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The Equivalence Theorem is commonly used to calculate perturbatively amplitudes involving gauge bosons
at energy scales higher than gauge boson masses. However, when the scalar sector is strongly interacting the
theory is non-perturbative. We show that the Equivalence Theorem holds in the large N limit at next-to-leading
order by calculating the decay widths h → W+W− and h → π+π−. We also show, in the same scheme of
calculations, that unitarity is fulfilled for the process h → π+π−.

I. INTRODUCTION

The Standard Model (SM) of the electroweak interactions,
based on the SU(2)L ⊗U(1)Y gauge symmetry [1], is a suc-
cessful theory and agrees with most experimental results
[2]. However, the scalar sector responsible for the symme-
try breaking of the SM is not well known and it has not been
tested yet. This sector gives masses to the particles of the
model, fermions and gauge fields, when the scalar field has
a non vanishing Vacuum Expectation Value (VEV) after the
symmetry breaking. In the scalar sector a Higgs particle ap-
pears with a mass given by m2

h = 2λv2, where λ is the coupling
constant of the self-interacting term and v is the VEV (v≈ 246
GeV). mh is an unknown parameter so far.

Nevertheless, the precision tests of the SM impose strong
bounds to the Higgs mass when the scalar sector is weakly-
coupled. The results from LEP Electroweak Working Group
analysis yield mh = 114+69

−45 GeV (68% CL) [3], and an upper
limit of mh < 260 GeV with one-sided 95% CL [3]. The direct
search of the Higgs boson done at LEP gives a lower limit of
mh > 114.4 GeV [3]. On the other hand, it is possible to have
different models beyond the SM with a heavy Higgs with a
mass lying in the TeV scale for a strongly interacting scalar
sector. However, for this scenario to be held, the new physics
contributions must cancel those ones introduced by the heavy
Higgs particle at low energies [4].

If the SM is an effective theory derived from a more funda-
mental one, then there is an associated Λ scale for the appear-
ance of new physics. The use of theoretical arguments, like
unitarity [5], triviality [6] and vacuum stability [7], may allow
to get constraints for these two parameters (Λ,mh) [8].

The upper limit for the Higgs mass can be obtained by triv-
iality considerations in the Higgs sector [9]. When the quar-
tic coupling constant λ in the scalar sector of the Higgs po-
tential is renormalized introducing a cut-off Λ, the coupling
goes to zero when Λ goes to infinity, implying that mh goes
to zero. This is not the case for the SM, because it needs a
massive scalar particle at low energies to explain experimen-
tal results, and then the SM can be considered as an effective
theory below a given energy scale. If we knew this scale we
could predict the Higgs mass. Further, if the SM had a Higgs
with a mass around 1 TeV, then the scalar sector would be
strongly interacting and the underlying theory would become
non-perturbative[10].

The amplitude for a heavy Higgs decaying into two longi-

tudinally polarized gauge bosons reads [11]

A(h→ ZZ,WW )≈ λ(mh)

(
1+ 2.8

λ(mh)
16π2 + 62.1

(
λ(mh)
16π2

)2
)

.

(1)
By considering that in the perturbation expansion the λ 2 term
must be smaller than the λ term, it is found that λ(mh)≈ 7 im-
plying that mh ≈ 1 TeV. On the other hand, using the scattering
process WW → ZZ mediated by a Higgs particle, which might
be important in future collider experiments like LHC and lin-
ear colliders, the cross section for energies

√
s >> mh at two

loops level is given by [12]

σ(s) =
1

8πs
λ(s)2

[
1−42.65

λ(s)
16π2 + 2477.9

(
λ(s)
16π2

)2
]

.

(2)
This cross section is negative for some values of λ which
means that the perturbative expansion breaks down. Consid-
ering that the λ2 term must be smaller than the λ term, a nec-
essary condition to have a convergent series is λ ≈ 4, in this
case mh ≈ 700 GeV [13]. The above scenarios correspond to
the limit between weakly-coupled and strongly-coupled scalar
sectors.

