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Four models of energy decoherence are discussed from the common perspective of intrinsic time-uncertainty.
The four authors — Milburn, Adler, Penrose, and myself — have four different approaches. The present work
concentrates on their common divisors at the level of the proposed equations rather than at the level of the
interpretations. General relationships between time-uncertainty and energy-decoherence are presented in both
global and local sense. Global and local master equations are derived. (The local concept is favored.)

I. INTRODUCTION

Let me begin with an incomplete list of people who formu-
lated ideas related to the possible role of time or space-time
uncertainties in the destruction of quantum coherence. Cer-
tainly Feynman [1] mentioned the idea first, and a Hungarian
group [2-4] developed a first vague model. From Penrose to
Steve Adler and during twenty years, many independent in-
vestigations [5—19] shared the central idea and disagreed on
the motivations. In the rest of the present contribution I single
out four authors: Penrose [5], myself [8, 9], Milburn [12, 13],
and Adler [19]. They have four different motivations: Penrose
exposes the conceptual uncertainty of location in space-time,
I attribute an ultimate uncertainty to the Newtonian gravita-
tional field, Milburn assumes that Planck-time is the smallest
time, and Adler derives quantum theory in the special limit
of a hypothetic fundamental dynamics. The four authors also
have four different mathematical apparatuses, four different
interpretations, metaphysics, e.t.c., but the four models have
common divisors and my present intention is to find and em-
phasize them. The reader shall see that the Milburn master
equation is identical to the simplest effective equation derived
by Adler in his dynamical theory, and Penrose’s equation is a
special case of my master equation.

II. ENERGY DECOHERENCE

Decoherence means the destruction of interference. When
it happens to energy eigenstates, we talk about energy deco-
herence. Decoherence diminishes coherent dispersion like AE
in case of energy decoherence. Too large coherent dispersions
mean that the system exhibits strong quantum features. On
the contrary, if the coherent dispersions are reasonably small
the system looks like a classical one. Since decoherence can
diminish coherent dispersions we think that decoherence is
instrumental in the emergence of classicality in quantum sys-
tems [20]. Decoherence of various observables may be corre-
lated or anti-correlated. Decoherence of the local energy will
induce decoherence of location of massive objects. There is
no definite rule as to what observable is the primary one to
induce decoherence of the others and to cause eventual clas-
sicality of the macroscopic variables. There is no apriori rule
as to what are the macroscopic observables and what is the
threshold for classically small dispersions. Yet, a consistent

decoherence model, even if it is phenomenological, would
make suggestions for the primarily decohering observables
and for the dynamics of their dispersions. Total energy is a
possible choice to start with, and it leads us to the concept of
local energies as the primarily decohering observables. En-
ergy decoherence has intimate relationship with the intrinsic
uncertainty of time, elucidated below in subsections II A and
IIB.

coherent dispersion
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FIG. 1: Decoherence destroys large quantum fluctuations of total
energy.

Decoherence is, similarly to many other irreversible mech-
anisms, fueled by the complexity of the exact dynamics, like
in the Adler theory (Sec.IV). The other three theories dis-
cussed later in Secs.III,V,VI, derive decoherence from non-
dynamic mechanisms. They assume inherent randomness of
time. The typical effect is a simple exponential decay of co-
herence at a certain decoherence time scale ¢p. This expo-
nential rule has been met by almost all dynamic models as
well as by the four ones singled out for the present discus-
sion. The Milburn-Adler decoherence-time is on the scale of
the Planck-time Tp;, the Didsi-Penrose theory assumes non-
relativistic decoherence-time. I shall abandon the complex
details of these theories and wish to compare them at the level
of their ultimate phenomenological equations.

