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The Equivalence Theorem is commonly used to calculate perturbatively amplitudes involving gauge bosons
at energy scales higher than gauge boson masses. However, when the scalar sector is strongly interacting the
theory is non-perturbative. We show that the Equivalence Theorem holds in the large N limit at next-to-leading

order by calculating the decay widthsh — WtW~ and h — ntr~.

We aso show, in the same scheme of

calculations, that unitarity isfulfilled for the processh — n .

. INTRODUCTION

The Standard Model (SM) of the electroweak interactions,
based on the SU (2). @ U (1)y gauge symmetry [1], is a suc-
cessful theory and agrees with most experimenta results
[2]. However, the scalar sector responsible for the symme-
try breaking of the SM is not well known and it has not been
tested yet. This sector gives masses to the particles of the
model, fermions and gauge fields, when the scalar field has
a non vanishing Vacuum Expectation Vaue (VEV) after the
symmetry breaking. In the scalar sector a Higgs particle ap-
pearswith amass given by mZ = 2Av2, where ) isthe coupling
constant of the self-interactingtermandvisthe VEV (v =~ 246
GeV). my, is an unknown parameter so far.

Nevertheless, the precision tests of the SM impose strong
bounds to the Higgs mass when the scalar sector is weakly-
coupled. The results from LEP Electroweak Working Group
analysisyield my = 114752 GeV (68% CL) [3], and an upper
limit of my < 260 GeV with one-sided 95% CL [3]. Thedirect
search of the Higgs boson done at LEP gives alower limit of
mp > 114.4 GeV [3]. On the other hand, it is possible to have
different models beyond the SM with a heavy Higgs with a
mass lying in the TeV scale for a strongly interacting scalar
sector. However, for this scenario to be held, the new physics
contributions must cancel those ones introduced by the heavy
Higgs particle at low energies[4].

If the SM is an effective theory derived from a more funda-
mental one, then thereis an associated A scale for the appear-
ance of new physics. The use of theoretical arguments, like
unitarity [5], triviality [6] and vacuum stability [7], may allow
to get constraints for these two parameters (A, mp) [8].

The upper limit for the Higgs mass can be obtained by triv-
iality considerations in the Higgs sector [9]. When the quar-
tic coupling constant A in the scalar sector of the Higgs po-
tentia is renormalized introducing a cut-off A, the coupling
goes to zero when A goes to infinity, implying that my, goes
to zero. Thisis not the case for the SM, because it needs a
massive scalar particle at low energies to explain experimen-
tal results, and then the SM can be considered as an effective
theory below a given energy scale. If we knew this scale we
could predict the Higgs mass. Further, if the SM had a Higgs
with a mass around 1 TeV, then the scalar sector would be
strongly interacting and the underlying theory would become
non-perturbative[10].

The amplitude for a heavy Higgs decaying into two longi-

tudinally polarized gauge bosons reads [11]

. 2(mn) Amn) \ 2

(€
By considering that in the perturbation expansion the A.2 term
must be smaller than the A term, it isfound that A(my,) ~ 7 im-
plyingthat my, ~ 1 TeV. On the other hand, using the scattering
processWW — ZZ mediated by a Higgs particle, which might
be important in future collider experiments like LHC and lin-
ear colliders, the cross section for energies /s >> m;, at two
loops level isgiven by [12]
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This cross section is negative for some values of A which
means that the perturbative expansion breaks down. Consid-
ering that the A2 term must be smaller than the A term, a nec-
essary condition to have a convergent series is A = 4, in this
case mp =~ 700 GeV [13]. The above scenarios correspond to
thelimit between weakly-coupled and strongly-coupled scalar
sectors.

In the Marciano and Willenbrock paper [14] they cal culated
the decays of a heavy Higgs boson up to O (g2m2/mg,) in per-
turbation theory using the Equivalence Theorem (ET) [15],
from which the amplitude with gauge bosons longitudinally
polarized at energies O(q? >> mZ ) is equivalent to the same
amplitude but changing the corresponding longitudinal com-
ponents by the woul d-be Gol dstone bosons. For Higgs masses
of the order of my, ~ 1 TeV and my ~ 1.3 TeV the radiative
corrections for the decay h — W "W~ are 7.3% and 12%, re-
spectively. At this scale the scalar sector is strongly-coupled
and the theory is non-perturbative. It is obvious that the am-
plitude at next-to-leading order breaksthe perturbative expan-
sion because all Feynman rules are proportional to the Higgs
mass. For strongly interacting models is necessary to use a
non-perturbativemethod to cal cul ate radiative corrections and
get bounded amplitudes. While it has been shown that the ET
holds order by order in perturbation theory, it has not been
confirmed that it doesin non-perturbative cal culations.