In the Marciano and Willenbrock paper [14] they calculated
the decays of a heavy Higgs boson up to O(g2m2

h/m2
W ) in per-

turbation theory using the Equivalence Theorem (ET) [15],
from which the amplitude with gauge bosons longitudinally
polarized at energies O(q2 >> m2

W ) is equivalent to the same
amplitude but changing the corresponding longitudinal com-
ponents by the would-be Goldstone bosons. For Higgs masses
of the order of mh ≈ 1 TeV and mh ≈ 1.3 TeV the radiative
corrections for the decay h → W +W− are 7.3% and 12%, re-
spectively. At this scale the scalar sector is strongly-coupled
and the theory is non-perturbative. It is obvious that the am-
plitude at next-to-leading order breaks the perturbative expan-
sion because all Feynman rules are proportional to the Higgs
mass. For strongly interacting models is necessary to use a
non-perturbative method to calculate radiative corrections and
get bounded amplitudes. While it has been shown that the ET
holds order by order in perturbation theory, it has not been
confirmed that it does in non-perturbative calculations.

Due to the importance of studying the Higgs dynamics in
non-perturbative regimes, a formalism was introduced in Ref.
[16] which uses Chiral Perturbation Theory(χPT) [17]. Am-
plitudes are obtained as a power expansion in the energy, this
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implies that the conventional ET does not hold anymore [18].
Thus, a new formalism is necessary to have an effective theory
[19].

The large N limit is an alternative approach that predicts
bounded positive defined amplitudes, consistent with pion dis-
persion [20], and useful to study the symmetry breaking of the
strongly interacting sector [21]. The scalar sector of the SM
can be modelled by a Linear Sigma Model O(4) and then gen-
eralized to a model with O(N +1) symmetry. This method has
been applied to study the Higgs boson at TeV energy scales
[10, 22]. We show that the large N limit can predict ampli-
tudes that fulfill the ET and the unitarity condition at next-to-
leading order for the SM, with a strongly interacting scalar
sector, by using the h →W +W− and h → π+π− processes.

In section 2 we introduce the Gauged Linear Sigma Model
O(N + 1). In section 3 we calculate the Higgs decay widths,
h →W +W− and h → π+π−, in the large N limit and we show
that the ET holds at next-to-leading order. In section 4 we
show that the amplitude h → π+π− satisfies unitarity in the
large N limit. In section 5 we give our conclusions.

II. THE O(N +1) MODEL

It is well known that the Linear Sigma Model represents
the symmetry breaking O(N + 1) → O(N) with N would-
be Goldstone bosons which belong to the fundamental irre-
ducible representation of the remaining symmetry O(N). For
the purposes of this work the would-be Goldstone bosons will
be named like pions π. For a gauge invariant model under
SU(2)L ⊗U(1)Y local symmetry the large N limit for the SM
is defined as

Lg = LY M +(DµΦ)†(DµΦ)−V(Φ2)

with Φ† = (π1,π2, · · · ,πN ,σ) and Φ2 = Φ†Φ. As usual LY M is
the Yang-Mills Lagrangian of the SM and the covariant deriv-
ative is defined as

DµΦ = ∂µΦ− ig�TL · �WµΦ+ ig′T R
3 BµΦ,

where �T L =−(i/2)�ML are the generators of the SU(2)L gauge
group and T R

3 = −(i/2)MY is the generator of the U(1)Y
4gauge group. The M matrices are given by [23]

Mab
i j = −i(δa

i δb
j − δb

i δa
j)

which belong to an irreducible representation of the O(N +1)
Lie algebra with i, j = 1,2,3 and a,b = 1,2, . . . ,N + 1. The
matrices which belong to the adjoint representation of the
SU(2)L Lie algebra are given by

ML
1 =




0 0 0 · · · −
0 0 − ·· · 0
0 + 0 · · · 0
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
+ 0 0 · · · 0




ML
2 =




0 0 + · · · 0
0 0 0 · · · −
− 0 0 · · · 0
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
0 + 0 · · · 0




ML
3 =




0 + 0 · · · 0
− 0 0 · · · 0
0 0 0 · · · +
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
0 0 − ·· · 0




and, the corresponding matrix for the U(1)Y Lie algebra reads

MY =




0 + 0 · · · 0
− 0 0 · · · 0
0 0 0 · · · −
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
0 0 + · · · 0




where dots represent zeros. In this form we have a global
O(N + 1) symmetry with a local SU(2)L ⊗U(1)Y symmetry.

