by the renor- We shall first calculate the contribution to the total
malized charge For highly charged particles, Eq. (140) free energy arising from the polyion-counterion interac-
shows that the renormalized charge saturates at [56] tions [41, 42]. Consider a suspension in thermal equilib-
rium. While the colloidal particles are more or less uni-

gsat _ 4a(1 + ka) (141) formly distributed throughout the solution, the positions of

ren AB ' counterions are strongly correlated with the positions of

polyions. As a leading order approximation we can, there-

While the previous analysis was carried out for one fqre take the polyion-polyion correlation function to be
colloidal particle inside an electrolyte solution, the con-

cept of charge renormalization is quite general and can Gpp =1 (143)
be applied to colloidal suspensions under various condi- _ _ _ _
tions [57, 57, 58, 59]. The difficulty of defining the effective and the polyion-counterion correlation function to be
charge for suspensions at non-zero concentrations resides in _

8 . Gpe = € Bag(r) (144)
the complexity of accounting for the consequences of col- pe ‘

Ioida! interac.tion.s. The standa'rd praptice is t‘? to study one Choosing the coordinate system in such a way that it is cen-
C°”_°'d?" partlcle_ inside a spherical ngn_er-Seltz Ce_" whose tered on top of one of the colloidal particles, the electrostatic
radius is determined by the volume fraction of colloids [39]. potential at distance < « satisfies the Laplace equation,
While this procedure is fully justified for colloidal lattices, while for distances > a it satisfies the Poisson equation

its foundation is less certain for fluidized suspensions. To Eq. (31). Based on Egs. (143) and (144) the charge density
find the renormalized charge one numerically solves the full ;.o reéionr < acan be approximated by

non-linear PB equation and matches the electrostatic po-

tential to the solutiqn of the Iineariz_ed equation at the cell pa(r) = =Zqp, + qpee” P99 (145)
boundary. Alternatively, the osmotic pressures inside the

WS cell calculated using the non-linear and linear equa- In the spirit of the Debye-kickel theory we shall linearize
tions are matched in order to define the effective charge.the exponential [9, 2]. The distribution of charge around the
One should remember, however, that while at the level of colloid reduces to

non-linearP B equation the osmotic pressure is directly pro- )

portional to the concentration of ions at the cell boundary, pq(r) = =B ped(r) . (146)

Eq. (119), th|§ Is not the case for the Imegnzlé@ equa- Forr > a the electrostatic potential, therefore, satisfies the
tion. The various procedures lead to similar values of the

renormalized charge. In the case of salt-free suspensions?(ihrgzﬁlg ;ﬁs ig?gtgg)iswnm given by Eq. (130). The
the effective charge is found to saturate at [39]
 Zqb(ka)e™"™"

Zih w3 (142) o>(r) = ———— (147
B

) ) ] ) ) ) while the solution to the Laplace equation foK a is
wherey is an approximately linearly increasing function of

colloidal concentration for suspensions with volume fraction 6o (r) = . Zq (148)

larger thanl%. For suspensions with colloidal volume frac- <\ = ea(l + ka)

tion between % and10% the value ofy varies from around ) ) o

9t0 15 [60, 61]. The .electrostatlc energy due to polyion-counterion interac-
tion is )

9.3 Colloidal Fluid t= [ el 4ok, 149

wherep,(r) is the charge density of counterions given by

In this section we will apply the insights gained from the Eq. (146), andj, (r) is the charge density of a polyion,

study of one and two component plasmas to the exploration
of stability of charged colloidal suspensions against a gas- Zq

liquid phase separations. We note that the large size asym- qp(r) = " dna2 o(|r| = a) - (150)
metry between colloids and counterions leads to very differ- ] ) . ]

ent equilibration time scales. On the time scale of polyion Performing the integration we find

motion, the counterions are always equilibrated. This sug- 72¢ 1 .

gests that the calculation of free energy should be done in Up = { — } . (151)
two stages [62]. First, we shall trace out the counterion de- 2¢(1+ka) Lo 2(1 + ka)

grees of freedom, leading to effective many-body interac- The electrostatiéree energyof a polyion inside the suspen-

tions between the colloidal particles. Then we will use these sjon is obtained using the Debye charging process [64],
effective interactions to calculate the colloid-colloid contri-

bution to the total free energy. The procedure is similar to F o 1d)\2up(/\q) B Z2¢?
the one used in McMillan-Mayer theory of solutions [63]. LA A 2ea(l+ka)

(152)
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Note that this free energy is the sum of the polyion self en-
ergy

Z2q2
self = = 153
Fp 2¢a (153)
and the solvation energy
Z2¢’ka
Foeolv = 4 V7 154
P 2¢ea(l + Ka) ’ (154)

which the polyion gains from being inside the “ionic sea”.
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It is found that for suspensions with

ZAB

c=225 5152 (160)
a

the pressure is not a convex function of the colloidal con-
centration, implying existence of a thermodynamic instabil-
ity. At criticality the colloidal volume fraction is around.