Due to the importance of studying the Higgs dynamics in
non-perturbative regimes, aformalism was introduced in Ref.
[16] which uses Chiral Perturbation Theory(yPT) [17]. Am-
plitudes are obtained as a power expansion in the energy, this
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implies that the conventional ET does not hold anymore [18].
Thus, anew formalismis necessary to have an effective theory
[19].

The large N limit is an alternative approach that predicts
bounded positive defined amplitudes, consistent with pion dis-
persion[20], and useful to study the symmetry breaking of the
strongly interacting sector [21]. The scalar sector of the SM
can be modelled by aLinear SigmaModel O(4) and then gen-
eralized to amode! with O(N + 1) symmetry. Thismethod has
been applied to study the Higgs boson at TeV energy scales
[10, 22]. We show that the large N limit can predict ampli-
tudes that fulfill the ET and the unitarity condition at next-to-
leading order for the SM, with a strongly interacting scalar
sector, by usingtheh — W *W~ andh — nn~ processes.

In section 2 we introduce the Gauged Linear Sigma Model
O(N +1). In section 3 we calculate the Higgs decay widths,
h—W*™W~andh— n™rn~,inthelargeN limit and we show
that the ET holds at next-to-leading order. In section 4 we
show that the amplitude h — ntr~ satisfies unitarity in the
large N limit. In section 5 we give our conclusions.

Il. THE O(N+1) MODEL

It is well known that the Linear Sigma Model represents
the symmetry breaking O(N + 1) — O(N) with N would-
be Goldstone bosons which belong to the fundamental irre-
ducible representation of the remaining symmetry O(N). For
the purposes of thiswork the would-be Goldstone bosons will
be named like pions ©. For a gauge invariant model under
SU(2)L ®U (1)y local symmetry the large N limit for the SM
is defined as

Lg = Lym + (Dy®@)" (DH®) —V (@?)

with®' = (w1, 2, - , N, O) and @2 = ®'®. Asusua Lymis
the Yang-Mills Lagrangian of the SM and the covariant deriv-
ative is defined as

where TL = —(i/2)M" arethe generators of the SU (2) . gauge
group and TR = —(i/2)M" is the generator of the U (1)y
4gauge group. The M matrices are given by [23]
M2 = (328" — 5787

which belong to an irreducible representation of the O(N + 1)
Lieagebrawithi,j=1,23anda,b=212... N+1. The
matrices which belong to the adjoint representation of the
SU(2)_ Liealgebraare given by

000 - 00+ -0
00 — 0 000 - —
0+0 0 -~ 00 -0
ME = | MEs=1|..........
SRR S
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and, the corresponding matrix for theU (1)y Lieagebrareads

0+0--0
- 00 0
000 -
M= ... ... ..
00+ -0

where dots represent zeros. In this form we have a global
O(N + 1) symmetry with alocal SU (2). ® U (1)y symmetry.

The Higgs potential, invariant under O(N + 1), can be writ-
tenas

V(9?) = —p2d? + %(@2)2. ©)

Aligningthe vacuum state as (¢) o = (O, ..., V), with®? = v? =
2u2/, the global symmetry O(N + 1) is broken to O(N) and
the local symmetry is broken as SU (2). @ U(1)y — U(1)o.
By defining the Higgsfield ash = ¢ — v, wefind thefollowing
expression

Ly = Lo+ 5(0um) (') + (D0 (O%) ()

- %mﬁhz — Mm? 4 h?)Z — 4hvh(n?+h?).

The gauge boson masses are obtained from the kinetic term,

1 /gv\2 1/gv\? gg'v?
E(?) w;wg*+§(7) BB — =—WiB"  (5)

where the mass eigenstates are given by

W= (W —iw2)/ V2

W = (W +iw2)/v2 (6)
Z, = cosByW,; —sinbyB,

Ay = sinByW,?+ cosby B,

and 6y is the Weinberg angle with tanéy = g’/g. The Wui
fields, with my = gv/2 ~ 80.6 GeV masses, are the charged
gauge bosons, and the Z,, field, with mz = v(g2 4+ ¢g'*)¥/2/2 ~
91.2 GeV mass, isthe weak neutral gauge boson. The A, field
is the massless photon.