The Higgs potential, invariant under O(N +1), can be writ-
ten as

V (Φ2) = −µ2Φ2 +
λ
4
(Φ2)2. (3)

Aligning the vacuum state as 〈φ〉0 ≡ (0, . . . ,v), with Φ2 = v2 =
2µ2/λ, the global symmetry O(N + 1) is broken to O(N) and
the local symmetry is broken as SU(2)L ⊗U(1)Y → U(1)Q.
By defining the Higgs field as h = σ−v, we find the following
expression

Lg = LY M +
1
2
(Dµπa)†(Dµπa)+

1
2
(Dµh)†(Dµh) (4)

− 1
2

m2
hh2 −λ(π2 + h2)2 −4λvh(π2 + h2).

The gauge boson masses are obtained from the kinetic term,

1
2

(gv
2

)2
W a

µ W µ
a +

1
2

(
g′v
2

)2

BµBµ − gg′v2

4
W 3

µ Bµ (5)

where the mass eigenstates are given by

W+
µ = (W 1

µ − iW2
µ )/

√
2

W−
µ = (W 1

µ + iW2
µ )/

√
2 (6)

Zµ = cosθWW 3
µ − sinθW Bµ

Aµ = sinθWW 3
µ + cosθW Bµ

and θW is the Weinberg angle with tanθW = g′/g. The W±
µ

fields, with mW = gv/2 ≈ 80.6 GeV masses, are the charged
gauge bosons, and the Zµ field, with mZ = v(g2 + g′2)1/2/2 ≈

91.2 GeV mass, is the weak neutral gauge boson. The A µ field
is the massless photon.

The Lagrangian has terms of the form g2v∂µπaW a
µ /4, mix-

ing gauge bosons with would-be Goldstone bosons, which can
be cancelled by gauge fixing. We choose the Landau gauge
(ξ = 0) because in this gauge a lot of Feynman diagrams can-
cel or suppress, the πa fields do not couple to the ghost fields,
and their propagators are massless. The final Lagrangian can
be written as
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L [π, �W ,B,h] = −1
2

πa✷πa − 1
2

h(✷+ m2
h)h−λ(π2

a + h2)2

− 4λvh(π2
a + h2)− g

2
∂µπ1(W 3

µ π2 −W2
µ π3)

− g
2

∂µπ2(W 1
µ π3 −W 3

µ π1)− g
2

∂µπ3(W 2
µ π1 −W1

µ π2)

+ g∂µh(�Wµ ·�π)− g′

2
(π1∂µπ2 −π2∂µπ1)Bµ −g∂µhπ3Bµ

+
1
2

m2
W

�Wµ · �W µ +
1
2

m2
BBµBµ −mW mBW 3

µ Bµ

+
g2

8
(�Wµ ·�π)(�W µ ·�π)+

g′2v
4

hBµBµ

+
g′2

8
H2BµBµ − gg′

4
h2W 3

µ Bµ − gg′v
2

hW 3
µ Bµ

+
g2

8
h2�Wµ · �W µ +

g2v
4

h�Wµ · �W µ +
g′2

8
BµBµ�π ·�π

+
gg′

4
W 3

µ Bµ�π ·�π− gg′

2
π3Bµ(W

µ
1 π1 +W µ

2 π2)

+ g′mW Bµ(W
µ
1 π2 −Wµ

2 π1)+
gg′

2
Bµ(W

µ
1 π2 −Wµ

2 π1)h

+ LY M. (7)

Thus we have a gauge theory spontaneously broken with the
�π =(π1,π2,π3) fields as the would-be Goldstone bosons of the
broken symmetry SU(2)L⊗U(1)Y/U(1)Q and πa fields as the
would-be Goldstone bosons of the broken global symmetry
O(N + 1)/O(N).

The theory for the large N limit makes sense when N → ∞
and gives rise to finite amplitudes for different processes. To
get finite amplitudes is necessary to choose appropriate para-
meters in the large N limit. We will take the following defini-
tion

λ ≈ 1/N (8)

in order to use perturbative expansion of the strongly interact-
ing sector as a function of the λ parameter. With this defini-
tion, physical masses must be finite and independent of N in
the large N limit. From the masses

m2
h = 2λv2 ≈ const

m2
W =

g2v2

4
≈ const

m2
Z =

(g2 + g′2)v2

4
≈ const (9)

we obtain for the other parameters of the model in the large N
limit the following values

v ≈
√

N , g ≈ 1/
√

N , g′ ≈ 1/
√

N. (10)

Finally, we obtain the Feynman rules necessary to calculate
the decay widths for h → W +W− and h → π+π− in the large
N limit, see Fig. 1.