A. Global time uncertainty and decoherence

Let me illustrate the naive phenomenology of energy deco-
herence emerging from time uncertainty. For simplicity, sup-
pose that the initial state of a quantum system is a superposi-
tion of only two energy eigenstates of the total Hamiltonian
H:

W) = c1|@1) +c2(92) - (1)
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The evolution of the state in time ¢ reads:
(y(1)) = crexp(—ili 'E11)|@1) + caexp(ih ™ Ext)|@2) . (2)
Following our purposes, we add a certain uncertainty &f to :
t—t+8t, 3)

and substitute it into the Eq.(2). To be concrete, suppose Ot
is a Gaussian random variable of zero mean and of dispersion
proportional to the mean time ¢ itself:

M((8)] =t | 4)

where 7T is a certain time-scale to measure the strength of time-
uncertainties. We can evaluate the evolution of the density
matrix:

p(t) =M{ly(1))(w(t)[] = )
le1P1@0) (@1] +[e2[*|92) (@2] +

+ {cfczexp(ihflAEt)M [exp(ihilAESt)] |@2) (1] +

+ he.  }.

The stochastic mean on the r.h.s. yields:
M [exp(ih ' AESH)] = 7'/, (6)

which means that the off-diagonal term of p(¢) decays expo-
nentially with the decoherence time

B 1

tp =

It is easy to see that all off-diagonal elements of a generic

initial density matrix would decay exponentially. The com-

pact form of the evolution equation contains a typical double-

commutator term in addition to the standard commutator on
the r.h.s. of the von Neumann equation:

dp _
dr

The direct proof of this master equation is simple. The reader
is referred to the proof of the more general case (12).

I anticipate that the above master equation will be obtained
from slightly different concepts. In Sec.III the time uncer-
tainty ot follows the Poisson statistics and the Eq.(8) is ob-
tained in the proper time-coarse-grained limit. In Sec.IV the
Eq.(8) is exactly derived from the uncertainties of the Planck-
constant. The corresponding mathematics is trivial. Gaussian
randomness &f can mathematically be delegated to the ran-
domness 8! since in the solutions of the Schrodinger—von-
Neumann equation the Planck-constant and the time appear
always in the product form 4~ '¢. For the physics of the above
two versions, see Secs.III and IV.

1
—ih'[H,p] - Erirz[H,[lar,p]] . (8)

B. Local time uncertainty and decoherence

It is straightforward to consider a local generalization of
total-energy decoherence. We drop the concept of global un-
certainty &t of global time ¢ in favor of local uncertainties &t
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of the local time #.:
tr — 1+ 0ty )

where r labels spatial cells. Let, by assumption, the &f, be
Gaussian random variables of zero mean and of spatial corre-
lation proportional to the time 7 itself:

M0t 0ty ] = Tyt (10)

where 7 is a certain Galileo invariant spatial correlation func-
tion. Let us write the total Hamiltonian as the sum H =Y H;
of local ones. The solution of the von Neumann equation takes
this form:

p(t) =p(0) — ih~"Y [Hetr,p(0)] —

1

= Sh7 Y [Hete, [Heto,p(O)]] (1)

plus higher order terms in 7. Let us take the stochastic mean of
the r.h.s., using M[ty] = ¢ and Mtyty] = Tt + 2. This leads
to the following master equation at r — 0:

dap 1

- _imYH. ol =
dt lh [ 7p] 2

W2Y twlHe, [Hepl] . (12)

r,r

Since the matrix T is non-negative the above class of mas-
ter equations will, as expected, decohere the superpositions of
local-energy eigenstates.

III. MILBURN: DISCRETE TIME UNCERTAINTY

Milburn assumes discrete global time which is of the form
ntp; The integer n is random with Poisson distribution of
mean value

M[I’l] ZZ/TPI . (13)

Hence time, too, becomes intrinsically uncertain while ¢
stands for the respective mean value of the random time. Mil-
burn assumes, furthermore, that the random structure of time
is not accessible to us and we can only observe the physics
averaged for the random fluctuations of time.