The Lagrangian has terms of the form gzvaunawlf‘ /4, mix-
ing gauge bosonswith woul d-be Gol dstone bosons, which can
be cancelled by gauge fixing. We choose the Landau gauge
(¢ = 0) because in this gauge alot of Feynman diagrams can-
cel or suppress, the it fields do not couple to the ghost fields,
and their propagators are massless. The final Lagrangian can
be written as
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L[r,W,B,h] =

1 1
—5Malna— 5h(0+ m2)h — A(n2 + h?)2

A\vh(r2 1 h?) — ga“m(wjnz —W2ms)

%a“nz(WulTQ — WSTE]_) — %a“n3(WuZTC1 — Wd‘TCz)
!

goHh(W, - ) — %(nlaunz ~ mp0ymy)BH — gd,hmaBH

1,0 oy 1
Em\%,WU-W“—i—Em%BuB“—meBWEB“
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Thus we have a gauge theory spontaneously broken with the
7t = (n1, 2, m3) fields asthe woul d-be Gol dstone bosons of the
broken symmetry SU (2) . ®U (1)y /U (1)q and 1, fields asthe
would-be Goldstone bosons of the broken global symmetry
O(N+1)/O(N).

The theory for the large N limit makes sensewhen N —
and gives rise to finite amplitudes for different processes. To
get finite amplitudes is necessary to choose appropriate para-
metersin the large N limit. We will take the following defini-
tion

A~ 1/N @)

in order to use perturbative expansion of the strongly interact-
ing sector as a function of the A parameter. With this defini-
tion, physical masses must be finite and independent of N in
thelargeN limit. From the masses

mf = 2\v? ~ const

2
™

we obtain for the other parameters of the model inthe large N
limit the following values

vevN , g~1/VN, ¢ ~1/VN. (10)

Finally, we obtain the Feynman rules necessary to calculate
the decay widthsforh —W*W~ andh — n™rn~ inthelarge
N limit, see Fig. 1.

I11. THE HIGGSBOSON DECAY AND THE
EQUIVALENCE THEOREM

The SM in the large N limit is associated with the O(N +
1)/O(N) and SU(2). ® U (1)y /U(1)q global and local sym-
metry breaking schemes respectively. We can calculate the
amplitudesfor h — W W~ andh — n"n~ decaysin order to
show that the ET holds in the proposed scenario.

Feynman diagrams at tree level in this approximation are of
the order of O(g) or O(g’) and of the order of O(1/+/N) inthe
largeN limit . The decay widths at tree level forh — W W~
andh — ™~ processes are given by

2\,2
2 _ 9V
my = =, ~ const
2 12y, ,2
m: = w%const (9)
!
2m3
rh—wHw-) = 20 [ _
64nmy, m;
2m3
Fh—ntn) — 2

(11)
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Figure 1. Feynman rules in the Landau gauge for the SM in the large N limit
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To obtain the amplitudes at next-to-leading order is neces-
sary to introduce the radiative corrections. First we calculate
the self-energy of the scalar particle h, whose Feynman dia-
grams at next-to-leading order are shown in Fig. 2. In this
case, the self-energy at one loop level with ity fields into the
loopsis of the order of 1/N timesN where N is the number of
degrees of freedom running into theloop. Therefore, radiative
corrections are of the order of one in the large N limit. The

same analysis can be done for the self-energy diagram with |
loops. It hastwo verticeswith hrr and | — 1 verticeswith four
a and is of the order of (1/+/N)?(1/N)'~ timesN' the num-
ber of pion fields running into the | loops. Consequently, the
self-energy diagram with | loopsis of the order of onein the
large N limit. However, the one irreducible particle function
(11P) for self-energy diagram with W, Z,, into the loop is of
the order of 1/N, which is negligible in the large N limit.

Figure 2. Next-to-leading order Feynman diagrams that contribute to the self-energy of the Higgs boson in the large N limit

After doing all calculations by using dimensional regular-
ization, with d = 4 — ¢ integrals from the loops, we find (see
appendix)

g
snﬁ, lq
|gmﬁ
T

—iTIn(?) = (12)

|
with lq given by

. q2 )
lg= 162(A+2 IogE—m)

where A = 2/e+log4n — v and pistherenormalization scale.
The choice of the renormalization scale pis arbitrary. There-
fore, we shall adopt p= 1 TeV as a reasonable choice. We

(13)
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have taken into account that only the one irreducible particle tional to 1/N and in the large N limit we obtain that
functions are important in perturbation theory for the renor-
malization of parameters such as the mass and the wave func-
tion[24].

From the self-energy calculation the wave function renor-
malization of the Higgs boson can be obtained as

Zps =Zw, =2z, = L. (15)

To calculate the Higgs decays at this order, vertex correc-

, tions have to be included as well, as shown in Fig. 3.

g
256mg, m2q2
gzn‘% R 2
1+W<A+2—|OQF—IE> qz_nﬁ
“hR

The contributionsto ©=, W* and Z,, self-energies are propor-

Zh=1+ (14)

Figure 3. Feynman diagrams in the large N limit which contribute to vertex interactions. (a) h—WW~, (b)h— ntn~.