III. THE HIGGS BOSON DECAY AND THE
EQUIVALENCE THEOREM

The SM in the large N limit is associated with the O(N +
1)/O(N) and SU(2)L ⊗U(1)Y /U(1)Q global and local sym-
metry breaking schemes respectively. We can calculate the
amplitudes for h →W +W− and h → π+π− decays in order to
show that the ET holds in the proposed scenario.

Feynman diagrams at tree level in this approximation are of
the order of O(g) or O(g′) and of the order of O(1/

√
N) in the

large N limit . The decay widths at tree level for h →W +W−
and h → π+π− processes are given by

Γ(h →W +W−) =
g2m3

h

64πm2
W

[
1− 4m2

W

m2
h

]1/2 [
1− 4m2

W

m2
h

+
12m4

W

m4
h

]
,

Γ(h → π+π−) =
g2m3

h

64πm2
W

. (11)
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w+
µ�hh

w−
µ

� = igµν
gmW√

N

πa�hh

πb
� = −i

gm2
h

2mW
√

N
δab

π+�hh

π−
� = −i

gm2
h

2mW
√

N

πa��π+

πb
��

π−

= −i
g2m2

h

4m2
W N

δab

πa��πc

πb
��

πd

= −i
g2m2

h

4m2
W N

δabδcd hap
h
h =

i

p2 −m2
h

fap
π±,πa

f =
i

p2

Figure 1. Feynman rules in the Landau gauge for the SM in the large N limit

To obtain the amplitudes at next-to-leading order is neces-
sary to introduce the radiative corrections. First we calculate
the self-energy of the scalar particle h, whose Feynman dia-
grams at next-to-leading order are shown in Fig. 2. In this
case, the self-energy at one loop level with πa fields into the
loops is of the order of 1/N times N where N is the number of
degrees of freedom running into the loop. Therefore, radiative
corrections are of the order of one in the large N limit. The

same analysis can be done for the self-energy diagram with l
loops. It has two vertices with hππ and l−1 vertices with four
πa and is of the order of (1/

√
N)2 (̇1/N)l−1 times Nl the num-

ber of pion fields running into the l loops. Consequently, the
self-energy diagram with l loops is of the order of one in the
large N limit. However, the one irreducible particle function
(1IP) for self-energy diagram with W ±

µ ,Zµ into the loop is of
the order of 1/N, which is negligible in the large N limit.

−i∏
h

(q2) = hhπac
πb

hh + hhπacπc

πb

c
πd

hh +

hhπacπc

πb

cπe

πd

c
π f

hh + · · · · · ·+ hhW+
µ ow

W−
µ

hh
+ · · ·

︸ ︷︷ ︸
O( 1

N )

Figure 2. Next-to-leading order Feynman diagrams that contribute to the self-energy of the Higgs boson in the large N limit

After doing all calculations by using dimensional regular-
ization, with d = 4− ε integrals from the loops, we find (see
appendix)

−iΠh(q2) =

g2m4
h

8m2
W

Iq

1− ig2m2
h

8m2
W

Iq

(12)

with Iq given by

Iq =
i

16π2

(
∆ + 2− log

q2

µ2 − iπ
)

(13)

where ∆ = 2/ε+ log4π−γε and µ is the renormalization scale.
The choice of the renormalization scale µ is arbitrary. There-
fore, we shall adopt µ ≈ 1 TeV as a reasonable choice. We
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have taken into account that only the one irreducible particle
functions are important in perturbation theory for the renor-
malization of parameters such as the mass and the wave func-
tion [24].

From the self-energy calculation the wave function renor-
malization of the Higgs boson can be obtained as

Zh = 1+

g2

256m2
W π2q2(

1+ g2m2
h

128m2
W π2

(
∆ + 2− log q2

µ2 − iπ
))2

∣∣∣∣∣∣∣∣∣
q2=m2

hR

.(14)

The contributions to π±, W± and Zµ self-energies are propor-

tional to 1/N and in the large N limit we obtain that

Zπ± = ZWµ = ZZµ = 1. (15)

To calculate the Higgs decays at this order, vertex correc-
tions have to be included as well, as shown in Fig. 3.

