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An approximate and a good parametric relationship between the Pearson-Takai-Halicioglu-Tiller (PTHT)
and the Biswas-Hamann (BH) empirical potential energy functions is developed for the case of 2-body inter-
action. The approximate relationship between PTHT and BH was obtained by equating the zeroth up to the
second order of the potential functions’ derivative with respect to the interatomic distance at the equilibrium
bond length, followed by comparison of coefficients at the repulsive and attractive terms. A refined relationship
was then suggested by including the third order derivative. Plots of non-dimensional 2-body energy versus the
non-dimensional interatomic distance verified the analytical relationships developed herein. Finally, the phys-
ical significance of the developed parametric relationships is discussed with reference to conservative design
methodology.

I. INTRODUCTION

Parametric relationships between various interatomic po-
tential energy function of the same category ofn-body inter-
action can be useful when available physical data and com-
putational softwares are based on parameters of different po-
tential functions. In addition to providing a way for convert-
ing potential functions, any discrepancy between these po-
tential functions will provide insight on how the choice of
potential functions will affect the outcome of simulation re-
sults. Mathematical relationships for relating molecular po-
tential functions used in chemical computation have been de-
veloped [1-7]. These relationships were improved and sub-
sequently developed into a molecular potential function con-
verter software [8]. However, parametric relationships be-
tween potential energy functions used for computational con-
densed matter properties are lacking. Though Stoneham et
al. [9] performed a comparison of eight potential functions
for silicon, the functions considered are under the category
of valence-force potentials which are useful only for describ-
ing small distortions from equilibrium. A set of six potential
functions were compared by Balamane et al. [10] but the po-
tential functions plotted were based on parameters obtained
via experimental curve-fitting instead of analytical conversion
of parameters. In this paper, a set of analytical relationship is
developed for converting parameters between the 2-body in-
teractions in the Pearson-Takai-Halicioglu-Tiller (PTHT) and
the Biswas-Hamann (BH) potential functions. The PTHT
potential function was initially developed for silicon [11],
whereby its 2-body energy is taken from the Lennard-Jones
potential [12]. The terminology selected here is the “2-body
portion of PTHT” instead of “Lennard-Jones” to conform to
previous work [13,14], whereby the phrases “2-body portion
of Murrell-Mottram” (MM) [15] and the “2-body portion of
Bauer-Maysenholder-Seeger” (BMS) [16] were adopted in-
stead of the original terms “Rydberg” [17] and “Buckingham”
[18] potentials respectively, due to the emphasis for applica-
tion in many-body potentials used in condensed matter com-
putation [19]. See also Fig.1 whereby the parametric connec-
tions amongst the 2-body potential functions of PTHT [11],

MM [15], BMS [16], Kaxiras-Pandey (KP) [20] and BH [21]
were connected.

FIG. 1: Recently established relationships and presently developed
relationship.

II. ANALYSIS

As with PTHT, the BH potential function was also devel-
oped for silicon [21]. Similar to PTHT, BH potential function
belongs to a broad category of potential functions whereby the
total energy of a system is a summation of all 2-body and all
3-body interactions
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Φ = φ2−body+φ3−body= ∑
i< j

Ui j + ∑
i< j<k

Wi jk . (1)

In addition, the 2-body interactions in PTHT and BH be-
long to a sub-category of potential function which consist of
two distinct parts: a repulsive term and an attractive term,

Ui j = U repul
i j +Uattract

i j . (2)

Specifically, the PTHT and BH potential functions for 2-
body interactions are written as

UPTHT = ε

[(
R
r

)12

−2

(
R
r

)6
]

(3)

and

UBH = A1exp(−λ1r)+A2exp(−λ2r) (4)

respectively, whereε is the magnitude of the minimum well-
depth,r is the interatomic distance andR is the distance at
equilibrium for the case of PTHT whilstAi are the coeffi-
cients andλi are the indices of the repulsive(i = 1) and attrac-
tive (i = 2) terms. Furthermore, we note that both the 2-body
potentials are such that the functional forms in the repulsive
and attractive terms are similar for each potential function, i.e.
ε(R/r)6i for PTHT andAi exp(−λir) for BH, wherebyi = 1,2.
Let

(
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)
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)

r=R
(5)

for n = 0,1,2,3, we have
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where

ξi = λiR ; (i = 1,2) (7)

are the scaling factors. Eliminating the termsAi exp(−ξi) for
i = 1,2 from Eq.(6), we arrive at the upper and lower solutions
of one scaling factor in terms of another scaling factor,

{
ξ+

i
ξ−i

}
=

{
ξ j

(72/ξ j)

}
. (8)

Solving the first two rows of Eq.(6) simultaneously,

Ai = ε
(

ξ j

ξi −ξ j

)
exp(ξi) . (9)

Equation (9) enables the 2-body BH potential, i.e. Eq.(4),
to be rewritten in a loose form

UBH = ε
[(

ξ2

ξ1−ξ2

)
exp

(
ξ1

(
1− r

R

))
−

(
ξ1

ξ1−ξ2

)
exp

(
ξ2

(
1− r

R

))]
, (10)

thereby signifying that the upper solution of Eq.(8) to be in-
valid. An approximate relation between PTHT and BH can be
obtained by comparing the coefficients of Eq.(10) with those
of Eq.(3) to give