It is straightforward to write down the master equation gov-
erning the evolution of the state p. First, we write down the
change of the state in a single step of the discrete time:

P Hexp(fih_lH‘cPI)pexp(ih_lH‘tpl) . (14)

Consider an infinitesimal interval dt of mean time. During it,
the above step occurs with the infinitesimal probability dt /Tp;,
otherwise the state remains unchanged. Taking the averaged
change of p during dt, we obtain the Milburn master equation:

d 1 . I

d—p = — [exp(—ih "Hrp))pexp(ihi - 'Htpy) -p] . (15
t Tpl

Let us expand the r.h.s. upto the first order in the Planck-time:

dp _

1
o =~ H.pl = swh P H [Hop)) . (16)
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TABLE I: Decoherence times for the Milburn master equation.

AE = 1eV (atomic superpositions)
AE = 1GeV (high energy superpositions)
AE = 1J (macroscopic superpositions)

tp ~ 1013 (irrelevant in atomic physics)
tp ~ 10775 (would be irrelevant for nuclear forces)
tp ~ 10~ 55 (excludes superposition of macro-energies)

The expansion is valid at the condition AETp; < h. Recall
that the above equation is identical with Eq.(8) at the choice
T = Tp;. Its basic feature is that the off-diagonal elements of p
in energy representation will decay at the characteristic deco-
herence time (7):

o1
=—-—= 17

e (AE)? an
This scale suggests plausible physics, at least at a quick
glance. The intrinsic time-uncertainty does practically not de-
cohere atomic superpositions, while large energy superposi-
tions would decay at extreme short times (Tab.I).

IV. ADLER: EMERGENT QUANTUM MECHANICS

In Adler’s theory, the deepest level of dynamics is classi-
cal. The generalized coordinates are complex N x N hermitian
matrices {g,}. Their labels r can be taken as, e.g., labels of
spatial cells. The dynamics is defined by the Lagrangian:

L[{Qr}a {Qr}]

It is also called trace Lagrangian, generating trace dynamics
for g,. Following the standard method, Adler introduces the
canonical momenta:

:TrL[{Qr}7{4r}] : (18)

oL
r=a, (19)
P,
and the Hamilton function:
H=Tr) p.4,—L . (20)

If the Lagrange function L is constructed from the generalized
coordinates g,, from the velocities ¢,, from complex number
coefficients, and we exclude matrix coefficients then we can
prove that the following matrix is a conserved dynamic quan-
tity [21]:

Z[q,,p,} = C = const. 21

r

The proof is straightforward. We can write:

oL _ oL
2 ([o 5]+ ])
22

where we applied the Euler-Lagrange equation. The r.h.s.
vanishes. Indeed, from the unitary invariance of L under,

dC d oL
dr - dr & T3,

say, the infinitesimal variation 8¢, = i[A, ¢,] and 84, = i[A, ¢/
where A is an arbitrary hermitian matrix, we have:

oL oL

After cyclic permutations under the trace operation, we recog-
nize the r.h.s. of Eq.(22) which must vanish because of the
arbitrariness of the hermitian matrix A.

The conservation rule C/dt = 0 is classical but it inspires
something which looks quantum mechanical. If we were able
to prove that each term [g,, p,| of the Lh.s. of Eq.(21) is con-
stant on its own then we would choose those constants as i
each. Provided furthermore that the choice [g,, ps] = 0 is also
possible for all r # s, we would obtain the structure of Heisen-
berg quantum mechanics from the underlying classical ma-
trix dynamics. Adler was able to show that the equipartition
mechanism of the classical Gibbs-statistical physics will in-
deed provide the desired solutions. In a suitable statistical av-
erage, an effective theory emerges with the approximate com-
mutation relations:

(23)

[ eff ]

q",pe &, X const. (24)

One sets const = ih. The classical dynamics of the effective
variables turns out to be the emergent unitary dynamics:

etf —ih~ [ Hetf ett] , eft

45 =i 'H P (29)

