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We discuss the stability of quantum motion under system’s perturbations in the light of the corresponding
classical behavior. In particular we focus our attention on the so called “fidelity” or Loschmidt echo, its rela-
tion with the decay of correlations, and discuss the quantum-classical correspondence. We then report on the
numerical simulation of the double-slit experiment, where the initial wave-packet is bounded inside a billiard
domain with perfectly reflecting walls. If the shape of the billiard is such that the classical ray dynamics is reg-
ular, we obtain interference fringes whose visibility can be controlled by changing the parameters of the initial
state. However, if we modify the shape of the billiard thus rendering classical (ray) dynamics fully chaotic,
the interference fringes disappear and the intensity on the screen becomes the (classical) sum of intensities for
the two corresponding one-slit experiments. Thus we show a clear and fundamental example in which transi-
tion to chaotic motion in a deterministic classical system, in absence of any external noise, leads to a profound
modification in the quantum behavior.

I. INTRODUCTION

As it is now widely recognized, classical dynamical chaos
has been one of the major scientific breakthroughs of the past
century. On the other hand, the manifestations of chaotic mo-
tion in quantum mechanics, though widely studied [1, 2], re-
main somehow not so clearly understood, both from the math-
ematical as well as from the physical point of view.

The difficulty in understanding chaotic motion in terms of
quantum mechanics is rooted in two basic properties of quan-
tum dynamics:

(1) The energy spectrum of bounded, finite number of par-
ticles, conservative quantum systems is discrete. This means
that the quantum motion is ultimately quasi-periodic, i.e. any
temporal behavior is a discrete superposition of finitely or
countably many Fourier components with discrete frequen-
cies. In the ergodic theory of classical dynamical systems,
such a quasi-periodic dynamics corresponds to the limiting
case of integrable or ordered motion while chaotic motion re-
quires continuous Fourier spectrum [3].

(2) Quantum motion is dynamically stable, i.e. initial errors
propagate only linearly with time [4]. Linear instability is a
typical feature of classical integrable systems and this con-
trasts the exponential instability which characterizes classical
chaotic systems.

Therefore it appears that quantum motion always exhibits
the characteristic features of classically integrable, regular
motion which is just the opposite of dynamical chaos. How-
ever, it has been shown that this apparently paradoxical situ-
ation can be resolved with the introduction of different time
scales inside which the typical features of classical chaos are
present in the quantum motion also. Since these time scales
diverge as Planck constant ~ goes to zero, no contradiction

arises with the correspondence principle [5].
It has been remarked that, while exponential separation of

orbits starting from slightly different initial conditions is asso-
ciated to classical chaos, the situation in quantum mechanics
is drastically different. Indeed the scalar product of two states
〈ψ1|ψ2〉 is time-independent due to unitarity of time evolu-
tion. This has led to the introduction of fidelity as a measure
of stability of quantum motion [6]. More precisely one con-
siders the overlap of two states which, starting from the same
initial conditions, evolve under two slightly different Hamil-
tonians H and Hε = H + εV . The fidelity is then given by
f (t) = |〈ψ|exp(iHεt/~)exp(−iHt/~)|ψ〉|2. The quantity f (t)
can be seen as a measure of the so-called Loschmidt echo: a
state |ψ〉 evolves for a time t under the (unperturbed) Hamil-
tonian H, then the motion is reversed and evolves back for
the same time t under the (perturbed) Hamiltonian Hε and the
overlap with the initial state |ψ〉 is considered.

However, we would like to stress that, in principle, such
difference between classical and quantum mechanics actually
does not exists. The Liouville equation, which describes clas-
sical evolution, is unitary and reversible as the Schrödinger
equation. However, there exist time scales up to which quan-
tum motion can share the properties of classical chaotic mo-
tion including the local exponential instability (see, e.g., Ref.
[5]). Due to the existence of such time scales, what may be
different, and indeed it is, is the degree of stability of dynam-
ical motion. Indeed, as clearly illustrated in the analysis of
the Loschmidt echoes with respect to variation of the wave-
function [4] or variation of the Hamiltonian [7], quantum mo-
tion turns out to be more stable than the classical motion.

The growing interest in quantum computers [8, 9] has at-
tracted recent interest in this quantity as a measure of the sta-
bility of quantum computation in the presence of hardware
imperfections or noisy gate operations. Confining ourselves
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to classically chaotic systems, the emerging picture which re-
sults from analytical and numerical investigations [7, 10–18]
is that both exponential and Gaussian decays are present in the
time behavior of fidelity. The strength of the perturbation de-
termines which of the two regimes prevails. The decay rate in
the exponential regime appears to be dominated either by the
classical Lyapunov exponent or, according to Fermi golden
rule, by the spreading width of the local density of states.