(a) hh pu
W +

µ

v
W −

ν

@=@hh u
W +

µ

v
W −

ν

@+@hh
W +

µ
yz

W−
νu

W +
µ

v
W −

ν

@+@· · ·

(b) hh pe π+

d
π−

@=@hh πac
πb

e π+

d
π−

@+@hh πacπc

πb

c
πd

e π+

d
π−

@+@· · ·

@+@hh
W +

µ
yz

W−
νe π+

d
π−

+ · · ·

+
h

h

π+

π+

π−

π−

Figure 3. Feynman diagrams in the large N limit which contribute to vertex interactions. (a) h →W+W−, (b) h → π+π−.

The radiative corrections of hW +W− vertex displayed in Fig. 3(a) are suppressed since they are of the order of 1/N 2 becoming
negligible in our approximation. The hW +W− vertex can be written at this level as

hh pu
W +

µ

v
W −

ν

@=@igµν
gmW√

N
. (16)

For the hπ+π− vertex corrections shown in Fig. 3(b), the pions into the loops give the most important contributions and can be
written as

hh pe π+

d
π−

=
−ig

2mW
√

N


 1

1
m2

h
+ g2

128m2
wπ2

(
∆ + 2− log q2

µ2 − iπ
)



where the W± contributions into the loops are suppressed by a 1/N factor with respect to the π a contributions. Similarly, the
contribution with a higgs running into the loop is also suppressed by a 1/N factor.



602 John Morales et. al.

The wave function renormalization of the Higgs particle Eq.(14) and the vertex radiative correction Eq. (3) diverge. To obtain
finite amplitudes the Higgs mass has to be renormalized [10]

1

m2
hR

≡ 1

m2
h

+
g2(∆ + 2)
128π2m2

W

. (17)

The real part of the Zh function Eq.(14) is given by

Z1/2
h = 1+

g2m2
hR

162m2
W π2

×

[
1− 2g2m2

hR
128m2

W π2 log
m2

hR
µ2 +

g4m4
hR

82m4
W 162π4

(
log

(
m2

hR
µ2

)2

−π2

)]
∣∣∣∣1− g2m2

hR
128m2

W π2

(
log

m2
hR

µ2 + iπ
)∣∣∣∣4

.

In the same way, the real part of the vertex correction Eq.(3) can be expressed as

hKpe π+

d
π−

=
−igm2

hR

2mW
√

N
×


1+

g2m2
hR

128m2
W π2 log

m2
hR

µ2 − g4m4
hR

82m4
W 162π4

(
log

(
m2

hR
µ2

)2

−π2

)
∣∣∣∣1− g2m2

hR
128m2

W π2

(
log

m2
hR

µ2 + iπ
)∣∣∣∣2




Hence, the vertex corrections Eq.(19) multiplied by the factors of the renormalized wave functions Z 1/2
h Zπ give rise to the

h → π+π− amplitude at next-to-leading order and can be written at O(g 2m2
h/m2

W ) as

A(h → π+π−) =
gm2

hR

2mW
√

N


1+

g2m2
hR

128m2
W π2 log

m2
hR

µ2∣∣∣∣1− g2m2
hR

128m2
W π2

(
log

m2
hR

µ2 + iπ
)∣∣∣∣2

+

g2m2
hR

162m2
W π2∣∣∣∣1− g2m2

hR
128m2

W π2

(
log

m2
hR

µ2 + iπ
)∣∣∣∣4


 . (20)

The same procedure is done for the h → W +W− amplitude where the vertex corrections are multiplied by the factors of the

renormalized wave functions Z 1/2
h ZW , and can be written at O(g2m2

h/m2
w) as

A(h →W +W−) =
gm2

hR

2mW
√

N


1+

g2m2
hR

162m2
W π2∣∣∣∣1− g2m2

hR
128m2

W π2

(
log

m2
hR

µ2 + iπ
)∣∣∣∣4


 . (21)