Hence, one has derived an emergent quantum-canonical struc-
ture and unitary dynamics. Adler exploits that this structure
is statistically blurred. At a closer look, the emergent quan-
tum mechanics contains some irreversibility. It will be easy
to see the resulting master equation in Schrodinger represen-
tation. We start from the effective von Neumann equation
p = —ih '[H" p] and we observe that  is the statistical
mean of a fluctuating parameter. Let us reintroduce the fluc-
tuations of h:

[ REYY (26)

and let us approximate them by a certain white-noise satisfy-
ing

M[(8n )] =nr 2/t (27)
where the precise meaning of 47! is the fluctuation of 2~ !’s
average over the period ¢. Let us insert Eq.(26) into the von
Neumann equation and let us average over 8. The result-
ing master equation reads:

dp

L e p) -

l —2rggeft eff
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This is again the master equation of energy decoherence.

In the light of numerous experimental evidences, Adler
gives a detailed analysis of the possible parametrization, in-
cluding the natural choice T = Tp;. To date, this is perhaps the
most complete available discussion of the observable scales of
energy decoherence.

On the top of the exact Heisenberg structure (24,25), the
trace dynamics is more likely to superpose local fluctuations
than global ones. Therefore global fluctuations 84! are re-
placed by correlated local fluctuations 84, !. The correspond-
ing master equation will be of the form (12) with the corre-
lation matrix yet to be specified from the equilibrium trace
dynamics.

V.  PENROSE: UNCERTAINTY OF THE POINT-WISE
IDENTITY IN SPACE-TIMES

“...when the geometries become significantly different
from each other, we have no absolute means of identifying
a point in one geometry with any particular point in the other
..., so the very idea that one could form a superposition of the
matter states within these two separate spaces becomes pro-
foundly obscure” — this is the geometer’s argument against
the concept of sharp geometry. If superpositions of states with
very different mass distributions existed they should “decay”.
Penrose considers a balanced superposition of two separate

L(Pl .
VT ¥

FIG. 2: The superposition of two different mass distributions
(lumps), corresponding to separate wave packets @1 and @,.

wave packets representing two different positions of a massive
object (Fig.2). If the mass M is large enough, the two wave
packets represent two very different mass distributions. Pen-
rose postulates the following decay time #p for the balanced
superposition of two lumps:

Ip = h/AEgmv ) (29)

where Egq, is the energy we must, hypothetically, supply to
the system in order to separate the two lumps against gravita-
tional forces:

Egmv = |U11 +Up — U12| . (30)

The quantity E,q, is the Newton self-energies Uiy + Up of
the two lumps minus their interaction energy Uj,.

This is the Penrose proposal. As far as I know, there has
been no microscopic definition of the mass distributions of
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the lumps which enter the calculation of the Newtonian ener-
gies. Penrose assumes the macroscopic density for the lumps
and does not resolve it for atomic scales. This way one can
calculate the decoherence time for various situations. Since
the gravitational self- or mutual energies of atomic systems
are very small, the calculated 7p’s will be extremely long. The
atomic superpositions will never decay in the Penrose theory.
Massive superpositions, on the other hand, would never be
formed because they would decay immediately. If, for ex-
ample, one considers a rigid ball of density ~ 1g/cm? then a
plausible critical size R ~ 10~2cm follows, to separate mi-
croscopic from macroscopic scales. Its vague interpretation
is the following [8]. Let us prepare the ball of radius R in a
wave packet as narrow as Ar ~ R. Then we compare the order
of dynamical time scale of the wave packet widening with the
order of decoherence time (29). We shall see that for small
balls (R < R.i;) the unitary dynamics dominates while for
large balls (R > R.,i;) decoherence is quicker and wins over
the unitary dynamics.

Penrose also emphasizes the difference between the unitary
evolution and the decay (reduction) of superpositions, denoted
by U and R resp., in his works. While the contrary features
of U and R have been extensively discussed, the details of
evolution during reduction R have remained unspecified. Re-
garding the generic form of state evolution, Penrose writes
down the formal sequence U,R,U,R,... while he does not
construct a differential evolution equation — master equation —
incorporating both U and R.