In addition, at least for short times, the decaying behav-
ior depends on the initial state (coherent state, mixture, etc.).
While it can be true that, for practical purposes, the short time
behavior of fidelity may be the most interesting one, it is also
true, without any doubt, that in order to have a clear theoretical
understanding and identify a possible universal type of quan-
tum decay one needs to consider the asymptotic behavior of
fidelity. On the other hand, in the regime of very small pertur-
bation, which may be of interest for practical quantum com-
putation, one may in fact be interested also in the long-time
behavior of fidelity in the so-called linear response regime.

This short review is composed of three parts. In section II
we discuss the problem of classical fidelity, namely the sta-
bility of chaotic classical dynamics against external pertur-
bations. We show quite clearly that the short time-decay of
classical fidelity is governed by exponential instability (Lya-
punov exponents), whereas the long-time decay is determined
by the decay of correlations (Ruelle-Pollicott resonances). In
Section III we discuss the fidelity decay of generic quantum
systems. We discuss the correspondence with classical fidelity
for short times and outline different regimes of decay with re-
spect to the strength of perturbation. In Section IV we discuss
a different, interesting connection between dynamical chaos
and the quantum world, the so-called chaos induced decoher-
ence. We show, by means of a simple numerical experiment -
the double-slit experiment, that classical chaos suppresses co-
herence and acts in a similar way as noise or external macro-
scopic number of freedoms which is usually invoked in order
to explain decoherence.

II. STABILITY OF CLASSICAL MOTION UNDER
SYSTEM’S PERTURBATIONS

In the paper [19], it has been shown that the asymptotic de-
cay of classical fidelity for chaotic systems is not related to the
Lyapunov exponent. Similarly to correlation functions, this
decay can be either exponential or power law. In the former
case, the decay rate is determined by the gap in the spectrum
of the discretized Perron-Frobenius operator, in the latter case
the power law has the same exponent as for correlation func-
tions.

In order to illustrate the above results let us consider the
classical fidelity f (t) which can be defined as follows:

f (t) =
Z

Ω
d~xρε(~x, t)ρ0(~x, t), (1)

where the integral is extended over the phase space Ω, and

ρ0(~x, t) = U t
0ρ(~x,0), ρε(~x, t) = U t

ερ(~x,0) (2)

give the (classical) evolution after t steps (assuming that the
time is discrete - measured in terms of an integer number t of
fundamental periods) of the initial density ρ(~x,0) (assumed to
be normalized, i.e.

R
d~xρ2(~x,0) = 1) as determined by the t-th

iteration of the Perron-Frobenius operators U0 and Uε, corre-
sponding to the Hamiltonians H0 and Hε, respectively. The
above definition can be shown to correspond to the classical
limit of quantum fidelity [7, 15]. For some other applications
in the context of classical mechanics see Ref. [20]. In the
ideal case of perfect echo (ε = 0), the fidelity does not decay,
f (t) ≡ 1. However, due to chaotic dynamics, when ε 6= 0 the
classical echo decay sets in after a time scale

tε ∼ 1
λ

ln
(ν

ε

)
, (3)

required to amplify the perturbation up to the size ν of the
initial distribution. Thus, for t À tε the recovery of the initial
distribution via the imperfect time-reversal procedure fails.

Let us start by discussing the decay of classical fidelity in
a standard model of classical chaos, characterized by uniform
exponential instability, the so called sawtooth map.

The sawtooth map is defined by

p = p+F0(θ), θ = θ+ p, (4)

where (p,θ) are conjugated action-angle variables, F0(θ) =
K0(θ− π), and the overbars denote the variables after one
map iteration. We consider this map on the torus 0≤ θ < 2π,
−πL ≤ p < πL, where L is an integer. For K0 > 0 the mo-
tion is completely chaotic and diffusive, with Lyapunov expo-
nent given by λ = ln{(2 + K0 + [(2 + K0)2 − 4]1/2)/2}. For
K0 > 1 one can estimate the diffusion coefficient D by means
of the random phase approximation, obtaining D≈ (π2/3)K2

0 .
In order to compute the fidelity (1), we choose to perturb the
kicking strength K = K0 + ε, with ε ¿ K0. In practice, we
follow the evolution of 108 trajectories, which are uniformly
distributed inside a given phase space region of area A0 at time
t = 0. The fidelity f (t) is given by the percentage of trajecto-
ries that return back to that region after t iterations of the map
(4) forward, followed by the backward evolution, now with
the perturbed strength K, in the same time interval t. In order
to study the approach to equilibrium for fidelity, we consider
the quantity

g(t) = ( f (t)− f (∞))/( f (0)− f (∞)); (5)

in this way g(t) drops from 1 to 0 when t goes from 0 to ∞.
We note that f (0) = 1 while, for a chaotic system, f (∞) is
given by the ratio A0/Ac, with Ac being the area of the chaotic
component to which the initial distribution belongs.