Theradiative corrections of W+ W~ vertex displayed in Fig. 3(a) are suppressed since they are of the order of 1/N 2 becoming
negligiblein our approximation. The hW *W~ vertex can be written at this level as

.
W,

*1___@{: _ igw%. (16)

For the hr ™t~ vertex corrections shown in Fig. 3(b), the pionsinto the loops give the most important contributions and can be
written as

@___@ __—ig 1 i
2myvN %+128%Z(A+2 |Ogﬂ_2—i7t>

-
where the W= contributions into the loops are suppressed by a 1/N factor with respect to the w5 contributions. Similarly, the
contribution with a higgs running into the loop is aso suppressed by a1/N factor.
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The wave function renormalization of the Higgs particle Eq.(14) and the vertex radiative correction Eq. (3) diverge. To obtain
finite amplitudes the Higgs mass has to be renormalized [ 10]

1 _1,90+2

m g 128wng,’

Thereal part of the Z;, function Eq.(14) is given by

e, mp o onfy 2\
ng [1 128rT\ZNZIg +82n6\/1624<|0g( >_n2>]

(17)

1/2
Z =1+
h 162mg,m 2~ L S o mﬁRJri 73
128mg,n2 9z tin
In the same way, the real part of the vertex correction Eq.(3) can be expressed as
2nﬁ mﬁ g*nit 2 2
ﬁ g, T2 *9 T T Prfie ('Og (T) —n?
h_ 1+ 2 2
2mN\/ 1.9 "y log e, i
™ 2B \ 2

Hence, the vertex corrections Eq.(19) multiplied by the factors of the renormalized wave functions Z ;/ 2

h— ntn~ amplitude at next-to-leading order and can be written at O (g2m2/mg,) as

Z; giverise to the

g’y m
Ah—ntn) = I 1+ 2 %0 W
2myvN @, .\
1_W Iog?er
g
162mg,n2
2| (20

g?ny, .o
'1— mz% (Iog—uzB + m)
The same procedure is done for the h — W W~ amplitude where the vertex corrections are multiplied by the factors of the
renormalized wave functions Z/*Zy, and can be written at O (g2m2/ng,) as

g’
A(h—WHW) = M|y, Sl . 1)
2my VN G2 mo o\ |
ll— Tnﬁﬁtz (logp—zR +|TC>

In order to show that the ET holds for non-perturbative next-to-leading order, we calculate Higgs decays into gauge bosons
and pionsin the large N limit. We then compare the decay widths as obtained from the decay amplitudes for h — = ¥~ and
h—W™W~ in Egs. (20) and (21) respectively. Such decay widths are given by

g, M
+ = gznﬁR 64“2”%\/ Iog
'h—n'n) = 1+ 7
64nmg,N 1 i, | ng :
~ g, (109 TIT
N 128r 22)

2
‘1_ 13;25\, ( m'%—2+|n)
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and
L om (T m)
I'h—-wWw™) = 1-4 X (1-4X+12 X
| )= wmen |t ( m, e,
g
SRS s (23)
‘1 gfﬁv (Iog My +|n>

InFig. 4 wedisplay theratioT'(h — n*n~)/T'(h — W*™W™) asafunction of the Higgs mass including next-to-leading order
corrections. From thisfigure it can be seen that such quotient tends to one for large Higgs masses (mn, 2 4.5 TeV), showing the
validity of the ET at high energies.

wherethe T is called the transition matrix, we have
2.4
22 i ty_ 1t
— —i(T-TH=T'T (24)
MU
N F 1.8 and since four momentum is conserved in the transition from
lT: = initial state |i) to final state | f), we can always write
<l 1
< 1.4
i E=a (F[TIi) = (2m)*8"(pr — pi) T (25)
' 0 2000 4000 6000 8000 10000 and
mhR(Gev) i : * 444 *
(T = (ITIH)"(2m)"8" (pr — pi) it (26)

Figure 4. The quotient I'(h — ™) /T'(h — W+W™) versusthe
renormalized Higgs mass, in the large N limit at next-to-leading order. This
Fig. shows that both decay widths tend to be equal for M, 2 4.5 TeV;
showing the validity of the ET at high energies.