VI. DIOSI: UNCERTAINTY OF LOCAL TIME

In terms of local time uncertainties (9,10), this theory intro-
duces the following universal correlation:

G
Tpr/ = COnst X 7/64 , 31D
r—r'|

where G is the Newton constant and c is the velocity of light.
Let me explain the underlying arguments. According to the
theory of general relativity, the uncertainties of local time can
be represented by the fluctuations of the gog component of the
metric tensor. If the average space-time is flat, which we as-
sume for simplicity, then M[goo] = 1 and, in Newtonian limit,
8g0o = —2c¢ 2@ where ® is the Newton potential. The uncer-
tainty of local time becomes directly related to the uncertain
Newton potential &:

z

Idt'CID(r,t') . (32

z t
Ste=5 di'gy)(r,t)~ —c?
0 0

If we knew the correlation of local uncertainties of the New-
tonian gravity, we could calculate the correlation of local time
uncertainties. According to heuristic calculations [8, 22], the
local gravitational acceleration g = —V® has an inherent un-
certainty, totally uncorrelated in space and time:

M(g(r,t)g(r',t')] = const x Ghd(r —r')8(t —¢') . (33)
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This implies the following correlation function for the Newton
potential:
/ ! Gh /

M[®(r,7)P(r',t')] = const x WS([ —1). (34)
Inserting Eq.(32) into M([t,#,] and using Eq.(34), we arrive at
the correlation (31) of local time-uncertainties. Let us em-
phasize that the relativistic time-correlation function (31) is
equivalent with the non-relativistic gravity-correlation (34).
As we shall see, the speed of light ¢ cancels from the quantum
master equation.

Now we can derive the master equation valid on the aver-
aged space-time. We start from the general equation (12) with
the local-time correlation (31). This latter is proportional to ¢*
which makes it extremely small. In the total energy, it is only
the Einstein energy which appreciates the time-fluctuations.
We write its local decomposition as ¢ ¥, f(r) where f(r) is
the operator of local mass density. Then we identify H; in the
general master equation (12) by ¢?f(r), yielding:

dp o

Gh,lz 2 drar’
2 [r —r/|

[ (r), [£ (), pl] -

This is ghe master equation we were looking for. [We replaced
Y. by dr, and ignored the numeric factor on the r.h.s. of
Eq.(34).] Observe that the ¢ has been canceled and the re-
sult is perfect nonrelativistic. This gives us the hint that we
can perform an equivalent nonrelativistic proof of the above
master equation, starting from the von Neumann equation
p = —ih '[H — X, ®(r,t)f(r),p], Taylor-expanding the so-
lution upto O(r%) and calculating the stochastic mean by sub-
stituting the gravity-correlation (34).

I am going to show that the above master equation yields
exactly the Penrose decay (29,30). Let us start from the bal-
anced superposition of the two massive lumps (Fig.2):

1
p= §|<p1 + @) (@1 + @2 . (36)

We assume that the wave packets @; and @; are approximate
eigenstates of the mass density operator:

f(r)|en) = ﬁ1<r)|q’n> , n=1,2; 37

where £ (r) and f>(r) are the (c-number) mass distributions of
the two lumps, respectively. Using these functions on the r.h.s.
of the master equation (35), we can write the contribution of
the double-commutator term to the decay of the interference
term between the two lumps into this form:

d -
7 (@1lple2) = —Egah”H1lple2) . (38)

The decay time is tp = h/Egpq, With

zz drdr’ .