In order to show that the ET holds for non-perturbative next-to-leading order, we calculate Higgs decays into gauge bosons
and pions in the large N limit. We then compare the decay widths as obtained from the decay amplitudes for h → π +π− and
h →W +W− in Eqs. (20) and (21) respectively. Such decay widths are given by

Γ(h → π+π−) =
g2m3

hR

64πm2
W N


1+

g2m2
hR

64π2m2
W

log
m2

hR
µ2∣∣∣∣1− g2m2

hR
128π2m2

W

(
log

m2
hR

µ2 + iπ
)∣∣∣∣4

+

g2m2
hR

128π2m2
W∣∣∣∣1− g2m2

hR
128π2m2

W

(
log

m2
hR

µ2 + iπ
)∣∣∣∣8


 . (22)



Brazilian Journal of Physics, vol. 35, no. 3A, September, 2005 603

and

Γ(h →W +W−) =
g2m3

hR

64πm2
W N

√
1−4

m2
W

m2
hR

(
1−4

m2
W

m2
hR

+ 12
m4

W

m4
hR

)

1+

g2m2
hR

128π2m2
W∣∣∣∣1− g2m2

hR
64π2m2

W

(
log

m2
hR

µ2 + iπ
)∣∣∣∣4


 . (23)

In Fig. 4 we display the ratio Γ(h → π+π−)/Γ(h →W +W−) as a function of the Higgs mass including next-to-leading order
corrections. From this figure it can be seen that such quotient tends to one for large Higgs masses (m hR � 4.5 TeV), showing the
validity of the ET at high energies.
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Figure 4. The quotient Γ(h → π+π−)/Γ(h →W+W−) versus the
renormalized Higgs mass, in the large N limit at next-to-leading order. This

Fig. shows that both decay widths tend to be equal for mhR
� 4.5 TeV;

showing the validity of the ET at high energies.

IV. UNITARITY IN THE LARGE N LIMIT

As a consequence of unitarity of the S-matrix, i. e. S †S = 1,
the Optical Theorem is obtained . By defining S = 1 + iT ,

where the T is called the transition matrix, we have

−i(T −T †) = T †T (24)

and since four momentum is conserved in the transition from
initial state |i〉 to final state | f 〉, we can always write

〈 f |T |i〉 = (2π)4δ4(p f − pi)T f i (25)

and

〈 f |T †|i〉 = 〈i|T | f 〉∗(2π)4δ4(p f − pi)T ∗
i f . (26)

Inserting a complete set of intermediate states |q〉 we find

〈 f |T †T |i〉 = ∑
n

(
n

∏
i=1

Z
d3qi

(2π)32Ei

)
〈 f |T †|qi〉〈qi|T |i〉 (27)

and from the identity (24) we can obtain the Cutkosky’s
rule[25]

2Im(Ti f ) = ∑
n

(
n

∏
i=1

Z
d3qi

(2π)32Ei

)
T ∗

f qi
Tiqi(2π)4δ4(i → ∑

i

qi) (28)

where the sum runs over all possible sets of intermediate states qi.
Applying this identity to the decay Γ(h → π+π−) we find

2Im


 pKpe p+

d
p−


 =

Z
d3qa

(2π)32Ea

d3qb

(2π)32Eb
(2π)4δ4(p−qa−qb)

×

 pKpe qb

d
qa




∗
qad

qb
e pe

p+

d
p−


 . (29)

In the left-hand side of the previous equation we have the imaginary part of the product of Eq. (3) times the wave function
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Z1/2
h Zπ, resulting

2Im(A(h → π+π−)) =

g3m4
hR

8m3
W 16π

√
N∣∣∣∣1− g2m2

hR
8m2

W 16π2

(
log

m2
hR

µ2 + iπ
)∣∣∣∣2

. (30)

For the right-hand side, we have to multiply the amplitudes calculated in the large N limit

hh pe qb

d
qa

@=@Z1/2
h Zπ


hh ce qb

d
qa

@+@hh cce qb

d
qa

@+@· · ·




i.e.,

A(h → πaπb) =
gm2

hR

2mW
√

N
δab


 1

1− g2m2
hR

8m2
W 16π2

(
log (qa+qb)2

µ2 + iπ
)