Inserting a complete set of intermediate states |q) wefind

(Tl = (Hl [ s ?gE) (ATl @)

IV. UNITARITY INTHE LARGENLIMIT

Asaconsequence of unitarity of the Smatrix, i. e. STS=1,
the Optical Theorem is obtained . By defining S= 14T,

and from the identity (24) we can obtain the Cutkosky's
rule[25]

2im(Tif) = > <|Hl / 2: ;gE ) Tee Tigp (2m)*8%( — ;qi) (28)

where the sum runs over all possible sets of intermediate states q;.
Applying thisidentity to the decay I'(h — n*n~) we find

p+
d3da d?
2lm (E’_@< ) = / (Zn)gZEa (Zn)??;Eb (21)*8*(p— da— 0o)

*

(e)el)

Ca 1) p-
In the left-hand side of the previous equation we have the imaginary part of the product of Eq. (3) times the wave function
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Zﬁ/ ZZn, resulting
g’

AmAh— 1)) = iy 16m/N . (30)

2 2
'1 85”6:;2 (Iognf2 +|n)

For the right-hand side, we have to multiply the amplitudes calculated in the large N limit

Ao

) )
1/2
h___@< N (h___o< i h___OQ< i )
Ca Ca

Oa

i.e,
gm; 1
A(h—mamp) = R_8ap
( 2 ) ZWW\/N 1— gzr'rﬁ ('Og (Qa+Qb) +|TE>
8rr6\/16n2
o'y
162r'r6\,rc2
(31)
9 2
(1— SH‘GVWfGTtZ (Iognﬁ +|n))
by
Ca pt Ca pt Ca pt
Y% p- Y% p- Ao p-
i.e,

Zmﬁ 1

Almanpy —tin) = Sab (32
~4mgN i At )2 |
iy 1- Srr%/”fgnz (Iog @ tﬁb) + m)
Then the right-hand side of Eq. (29) becomes
g’
x - 1 X BN
[A(h— many)]" [A(ramp — )] = )2 X - g, VN 5
" 1- 2 m'% lo qa+Qb) +in
8rr6\/16n2 92
1
— 5 1(ca,b) (33)
where 1/4 isthe symmetry factor for identical bosonsin the final state.
From Eg. (29) we define
d3qa d3Qb 4 * 4+, —
— 2 | S S8 (P~ da— k) x [A(— mamy)]" [A(ramy — ' )] (34)
and the integral over gy, can be written as
d3 oo
Seo = [ d'asd(0a - Ga)O (o). (3
b —oo
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Integrating the four-dimensional delta functionin Eq.(36) we obtain

v L [l
16m2 2E,

_ E |ga|dEadQ ., »
B 16752/0 3lp

2

In the center-of-mass frame

=(E, P,
theintegral in Eq. (36) can be rewritten as

Oa = (Ea,Ga) = ('

1 E|ga|dE'dQ .,

M = 16m2 /0 2 S[E
8IT€V167'52\/N ’1_ anﬁR

8, 16n2
and by using p? = mg_
gt
M — 8y, 16r VN . (39)
1 P lo e |
- W g g +IT

Comparing equations (30) and (39) we see that the Higgs de-
cay I'(h — n*n~) calculated in the large N limit at next-to-
leading order fulfills the unitarity condition.

V. CONCLUSIONS

We have shown that non-perturbative calculations at next-
to-leading order in thelarge N limit for the case of aHiggs de-
caying into W* and n* fulfill the ET. In particular, we found
that the decay widths '(h - W*W~) and T'(h — nt*n ™) get
values that are basically identical for heavy Higgs bosonsi.e.

605
8[(P— 9a)%©(Po — Gao) T (Ga, P — Ga)

—2p-0a+ 93] f(Ga, P— Ga).- (36)
,8),  ab=(Ep,0h) = (E,0) (37)
—2EE'— p*+2p- T/ (da. P— Ga)

|Qal dQ

5 A& %)
(ogFer)

[

My, 2 4.5 TeV.

On the other hand, we have aso shown that calculations
in the same scheme for the Higgs decaying into pions respect
unitarity. Thisresults open the possibility to study strongly in-
teracting systems as could be the case of the SM with a heavy
Higgs boson.
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VI. APPENDIX

In this appendix we show the explicit calculation of a Feyn-
man diagram with | loopsin the large N limit that contributes
to the Higgs boson self-energy.

0000~ (5wl -]

where 1/2I is the symmetry factor of the diagram. The first
factor correspondsto the initial and final loops times the ver-
tices with three particles, the second factor represents the

_gzlq)I (40)

product of the | — 1 internal vertices with four interacting
fields and the last factor correspond to | — 2 loops. Each loop
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contributeswith an N factor, asthey have N circulating pions.
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