LA(r) = AWIAE) = AE)], (39

Egrav = |I’ — I'/‘

i.e., it is completely identical to the Penrose proposal (29,30).
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A. Digression

I would like to digress about the status of the model. An
earliest criticism came from Ghirardi, Grassi and Rimini [23].
The non-relativistic mass distribution f(r) is a basic ingredi-
ent of my model (as well as of Penrose’s). In case of point-like
constituents of position operator ry and mass my, the operator
of mass distribution would be f(r) =Y ; m(r —ry). Newton
self-energy would diverge hence my master equation would
also diverge. I needed a short length cutoff which I chose to
be the nuclear size. The choice was naive, optimistic — and
wrong. The authors of Ref.[23] pointed out that the model can
not be valid below the scale ~ 10™>cm and they suggested a
higher cutoff. The short-length cutoff ~ 10~>cm can most
easily be implemented by the corresponding spatial coarse-
graining of the mass density f(r). Apart from this modifica-
tion, the whole mathematics and physics of the model remains
the same; the original master equation needs no reformulation
at all.

The Penrose proposal avoids the cutoff-difficulty only be-
cause it uses the coarse-grained macroscopic mass density
from the beginning, without discussing its microscopic def-
inition. What happens to the Penrose model if we extend it
for the microscopically structured mass distributions of the
two lumps, respectively? It faces the same problem that my
model did. To calculate Newtonian self-energies, one needs a
short-length cutoff. Where should we get it from? Certainly
it may be the phenomenological cutoff 10~>cm imposed by
Ghirardi, Grassi and Rimini [23] on my model. Ref.[7] shows
Penrose’s awareness of the difficulty as well as his preliminary
ideas to circumvent it. I am afraid that the proposed solution
can still not stand on its own without defining what happens
to the Newtonian interaction at short distances.

May I clarify an important and obvious misunderstand-
ing in Ref.[6], also in some subsequent works like, e.g., in
Ref.[24]. The claim is that my model differs from Penrose’s
because I define the decoherence time through the inverse of
the Newton interaction potential:

tD=h/|U12‘ . 40)

This claim is obviously incorrect. A possible source of the
misunderstanding was discovered by the late Jeeva Anandan
in 1998 [25]: I had displayed a trivially mistaken version
[Eq.(12) in Ref.[8]] of Eq.(39), contrary to the otherwise cor-
rect master equation. Yet in the same work I had published
the correct equation [Eq.(14)] as well. My longer paper [9]
had published correct equations (4.16-17) in coincidence with
Penrose’s (29-30), respectively.

The concrete part of the Penrose model, meaning his decay-
time equation (29-30) and its applications, represents a special
case of the concrete part of my model, i.e., my master equa-
tion (35) and its applications. The Penrose model proposes
exactly the same decay times for the balanced superpositions
of two lumps as my model does. This coincidence extends
for more general superpositions as well [26]. The Penrose
model, however, has no dynamical equation. From the above
exact coincidences I have got the following impression. The
potential dynamics, underlying the Penrose decay of massive
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superpositions, can not differ from my master equation or, at
least, it must build on this master equation.

VII. CONCLUDING REMARKS

The purpose of this ‘review’ was limited. It could not cap-
ture all aspects of the chosen four models. Discussion of inter-
pretational details was restricted to the minimum. The virtue
of my work is that I presented the four models from a common
perspective which is intrinsic time-uncertainty. To sketch the
four models on the same canvas might cause conflicts with
the interpretations of the other three authors themselves. To
reduce the risk of misunderstanding, I tried to concentrate on
the concrete parts (equations) of the four models. I suggest
the interested reader to complete his/her knowledge from the
original references.

Let me close this work by another very incomplete list of
experimental proposals. Their diversity is spectacular. These
proposals mention or suggest that the tiny decoherence ef-
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fects, like those predicted by the above discussed theories,
might (or should) be detected in the spatial motion of a test
body on a satellite [3], in proton decay [27], by atom inter-
ferometer [17, 29], in the motion of a nano-mirror [28, 31]
or other nano-object coupled to quantum optical devices [32],
and in very large interferometers [33]. There are quite recent
works [34, 35] particularly concentrating on the experimental
aspects of energy decoherence, including local energy deco-
herence [36-38]. Without consistent (maybe highly phenom-
enological) models, the attractive new experimental options
would not be used to target such basic quantum issue as uni-
versal decoherence.
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