The behavior of g(t) is shown in Fig. 1, for K0 = (
√

5 +
1)/2 and different L values. One can see that only the short
time decay is determined by the Lyapunov exponent λ, f (t) =
exp(−λt). In a recent paper [21] this short-time Lyapunov
decay of classical fidelity has been explained theoretically,
and an interesting cascade of decays with rates given by sums
of largest Lyapunov exponents has been predicted and found
for multi-dimensional systems. In our numerical example,
the Lyapunov decay is followed by a power law decay [17]
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FIG. 1: Decay of the fidelity g(t) for the sawtooth map with the
parameters K0 = (

√
5 + 1)/2 and ε = 10−3 for different values of

L = 1,3,5,7,10,20,∞ from the fastest to the slowest decaying curve,
respectively. The initial phase space density is chosen as the char-
acteristic function on the support given by the (q, p) ∈ [0,2π)×
[−π/100,π/100]. Note that between the Lyapunov decay and the
exponential asymptotic decay there is a ∝ 1/

√
t decay, as expected

from diffusive behavior. Inset: magnification of the same plot for
short times, with the corresponding Lyapunov decay indicated as a
thick dashed line.
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FIG. 2: Asymptotic exponential decay rates of fidelity for the saw-
tooth map (K0 = (

√
5+1)/2, ε = 10−3) as a function of L. The rates

are extracted by fitting the tails of the fidelity decay in the Fig. 1 (tri-
angles) and from the discretized Perron-Frobenius operator (circles).
The line denotes the ∝ 1/L2 behavior of the decay rates, as predicted
by the Fokker-Planck equation.

∝ 1/
√

Dt until the diffusion time tD ∼ L2/D and then the as-
ymptotic relaxation to equilibrium takes place exponentially,
with a decay rate γ (shown in Fig. 2) ruled not by the Lya-
punov exponent but by the largest Ruelle-Pollicott resonance
[22].

We determine numerically these resonances for the saw-
tooth map using the method of Refs. [23, 24], namely by
diagonalizing a discretized (coarse-grained) classical propa-
gator [19].

In Fig. 2 we illustrate a good agreement between the
asymptotic decay rate of fidelity (extracted from the data
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FIG. 3: Decay of fidelity for the stadium billiard with radius R = 1
and length of the straight segments d0 = 2 (the perturbed stadium
has d = d0 + ε, with ε = 2× 10−3). The initial phase space density
was chosen to be a direct product of a characteristic function on a
circle in configuration space, the center of which was at (0.5,0.25) as
measured from the center of the billiard and its radius was 0.1, while
for momenta the δ(|~p| − 1) distribution was used. The dashed line
represents the expected ∝ 1/t decay of fidelity.

of Fig. 1) and the decay rate γ as predicted by the gap
in the discretized Perron-Frobenius spectrum. We note
that in the diffusive regime the classical motion can be
described by the Fokker-Planck equation (∂/∂t)R(p, t) =
(D/2)(∂2/∂p2)R(p, t), where R(p, t) =

R 2π
0 dθρ(θ, p, t) and

D ∝ K2
0 is the diffusion coefficient. This gives an asymptotic

relaxation rate γ ∝ K2
0 /L2, in agreement with the numerical

data of Fig. 2. However, the argument based on the gap in the
discretized Perron-Frobenius operator has a more general va-
lidity, and applies also in situations in which there is exponen-
tial relaxation but no diffusion, for example in the sawtooth
map with L = 1 (see Fig. 2).

We also point out that curves very similar to those plotted
in Fig. 1 are obtained in the presence of stochastic noise, e.g.
when the backward evolution is driven by a time-dependent
kicking strength K(t) = K0 + ε(t), with {ε(t)}t=1,2,... uni-
formly and randomly distributed inside the interval [−ε,ε].
This means that the effect of a noisy environment on the decay
of fidelity for a classically chaotic system is similar to that of
a generic static Hamiltonian perturbation.