+

g2m2
hR

162m2
W π2(

1− g2m2
hR

8m2
W 16π2

(
log

m2
hR

µ2 + iπ
))2


 (31)

by

qad
qb
e pe

p+

d
p−

@=@Z2
π


 qad

qb
e ce

p+

d
p−

@+@qad
qb
e cce

p+

d
p−

@+@· · ·




i.e.,

A(πaπb → π+π−) =
g2m2

hR

4m2
W N

δab


 1

1− g2m2
hR

8m2
W 16π2

(
log (qa+qb)2

µ2 + iπ
)

 . (32)

Then the right-hand side of Eq. (29) becomes

[A(h → πaπb)]
∗ [A(πaπb → π+π−)

]
=

1
(2π)2 ×

1
4 ×

g3m4
hR

8m3
W

√
N∣∣∣∣1− g2m2

hR
8m2

W 16π2

(
log (qa+qb)2

µ2 + iπ
)∣∣∣∣2

=
1
4

f (qa,qb) (33)

where 1/4 is the symmetry factor for identical bosons in the final state.
From Eq. (29) we define

M =
1

4π2

Z
d3qa

2Ea

d3qb

2Eb
δ4(p−qa−qb)× [A(h → πaπb)]

∗ [A(πaπb → π+π−)
]

(34)

and the integral over qb can be written as

Z
d3qb

2Eb
=
Z ∞

−∞
d4qbδ(qa ·qa)Θ(qb0). (35)
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Integrating the four-dimensional delta function in Eq.(36) we obtain

M =
1

16π2

Z |qa|2d|qa|dΩ
2Ea

δ[(p−qa)2]Θ(p0 −qa0) f (qa, p−qa)

=
1

16π2

Z E

0

|qa|dEadΩ
2

δ[p2 −2p ·qa + q2
a] f (qa, p−qa). (36)

In the center-of-mass frame

p = (E,�p), qa = (Ea,�qa) = (E ′,�q), qb = (Eb,�qb) = (E ′,�q) (37)

the integral in Eq. (36) can be rewritten as

M =
1

16π2

Z E

0

|qa|dE ′dΩ
2

δ[E2 −2EE ′ − p2 + 2�p ·�q] f (qa, p−qa)

=
g3m4

hR

8m3
W 16π2

√
N

|qa|∣∣∣∣1− g2m2
hR

8m2
W 16π2

(
log p2

µ2 + iπ
)∣∣∣∣2

dΩ
2|−2E| (38)

and by using p2 = m2
hR

M =

g3m4
hR

8m3
W 16π

√
N∣∣∣∣1− g2m2

hR
8m2

W 16π2

(
log

m2
hR

µ2 + iπ
)∣∣∣∣2

. (39)

Comparing equations (30) and (39) we see that the Higgs de-
cay Γ(h → π+π−) calculated in the large N limit at next-to-
leading order fulfills the unitarity condition.

V. CONCLUSIONS

We have shown that non-perturbative calculations at next-
to-leading order in the large N limit for the case of a Higgs de-
caying into W± and π± fulfill the ET. In particular, we found
that the decay widths Γ(h → W +W−) and Γ(h → π+π−) get
values that are basically identical for heavy Higgs bosons i.e.

mhR � 4.5 TeV.
On the other hand, we have also shown that calculations

in the same scheme for the Higgs decaying into pions respect
unitarity. This results open the possibility to study strongly in-
teracting systems as could be the case of the SM with a heavy
Higgs boson.
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VI. APPENDIX

In this appendix we show the explicit calculation of a Feyn-
man diagram with l loops in the large N limit that contributes
to the Higgs boson self-energy.

hKccc· · ·c︸ ︷︷ ︸
l−loop´s

Kh =
1
2l

[( −igm2
h

2mW
√

N

)
(−NIq)

]
×
[(−ig2m2

h

4m2
W N

)]l−1

× (−NIq)l−2

=
1
2l

(−im2
h)

l+1
(−g2Iq

4m2
W

)l

(40)

where 1/2l is the symmetry factor of the diagram. The first
factor corresponds to the initial and final loops times the ver-
tices with three particles, the second factor represents the

product of the l − 1 internal vertices with four interacting
fields and the last factor correspond to l −2 loops. Each loop
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contributes with an N factor, as they have N circulating pions.
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