ξ1 = 2ξ2. (11)

Substituting Eq.(11) into the lower solution in Eq.(8), we
haveξ1 = 12 andξ2 = 6. For attaining better accuracy, we
eliminate the termsAi exp(−ξi) for i = 1,2 by solving the last
three rows of Eq.(6) to give

ξ1 +ξ2 = 21. (12)

From Eq.(12) and the lower solution of Eq.(8), we obtain

{
ξ1
ξ2

}
=

1
2

{
21+

√
153

21−√153

}
. (13)

III. RESULTS AND DISCUSSION

A summary of 2-body interaction relationship between the
parameters of PTHT and BH is furnished in Table 1. For
verification, graphs of non-dimensional 2-body energy(U/ε)
were plotted against the non-dimensional bond length(r/R).
Figure 2(a) depicts the approximate and improved BH curves
based on PTHT parameters. A close-up view at the minimum
well depth is shown in Fig. 2(b). For both illustrations, the
developed approximate and a good relationship between the
2-body energy of the PTHT and the BH potential functions
has been shown to be valid. It is concluded herein that by con-
sidering higher derivative (3rd order), we obtain a much im-
proved matching in comparison to the consideration of lower
derivative (2nd order).

In addition to gaining insight on the connection between
these potential functions, the parametric relationships also en-
able the discrepancies to be clearly observed [26], thereby
paving a way for the conservative design methodology to be
developed. To further appreciate the physical implications of
the relationships furnished in Table 1, we introduce the non-
dimensionalized interatomic force as

F∗ =−FR
ε

(14)
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Table 1. Summary of 2-body relationship between PTHT and BH potential function parameters.

Potential functions and
parameters

Parametric relationships Scaling Factors

UPTHT =
UPTHT(ε,R, r)
UBH =
UBH(A1,A2,λ1,λ2)

A1 = ε
(

ξ2
ξ1−ξ2

)
exp(ξ1)

A2 =−ε
(

ξ1
ξ1−ξ2

)
exp(ξ2)

λ1 = ξ1
R

λ2 = ξ2
R

Approximate:{
ξ1
ξ2

}
= 1

2

{
18+

√
36

18−√36

}
=

{
12
6

}

Improved:{
ξ1
ξ2

}
= 1

2

{
21+

√
153

21−√153

}
=

{
16.6847
4.3153

}

where the absolute interatomic force is defined from

F =−∂U
∂r

. (15)

A negative sign is incorporated into Eq.(14) in order to
give positive values of the force when the bonded atoms are
stretched. Hence

F∗PTHT =−12

[(
R
r

)13

−
(

R
r

)7
]

(16)

and

F∗BH =− [λ1A1exp(−λ1r)+λ2A2exp(−λ2r)]
R
ε

(17)

Substituting Eqs.(7) and (9) into Eq.(17), we arrive at

F∗BH =
ξ1ξ2

ξ2−ξ1

{
exp

[
ξ1

(
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R

)]
−exp

[
ξ2

(
1− r

R

)]}
.

(18)

Figure 3 shows the plots ofF∗PTHT, F∗BH(approximated) and
F∗BH(improved) versus the non-dimensionalized interatomic
distance. The approximated and improvedF∗BH are based
on the values of the scaling factors shown in Table 1. The
higher peak for BH(approx) in Fig. 3 corresponds to the higher
slope of the BH(approx) inflexion point in Fig. 2(a) in com-
parison to PTHT. We also note that the occurrence of the
peak occurs first for BH(approx) in Fig. 3 because the in-
flexion point occurs first for BH(approx) in Fig. 2(a). Pre-
scription of F∗ ∈ [2.69,3.00] would give simulation results
which predicts bond dissociation based on PTHT but no dis-
sociation based on BH(approx). However, prescription of
(r/R) ∈ [1.110, 1.115] would lead to simulated bond disso-
ciation based on BH(approx) but no dissociation based on
PTHT. Whilst the deviation of BH(approx) from PTHT is
about 11.5% at the peak force, the deviation of BH(improv)
from PTHT is about 0.1%.

(a)

(b)

FIG. 2: Comparison of 2-body energy function according to PTHT
and BH curves (a) long range view, and (b) close up view at minimum
well depth.

IV. CONCLUSIONS AND RECOMMENDATION

With these observations, we conclude the following:
There is a large improvement in the parametric relationship

when the order of derivative considered in increased from sec-
ond order to the third order. With the good agreement between
PTHT and BH(improv), there is no practical requirement to
incorporate the fourth order due to diminishing returns.
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FIG. 3: Comparison of interatomic force of PTHT and BH.

BH potential is more suitable for hard bonds whilst PTHT
is more suitable for soft bonds. Note that the bond hardness is
different from a strong bond in that the former is a description
of the abruptness in the rise of interatomic energy with inter-
atomic distance whilst the latter the magnitude of the mini-
mum well-depth.

It follows that PTHT is advisable when load is prescribed
whilst BH is advisable when distortion is prescribed for con-
servative design.

In view of the excellent agreement between parameters of
the PTHT and BH(improv) potential functions, a set of rela-
tionships between parameters the 3-body energy portion for
these two potential functions is suggested for future work.
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