Further confirmation for the validity of the above illustrated
scenario has been obtained by analyzing systems in which the
initial phase space distribution is located inside a chaotic re-
gion and the asymptotic decay of correlations is algebraic.
The latter decay can be due to the presence of arbitrarily long
segments of regular motion in the time evolution of chaotic
orbits [25] (like the billiard in a stadium) or to the sticking
of trajectories in the vicinity of integrable components in sys-
tems with mixed phase space dynamics [26]. In the long time
limit (t À tε) the fidelity decay at time t is still related to the
decay of correlations at time 2t. Therefore, if correlations de-
cay as t−α, fidelity decays with the same exponent α. We have
checked this expectation for the stadium billiard (α = 1 [25],
see Fig. 3) and for the kicked rotator model (described by Eq.
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FIG. 4: Decay of fidelity for the kicked rotator with K0 = 2.5, L = 1,
and ε = 10−3 (full curve). The support of the initial (characteristic)
density is (q, p) ∈ [0,0.2]× [0,0.2]. The dotted curve gives the expo-
nential decay determined by the Lyapunov coefficient (about 0.534),
while the dashed line shows the ∝ t−0.55 behavior. The decay of cor-
relator D for the same initial density and for twice the time t is also
shown (dot-dashed curve.)

(4) with F0 = K0 sinθ) in the regime with mixed phase space
dynamics (α≈ 0.55 for K0 = 2.5, L = 1, see Fig. 4).

Finally we remark that the short time Lyapunov decay of
fidelity is by no means a typical feature of correlation func-
tions. This can be clearly seen in the dot-dashed curve of Fig.
4, which represents the decay of the correlator D(t) = (C(t)−
C(∞))/(C(0)−C(∞)), with C(t) =

R
Ω d~xρ0(~x, t)ρ(~x,0). Actu-

ally the short time decay of D(t) is determined by the motion
of the “center of mass” of the initial distribution ρ(~x,0), a triv-
ial effect which is suppressed in fidelity due to the backward
evolution.

In conclusion, in chaotic systems the asymptotic decay of
classical fidelity, exponential or power law, is analogous to the
asymptotic decay of correlation functions. It would be inter-
esting to understand what are the implications of such connec-
tion for the decay of quantum fidelity.

III. STABILITY OF QUANTUM MOTION UNDER
SYSTEM’S PERTURBATIONS

In this section we discuss the same question as in the previ-
ous one, now in the light of quantum mechanics, namely the
stability of quantum motion against system’s perturbation. We
define the quantum fidelity in analogy to (1) as

f (t) = |〈ψε(t)|ψ0(t)〉|2 (6)

where

|ψε(t)〉= U t
ε|ψ〉, |ψ0(t)〉= U t

0|ψ〉 (7)

are perturbed and unperturbed propagators, respectively, gen-
erated by the Hamiltonian Hε = H0 + εV , namely U t

ε =
exp(−iHεt/~).

As it is discussed in more detail in contribution [27], the
quantum fidelity (6) is expected to follow the classical fidelity

(1) up to the Ehrenfest time, which for a chaotic system with
effective Lyapunov exponent λ, reads as t∗ = ln(1/~)/(2λ).

Obviously, for times shorter than t∗, the decay of quantum
fidelity is determined by classical mechanics. For initial local-
ized wave-packets |ψ〉 we expect initial exponential decay of
fidelity with perturbation independent (Lyapunov) exponent λ

fLyap(t) = exp(−λt). (8)

For sufficiently strong perturbation strength ε, namely σ :=
ε/~ À 1, the quantum fidelity drops to a saturation value
f (∞) ∼ 1/N (where N is the dimension of the Hilbert space,
N∼ ~−d and d is the number of degrees of freedom) before the
Ehrenfest time t∗ is reached. This regime is usually referred
to as the Lyapunov regime of fidelity decay and has been first
described in Ref. [10].

When the dimensionless parameter σ becomes less than
one, σ < 1, then one may start to use time-dependent-
perturbation theory in order to calculate the fidelity decay.
This regime is usually referred to as the Fermi-Golden-Rule
regime, and in the case of classically chaotic (mixing) dynam-
ics, fidelity decays exponentially

fFGR(t) = exp(−Γt). (9)

The exponent Γ which can be understood also as the width of
the Local density of states [12], can be computed [7] in terms
of a 2-point time-correlation function of the perturbation
C(t) = 〈VV (t)〉− 〈V 〉2, V (t) = exp(iH0t/~)V exp(−iH0t/~),
namely as

Γ = ε2D, D :=
Z ∞

−∞
dtC(t). (10)

In fact, for sufficiently small effective Planck constant ~ the
correlation function C(t) and diffusion constant D can be com-
puted in terms of classical mechanics. One should note that
σ = 1 represents a border between classical σ > 1, and quan-
tum σ < 1 behavior of fidelity [17].