The crucial question is whether this result is reliable? In

The electrostatic free energy due to interaction between allorder to calculate the electrostatic free energies, we were

the polyions and counterions is

Z2¢*Nyka

pre— _ 2 TpRa
2ea(l + ka)

(155)

We have effectively integrated out the counterion de-
grees of freedom. This, however, leaves us with the effec-
tive many-body potentials of interaction between the col-
loidal particles. For dilute suspensions, the pairwise inter-
action potential should be the dominant one. The two-body
interaction potential can be obtained from the solution of
Helmholtz equation for two colloidal particles [65, 66]. At
large separations this leads directly to thé.V O interac-
tion potential, Eq. (132). This potential has been extensively
tested experimentally and found to work very well for bulk
colloidal suspensions [67]. Since tHeLV O potential is
short ranged, the contribution to the total free energy aris-
ing from the colloid-colloid interaction can be calculated in
the spirit of the traditional van der Waals theory, through the
second virial term. A more sophisticated calculation of the
colloid-colloid free energy relies on the Gibbs-Bogoliubov
variational bound,

FPP < Fo+ (Vbrvo)o , (156)

forced to linearize the Boltzmann factor. While this is a rea-
sonable approximation at large separations away from the
polyions, linearization is clearly invalid in the vicinity of
colloidal surface. There, the strong electrostatic interactions
result in an accumulation of counterions and the effective
polyion charge renormalization. Therefore, the linear theory
can be usednly if the bare colloidal charge is replaced by
the effective renormalized charggé,— Z.;y, in all the ex-
pressions. It was found, however, that the bare charge doe:s
not increase without limit but saturates at the value given by
the Eq. (142). Substituting — Z.;¢, into the definition

of C Eq. (160), we see th&t < 15 for all the values of the
bare charge’ in the critical region. The critical threshold,
therefore, can not be reached [71], meaning that a deionized
agueoussuspensions witmonovalentounterions is stable
against a liquid-gas phase separation for all colloidal charges
and sizes. This conclusion has also been confirmed by more
detailed calculations and simulations [41, 72, 73, 74, 75].

The result that the non-linear terms omitted within the
Debye-Hickel approximation stabilize a deionized colloidal
suspensions against a liquid-vapor phase separation ha
also been obtained by von @iberg et al. [76, 77, 78]
and Tamashiro and Schiessel [79] based on the analysis
of the full non-linear Poisson-Boltzmann equation inside a

where the reference system is taken to be the fluid of hardWigner-Seitz cell. The numerical integration of the non-
spheres, whose diameter plays the role of a variational pajinear P shows that the osmotic pressure is a monoton-

rameter. The free energy resulting from the polyion-polyion
interaction, F’PP, can be approximated by the lowest vari-
ational bound of Eq. (156). The calculation is somewhat

ically increasing function of colloidal concentration. This
means that at the level V'S approximation suspension
is thermodynamically stable. Von Gmberg et al. and

involved, so we refer the interested reader to the original pa-Tgmashiro and Schiessel. however. demonstrate théihthe

pers [68, 69, 51, 70].
The entropic mixing free energy of colloids and their
counterions is simply that of an ideal gas,

BF™ = ZN,[In(ZppA2)—1]+N,[In(p,AD)—1] , (157)

whereA. andA,, are the de Broglie thermal wavelengths of
counterions and polyions, respectively.
The total free energy of colloidal suspension is the free

earized PB equationleads to the negative compressibility
and the osmotic pressures for highly charged colloidal par-
ticles. This erroneously suggests presence of a thermody-
namic instability. Clearly the instability is an artifact of the
linearization. Furthermore, our calculations show that any
linear theory, which does not take into account the colloidal
charge renormalization, is likely to lead to an incorrect pre-
diction of a liquid-vapor phase separation [51, 80] in deion-

energy needed to solvate colloids in the sea of other polyionsiZ€d aqueous suspensions with monovalent counterions.