However, this formula (9) works only for times shorter than
the Heisenberg time tH = 2π~ρ where ρ is the density of states.
For longer times, quantum correlation function C(t) starts to
be dominated by quantum fluctuations and another approach
has to be used. If the perturbation ε is so small that a signifi-
cant decay of fidelity is taking place after the Heisenberg time
tH, then the stationary perturbation theory may be used [13] in
order to derive a Gaussian decay of fidelity

fpert(t) = exp(−4ε2Dt2/~2) (11)

Comparing the inverse decay rate 1/Γ of the formula (9) with
the Heisenberg time, we obtain the perturbative border [7, 12,
13] εpert ∼ ~d/2+1 or σpert ∼ ~d/2 such that for σ < σpert the
formula (11) is globally valid.

These three universal laws of decay of quantum fidelity
(separated by two borders) have been derived for fully chaotic
classical dynamics. However, a correlation-function approach
[7], which can be used to derive Fermi-Golden-rule decay (9),
can be used more generally, for example also for integrable
or quasi-integrable classical dynamics. There, the absence of
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FIG. 5: Fidelity decay for two coupled kicked tops, for perturbation
strength ε = 8 ·10−4 and for angular momentum J = 200. The upper
curves are for k = 20 (classically chaotic regime), solid curve for a
coherent initial state and dashed curve for a random initial state, and
the lower – dotted curve is for k = 1 (KAM, quasi-regular regime)
with a coherent initial state. The exponential and Gaussian chain
curves give, respectively, the expected theoretical decays described
by formulae (9) and (12).

decay of dynamical correlations, in a generic (regular) case
yields quadratic decay of fidelity in the regime of linear re-
sponse, F(t) = 1−Cε2t2/~+ O(ε4). For initial Gaussian
wave-packets one can even show that the global decay in such
a case is a simple Gaussian

fregular(t) = exp(−ε2Ct2/~) (12)

where the constant C can be computed solely from the classi-
cal data, such as the classical limit of the perturbation observ-
able V and the parameters of initial wave-packet.

Comparing the quantum fidelity decays for chaotic (9) as
compared to regular (12) classical mechanics, one finds that
the former decays on a time scale tch ∼ ~2ε−2 whereas the
latter decays on a time scale treg ∼ ~1/2ε−1. Therefore, for
sufficiently small perturbation ε (for σ ¿ ~1/2) the asymp-
totic fidelity decay for classically chaotic dynamics is slower
than for classically regular dynamics. (Note that for random
initial states such a paradoxical behavior takes place even for
σ ¿ 1.) This behavior is not in contrast with the correspon-
dence principle as it takes place for time scales beyond the
breaking time t∗ for quantum classical correspondence. One
should always keep in mind the non-commutativity of the lim-
its ~→ 0 and ε→ 0.

Let us make a short illustration in terms of a simple numer-
ical experiment. We will consider a system with two degrees
of freedom, a pair of coupled kicked tops, described by two
independent SU(2) variables (angular momenta) ~J1 and ~J2.

A quantum unitary propagator, with some external coupling
parameter k, for one-period of the kick reads

U = e−i π
2 J1ye−i π

2 J2ye−ikJ1zJ2z/J . (13)

The perturbed propagator is obtained by perturbing the para-
meter k, so that Uε = U(k + ε). The generator of perturbation

is therefore

V =
1
J2 J1zJ2z, (14)

The modulus of angular momentum J is fixed and equal for
both tops, and determines the effective value of Planck con-
stant ~ = 1/J. The total Hilbert space dimension is N =
1/(2J +1)2.

We have chosen two regimes of qualitatively different clas-
sical dynamics of the system, namely non-ergodic (KAM)
regime for k = 1 where the vast majority of classical orbits
are stable, and the mixing regime for k = 20 where no sig-
nificant traces of stable classical orbits. As for initial states
we take direct products of SU(2) coherent states centered
at two points (ϑ1,2,ϕ1,2) on the two spheres. In Fig. 5 we
show the fidelity decay at J = 200 and ε = 8 · 10−4 in non-
ergodic and mixing cases started from the coherent state with
(ϑ1,ϕ1) = (ϑ2,ϕ2) = π(1/

√
3,1/

√
2). In the most important

quantum regime, where t∗¿ t ¿ tH, we find excellent agree-
ment between the theoretical predictions (9) and (12) and the
numerics. In the ergodic-mixing regime (k = 20) we show for
comparison also the fidelity decay for a random initial state
which is (due to ergodicity) almost identical to the case of co-
herent initial state.