and counteriong'? + FPP, and the free energy of mixing
Fent’

F = Fpe  pre 4 pent (158)
The osmotic pressure is
P = oF (159)

IGIARS

It is curious that the “linear” correlations between the
colloids and the counterions, responsible for the screening of
electrostatic interactions, are also the ones driving the sus-
pension towards the phase separation. On the other hand
the “non-linear” correlations responsible for the counterion
condensation and the colloidal charge renormalization, sta-
bilize the suspension against the phase transition.
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10 Multivalent counterions 10.1 Overcharging

Up to now we have been concentrating our attention on One consequence of strong electrostatic correlations is the
aqueous solutions with monovalent counterions. It was al- Phenomenon known as the “overcharging” [81-94,5]. Over-
ready mentioned that in this case the correlations betweerfharging occurs as the result of highly favorable gain in elec-
the condensed counterions can be neglected. To understan#ostatic free energy due to strong positional correlations be-

why, let us compare the characteristic electrostatic energytween the condensed counterions.

of a counterion-counterion interaction to the characteristic

thermal energygT,

Cu2(]2

 edkpT’ (161)

whereq is the counterion valence amlds the average sep-
aration between the condensed counterions on the surface
of a colloidal particle of radius. Sincenn(d/2)? = 4ra?,

4a
d=— 162
N (162)
and the coupling strength becomes,
2
= @’ Apyn _ (163)
4a

Now, lets consider highly charged latex particles with=
7000 anda = 1000 A, in water at room temperature. From
Eq. (142), takingy = 15, Z3¢; = 2100, which means
that 4900 monovalent(a« = 1) counterions are condensed

onto the particle. The coupling strength of the counterion-

~
~

counterion interaction is thei 0.13, which clearly

shows that the electrostatic interactions between the con

To understand better how the overcharging of colloidal
particles comes about let us consider a simple case of one
colloidal particle with a uniform surface chargeZq and
radiusa, at zero temperature [95, 96]. The question that
we would like to answer is how mang-valent counte-
rions should be placed on top of the colloidal particle in
order to minimize the electrostatic energy of the resultant
polyion-counterion complex? Naively we might suppose
that the number of condensed counterions should be such
as to neutralize completely the colloidal charge. This, in-
deed, would be the case if the charge of counterions was
uniformly smeared over the surface of colloid. In reality, the
counterions are discrete entities and can gain favorable en-
ergy by maximizing their separation from one another. Lets
calculate the electrostatic energy of the polyion-counterion
complex,

B Z2q2

A 2
B, = _ Zang

+ P (167)

2ea €a

The first term is the self energy of a polyion, the second term

is the electrostatic energy of interaction between the polyion
andn condensedy-ions, and the last term is the electro-

densed counterions are very weak. We can make this ob_static: energy of repulsion between the condensed counteri-

servation even more general. The high surface charge con

centrations,,, encountered in nature is on the order of one
elementary charge pdi00 A?. Lets suppose that suspen-
sion consists of highly charged colloidal particles with sur-
face charge density,,. Clearly this means that there will

ons. Now, consider a one component plasma afions on
the surface of a sphere of radiusut with auniform neu-
tralizing background charge-ang. The electrostatic en-
ergy of thisOCP can be expressed as the sum of contri-

butions arising from the counterion-counterion interaction,

be a lot of counterion condensation. For a salt-free colloidal counterion-background interaction, and the self energy of

suspension containing multivalent counterions, the number

of condensed counterions will be approximately

VA

(07

n*

~
~

(164)
The radius of a colloidal particle can be expressed as

A
V 470,

(165)

the background,

a2n2 q2 a2n2q2

FPOP = Foe — (168)

€a 2ea

Substituting this expression into Eq. (167), the electrostatic
energy of the polyion-counterion complex simplifies to

(Z — an)’¢?