In this section we have shown that the behavior of quan-
tum fidelity is, beyond the Ehrenfest time scale t∗, drastically
different that for a classical fidelity. In general we may claim
that quantum fidelity decays slower than the classical fidelity.
Recently, we have discovered even more drastic particular sit-
uation, namely the phenomenon of quantum freeze of fidelity
[28] which takes place for perturbations wit all diagonal el-
ements identically vanishing in the eigenbasis of the unper-
turbed Hamiltonian. Such cases can sometimes emerge natu-
rally due to symmetry.

IV. CHAOS INDUCED DECOHERENCE

In the previous sections we have discussed the stability of
quantum motion in the light of the corresponding classical
motion. In this connection, the question whether, in order
to have the quantum to classical transition, external noise
(or coupling to external macroscopic number of degrees
of freedom) is necessary or not, remains unclear. Indeed
it is generally accepted that external noise may induce the
non-unitary evolution leading to the decay of non-diagonal
matrix elements of the density matrix in the eigenbasis of the
physical observables, thus restoring the classical behavior. On
the other hand it has also been surmised that external noise,
being sufficient, is not necessary. A new type of decoherence
– the dynamical decoherence– has been proposed [5], without
any noise and only due to the intrinsic chaotic evolution of a
pure quantum state. The simplest manifestations of dynamical
decoherence are the fluctuations in the quantum steady state
which, in the quasi-classical region, is a superposition of very
many eigenfunctions. In case of a quantum chaotic - ergodic
steady state - all eigenfunctions essentially contribute to the
fluctuations and their contribution is statistically independent
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FIG. 6: The geometry of the numerical double-slit experiment. All
scales are in proper proportions. The two slits are placed at a distance
s on the lower side of the billiard

[5]. This fact suggests the complete quantum decoherence
in the final steady state for any initial state even though
the steady state is formally a pure quantum state. Yet this
argument is not completely convincing and a more clear
evidence is required. In a recent paper [29] this question has
been discussed by considering one of the basic experiments
on which rests quantum mechanics, namely a phenomenon
which, in the words of Richard Feynmann [30], ”... is
impossible absolutely impossible, to explain in any classical
way, and which has in it the heart of quantum mechanics.
In reality, it contains the only mystery.” : the double slit
experiment.

The following numerical, double-slit experiment has been
performed. The time dependent Schrödinger equation
i~ ∂

∂t Ψ(x,y, t) = ĤΨ(x,y, t), with Ĥ = p̂2/(2m), has been
solved numerically [31] for a quantum particle which moves
freely inside the two-dimensional domain as indicated in
Fig. 6 (full line). Note that the domain is composed of two
regions which are connected only through two narrow slits.
We refer to the upper bounded region as to the billiard do-
main, and to the lower one as the radiating region. The scaled
units have been used in which Planck’s constant ~ = 1, mass
m = 1, and the base of the triangular billiard has length a = 1.
The initial state Ψ(t = 0) is a Gaussian wave packet (coherent
state) centered at a distance a/4 from the lower-left corner of
the billiard (in both Cartesian directions) and with velocity ~v
pointing to the middle between the slits. The screen is at a dis-
tance l = 0.4 from the base of the triangle. The magnitude of
velocity v (in our units equal to the wave-number k = v) sets
the de Broglie wavelength λ = 2π/k. In our experiment we
have chosen k = 180 corresponding to approximately 1600th
excited states of the closed quantum billiard. The slits dis-
tance has been set to s = 0.1 ≈ 3λ and the width of the slits
is d = λ/4. The wave-packet is also characterized by the po-
sition uncertainty σx = σy = 0.24. This was chosen as large

as possible in the present geometry in order to have a small
uncertainty in momentum σk = 1/(2σx).

The lower, radiating region, should in principle be infinite.
Thus, in order to efficiently damp waves at finite boundaries,
we have introduced an absorbing layer around the radiating re-
gion. More precisely, in the region referred to as absorber, we
have added a negative imaginary potential to the Hamiltonian
H → H − iV (x,y),V ≥ 0, which, according to the time de-
pendent Schrödinger equation, ensures exponential damping
in time. In order to minimize any possible reflections from
the border of the absorber, we have chosen V to be smooth,
starting from zero and then growing quadratically inside the
absorber. No significant reflection from the absorber was de-
tected and this ensures that the results of our experiment are
the same as would be for an infinite radiating region.