E
" 2ea

+ FO°F (169)

Substituting Egs. (164) and (165) into Eq. (163) we find that £qr o\ temperatures, the condensed counterions try to max-

the maximum counterion-counterion coupling strength is,

1 s
Trae = 5()62)\3\/ TOm -

(166)
For monovalent counterionB,,,, ~ 0.65, for divalent
counterionsT’,, .. 1.8, and for trivalent counterions
Tihae = 3.4. AlthoughT,,,. is an overestimate, it clearly
shows that for highly charged colloidal particles, correla-

~
~

tions between the condensed multivalent counterions cannot

be ignored.

imize their separation from one another. In the planar ge-
ometry the ground state corresponds to a triangular Wigner
crystal. A similar arrangement of counterions will also be
found on the surface of a spherical colloidal particle, up to
some topological defects. The electrostatic energy of a pla-
nar OCP has been discussed in Section 7. For a spherical
OC P the electrostatic energy at zero temperature is
a2q2n3/2

OCP _
F, =

—-M (170)

2ea
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whereM is the Madelung constant. At this point it is inter- colloidal particle. The complex is overcharged. For highly
esting to make a historical aside. The energy in Eq. (169) charged colloids, the effective charge scales as the square
is related to the very old and famous problem in the his- root of the bare charge [101, 96],

tory of modern physics. The question was first posed by J.J.

Thomson in the context of his exploration of what is “atom” 7o 7@ (175)
[97]? After his discovery of electron itl897, Thomson was o/’ v

trying to understand the structure of the periodic table and
thought that he could do this if he could figure out the lo-
cation of the electrons inside atoms. The only problem was
that at that time proton was still not discovered, so in order to
keep his atom neutral, Thomson proposed that the “counter

The analysis above was conducted for one colloidal par-
ticle at zero temperature. The charges were placed on tog
of a sphere without taking into account the energy cost for
the charge transfer. This is clear unrealistic, the transfer of

charge” to electron is uniformly distributed inside the atom. charge from a reservoir to the colloidal surface requires an
The point-like electrons were allowed to move freely in the €xPenditure of work, which in general can be quite large.
interior of the atom, with the ground state determined by the 1S Will certainly strongly influence the degree of over-

minimum of the electrostatic energy. This became know ascarging. Nevertheless, the simple calculation presented
the “plum pudding” model of an atom: electrons confined to above provides us with an insight into how the electrostatic

an interior of a sphere with a uniform neutralizing positive correlations can lead to a charge reversal in a colloidal sus-

background. pension.

The general solution to the Thomson problem is still un-
known. In the limit that the background charge vanishes, 11 Conclusions
the atom turns into conductor and all the electrons move to

the surface of the sphere. Even this simplified version of 1o 03] of the mini-course was to provide the students with
the Thomson problem has no general solution, except for ag,me pasic tools necessary to understand the thermodynam
small number of particles — this is one hundred years af- ;< ¢ coulomb systems. We saw that much of the qualita-
ter its original formulation! The difficulty in determining e and often semi-quantitative insight into these complex

the ground state configuration of charges on the surface Ofsystems can be gained from studying simple models, using

a sphere is a consequence of an exponentially large numbegq, 6 airly simple theories. One finds, however, that it is
of metastable states, with energies very close_to that of theoften difficult to go beyond the “simple” theories. As one
true ground state [98]. Nevertheless, although in general theyjeg 15 improve on these theories, the results often become
exact Qfound state is '?OI available, !ts energy IS very well worse instead of better [5]. Thus, what might look like an
approximated by the simple expression given by Eq. (169) jmnrovement, from the theoretical stand point, often fails

with Z = 0[99, 100]. when compared to experiment or Monte Carlo simulations.

Because of a topological difference between a plane and,o advantage of “simple” theories, however, is that their
the surface of a sphere, we expect that the Madelung conr e often allows to correct them in a physically trans-

stant will not be exactly the same in the two cases. The dif- parent sort of way. A nice example of this is the Bjerrum

ference, however, is found to be very smll = 1.102 for modification of the Debye-&kel theory(DH Bj), Section

the sphere, as opposedit§, = 1.106 for the planalOCP. 4 The drawback, on the other hand, is that the approxima-
Returning to our charge inversion problem, the effective jong are uncontrolled. Thus, there is no simple perturba-

charge of the polyion-counterion complex in units-af is tive parameter which allows one to clearly state the “order”

Zepy =7 —an* . (171) to which the theory is correct. Nevertheless, the physically
based theories are found, in many cases, to work better thar
wheren* is the number of condensedions which mini- the more rigorous field theoretic perturbative expansions [5].
mize the electrostatic energy, One possible explanation for this is that théf Bj types of
theories are intrinsically non-perturbative. This can already
dEy, —0. (172) be seen from the form of the Debyditkel free energy,
dn | n» Eq. (41). The free energy contains terms to all ordersain
The effective charge is found to be The absence of a good resummation prescription, in the case
of perturbative field theories, might be partially responsible
7 14+ +/1+492Z for their failure in application to Coulombic criticality.
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