While the wave-function evolves with time, a small proba-
bility current leaks from the billiard and radiates through the
slits. The radiating probability is recorded on a horizontal line
y = −l referred to as the screen. The experiment stops when
the probability that the particle remains in the billiard region
becomes vanishingly small. We define the intensity at the po-
sition x on the screen as the perpendicular component of the
probability current, integrated in time

I(x) =
Z ∞

0
dt ImΨ∗(x,y, t)

∂
∂y

Ψ(x,y, t)|y=−l . (15)

By conservation of probability the intensity is normalized,R ∞
−∞ dxI(x) = 1, and is positive I(x) ≥ 0. I(x) is interpreted

as the probability density for a particle to arrive at the screen
position x. According to the usual double slit experiment with
plane waves, the intensity I(x) should display interference
fringes when both slits are open, and would be a simple uni-
modal distribution when only a single slit is open. This is what
we wanted to test with a more realistic, confined geometry.
The resulting intensities are shown in Figs. 7, 8(red curves).

Indeed, a very clear (symmetric) interference pattern was
found, with a visibility of the fringes depending on the para-
meters of the initial wave-packet. This can be heuristically
understood as a result of integrability of the corresponding
billiard dynamics. Namely, the classical ray dynamics in-
side a π/4 right triangular billiard is regular representing a
completely integrable system. We know that each orbit of an
integrable system is characterized by the fact that, since the
classical motion in 2N dimensional phase space is confined
onto an N invariant torus, at each point in position space, e.g.
at the positions of the slits, only a finite number of different
momenta (directions) are possible. Thus the quantum wave-
function, in the semiclassical regime, is expected to be locally
a superposition of finitely many plane-waves [32] and the in-
terference pattern on the screen is expected to be simply a su-
perposition of fringes using these plane waves. In our case of
an integrable π/4 right triangular billiard, different directions
result from specular reflections with the walls. In contrast to
the idealized plane-wave experiment in infinite domain where
interference pattern depends on the direction of the impact, the
fringes here were always symmetric around the center of the
screen. This is a consequence of the presence of the vertical
billiard wall, namely due to collisions with this wall each im-
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FIG. 7: The total intensity after the double-slit experiment as a func-
tion of the position on the screen. I(x) is obtained as the perpendicu-
lar component of the probability current, integrated in time. The red
full curve indicates the case of regular billiard, while the blue dot-
ted curve indicates the case of chaotic one. The green dashed curve
indicates the averaged intensity over two 1-slit experiments, with ei-
ther the regular or chaotic billiard (with results being practically the
same, see Fig. 8).
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FIG. 8: The two pairs of curves represent the intensities on the screen
for the two 1-slit experiments (with either one of the two slits closed).
The red full curves indicate the case of the regular billiard while the
blue dotted ones indicate the case of chaotic billiard.

pact direction (vx,vy) is always accompanied with a reflected
direction (−vx,vy). The pattern on the screen is then a sym-
metric superposition of the two interference images, one being
a reflection (x→−x) of the other. In this way one can also un-
derstand that the visibility of the interference fringes may vary
with the direction of the initial packet.

We also remark that the spacing between interference
fringes is in agreement with the usual condition for plane
waves that the difference of the distances from the two slits
to a given point on the screen is an integer multiple of λ.

Let us now make a simple modification of our experiment.
We replace the hypotenuse of the triangle by the circular

FIG. 9: Typical snapshots of the wave-function (plotted is the prob-
ability density) for the two cases: (a) for the regular billiard at
t = 0.325, and (b) for the chaotic billiard at t = 0.275 (both cases
correspond to about half the Heisenberg time). The probability den-
sity is normalized separately in both parts of each plot, namely the
probability density, in absolute units, in the radiating region is typi-
cally less than 1% of the probability density in the billiard domain.
The screen, its center, and the positions of the slits are indicated with
thin black lines. Please note that the color code on the top of the
figure is proportional to the square root of probability density.

arc of radius R = 2 (dashed curve in Fig. 6). This change
has a dramatic consequence for the classical ray dynamics
inside the billiard, namely the latter becomes fully chaotic. In
fact such a dispersive classical billiard is rigorously known
to be a K-system [3]. Quite surprisingly, this has also a
dramatic effect on the result of the double slit experiment.
The interference fringes almost completely disappear, and
the intensity can be very accurately reproduced by the sum of
intensities (I1(x) + I2(x))/2 for the two experiments where
only a single slit is open. This means that the result of such
experiment is the same as would be in terms of classical
ray dynamics. Notice however, that at any given instant
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of time, there is a well defined phase relation between the
wave function at both slits. Yet, as time proceeds, this phase
relation changes, and it is lost after averaging over time. This
is nicely illustrated by the snapshots of the wave-functions
in the regular and chaotic case shown in Fig. 9. While in
the regular case, the jets of probability emerging from the
slits always point in the same direction and produce a clear
time-integrated fringe structure on the screen, in the chaotic
case, the jets are trembling and moving left and right, thus
upon time-integration they produce no fringes on the screen
[33].

The results of this numerical experiment can be under-
stood in terms of fast decay of spatial correlations of
eigenfunctions of chaotic systems. In the limit of small slits
opening d ¿ λ, the intensity on the screen, according to
simple perturbation expansion in the small parameter d/λ,
can be written as

I(x) = I1(x)+ I2(x)+C(s) f (x), (16)

where f (x) is some oscillatory function determining the pe-
riod of the fringes, and C(s) is the spatial correlation func-
tion of the normal derivative of the eigenfunctions Ψn of
the closed billiard at the positions (−s/2,0) and (s/2,0)
of the slits, written in the Cartesian frame with origin in
the middle point between the slits. In particular, C(s) =
α∑n |cn|2∂yΨn(−s/2,0)∂yΨn(s/2,0), where cn are the expan-
sion coefficients of the initial wave-packet in the eigenstates
Ψn, and α is a constant such that C(0) = 1. Note that this
eigenstate correlation function C(s), which also depends on
the initial state through the expansion coefficients cn, is di-
rectly proportional to the visibility of the fringes. One may use
well known random plane wave model for chaotic billiards
[32], in combination with a method of images to account for
the boundary condition, to show that quantum chaotic eigen-
states exhibit decaying correlations with C(s) = J1(ks)/(ks)
where J1 is a first order Bessel function, whereas for regu-
lar systems C(s) typically does not decay (but oscillates) so
it produces interference fringes. In our case of half-square

billiard we find, for large k, C(s) = e−σ2
ks2/2(k2

x cos(kys) +
k2

y cos(kxs))/k2. The Gaussian prefactor can easily be under-
stood, namely there is no interference if the size of the wave-
packet is smaller than the slit-distance, or equivalently, if un-
certainty in momentum σk is much larger than 1/s.

Disappearance of interference fringes can be directly re-
lated to decoherence. If A is a binary observable A ∈
{1,2} which determines through which slit the particle went,
then C(s) is proportional to the non-diagonal matrix element
〈1|ρ|2〉 of the density matrix in the eigenbasis of A, and is thus
a direct indicator of decoherence.

The result presented here provides therefore, from one
hand, a vivid and fundamental illustration of the manifesta-
tions of classical chaos in quantum mechanics. On the other
hand it shows that, by considering a pure quantum state, in
absence of any external decoherence mechanism, internal dy-
namical chaos can provide the required randomization to en-
sure quantum to classical transition in the semiclassical re-
gion. The effect described in this letter should be observable
in a real laboratory experiment.

V. CONCLUSIONS

In this paper we have presented two different, general il-
lustrations of observable effects of quantum chaos. On one
hand, we have shown that sensitivity to system’s perturbations
is clearly connected with the nature of the underlying classical
dynamics. The concepts of classical and quantum Loschmidt
echoes are relatively new but may have important implications
in statistical physics and in the field of quantum information
and quantum computation. On the other hand, we have shown
that quantum chaos can act also as a source of noise thus pro-
ducing effects equivalent to decoherence, such as destroying
interference fringes in a double slit experiment.
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[27] T. Prosen and M. Žnidarič, Braz. J. Phys. (2005), this volume.
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2m ∆ and ∆ is a discrete
Laplacian. Using temporal step-size τ = h2, the required order n
to obtain numerical convergence within machine precision was
typically small, n < 10. The implementation of the finite dif-
ference scheme was straightforward for the triangular geome-
try, since the boundary conditions conform nicely to the dis-
cretized Cartesian grid. For the case of chaotic billiard, we used
a unique smooth transformation (x,y)→ (x, f (y)) which maps
the chaotic billiard geometry to the regular one, and slightly
modifies the calculation of the discrete Laplacian without alter-
ing its accuracy (due to smoothness of f (y)).

[32] M. V. Berry, J. Phys. A: Math. Gen. 10, 2083 (1977).
[33] This is somewhat similar to what happens to a Wigner function

of a quantum chaotic state – see: M. Horvat and T. Prosen,
Wigner function statistics in classically chaotic systems, J.
Phys. A: Math. Gen. 36, 4015 (2003) – when one projects it
in the position space and obtains a smooth probability density.


