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New Low-Energy Levels Calculation for 155Eu
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We have revisited the low-energy calculation of odd Z 155Eu in the frame of a semi-microscopic formalism as
a support for the interpretation of the experimental results for the multipole mixing ratios of some electromag-
netic transitions. The deformation parameters were obtained through a macroscopic-microscopic method, and
the proton single particle levels, calculated with realistic Woods-Saxon potential were used as input in a quasi-
particle calculation of the first few rotational band heads in the Lipkin-Nogami BCS aproximation. A better
agreement is found between the experimental and calculated band heads if compared with previous evaluations
and RIPL recommended values.

This work is a theoretical support for the interpretation of
the experimental results for the multipole mixing ratios of ob-
served electromagnetic transitions between low-energy levels
in 155Eu [1]. In order to explain the experimental results, it
was necessary to calculate the energy, angular momentum and
parity of the first excited states (E≤ 1MeV). Due to the fact
that the parameters in the potential energy are determined for
several nuclei and not for a specific one, the previous calcula-
tion was not successful in the description of the first excited
states. For example, in the work of Nazarewicz et al. [2], the
energy of the ground state of 155Eu differs from the expec-
ted value. In addition, when the parameterization proposed
by Cwiok et al. [3] is used, it is found that the energy of the
single particle states are in disagreement with the literature
values. The IAEA RIPL Database recommended single parti-
cle levels for protons obtained with the Finite Range Droplet
Model (FRDM) [4] and Hartree-Fock–BCS model [5] do not
describe even the ground state angular momentum and parity.
In this work, a new calculation of the ground-state and the
low-energy levels in 155Eu is proposed, using the macroscopic
-microscopic method [6]. In this sense, the odd-proton single
particle levels in a deformed potential plus residual pairing
interaction were calculated in order to describe the 155Eu low-
energy rotational band heads (with E≤ 1 MeV). The ground-
state deformation parameters were obtained by minimizing
the total energy [6]; the single particle energy spectra and
wave functions for protons and neutrons were calculated in a
deformed Woods-Saxon potential [7]. The parameters of the
potential for neutrons were obtained from Ref. [8]. For pro-
tons, these parameters were adjusted in order to adequately
describe the main sequence of angular momentum and parity
of the low energy excited levels (band heads), as well as the
proton binding energy. The residual pairing interaction was
considered in the BCS prescription using the Lipkin-Nogami
approximation [9, 10].

I. NUCLEAR DEFORMATION

Within the macroscopic-microscopic method in the Stru-
tinskys formalism, the total energy of the nuclear system as a
function of deformation can be expressed as [6]:

Etot(ε, α̂) = Emacr(ε, α̂)+Emicr(ε, α̂) (1)

where ε and α̂ are the set of deformation parameters.
The bulk contribution to the total energy comes from the

liquid drop model. The shell effects represent smaller varia-
tions added to the liquid drop energy Emacr. The microscopic
portion Emicr can be divided into two components: the con-
tribution associated with the shell correction energy and the
pairing contribution. In order to obtain the equilibrium defor-
mation parameters (ground-state deformation) the total energy
is minimized. As the Cassini ovaloid shape parameterization
was used, the adopted deformation parameters were the qua-
drupole moment term (ε) and the hexadecapole moment term
(α4) [6]. The calculated total energy is plotted in Figure 1, as
a function of deformation parameters. It is important to note
that the obtained parameters ε = 0.23 and α4 = 0.030 are in
good agreement with their equivalents in other nuclear shape
parameterizations, reported in previous works [11, 12].

II. SINGLE PARTICLE ENERGIES

The single particle states were calculated using the Woods-
Saxon (W-S) potential. To determine the W-S potential,
twelve constants should be provided: six for protons and six
for neutrons.

V0 = depth of the central potential,
aso = diffuseness parameter of the spin-orbit part,
R0 = radius parameter,
r0−so = radius parameter of the spin-orbit potential,
a = diffuseness nuclear parameter,
λ = strength of the spin-orbit interaction.
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FIG. 1: Equilibrium deformation parameters obtained from
macroscopic-microscopic model.

Several parameter sets have been proposed for the Woods-
Saxon potential, usually determined through a global fit to va-
rious ground state nuclear properties of several β-stable nuclei
in a mass number range.

The Woods-Saxon potential consists of the central part
Vcent , the spin-orbit part Vso and the Coulomb potential VCoul
for the protons:

V ws(r,z,ε, α̂) =
Vcent(r,z,ε, α̂)+Vso(r,z,ε, α̂)+VCoul(r,z,ε, α̂)

(2)

where (r,z) are cylindrical coordinates.
The central part is defined in order to describe the density

distribution function

Vcent(r,z,ε, α̂) =
V0

1+ e
dist(r,z,ε,α̂)

a

(3)

where dist is equal to the distance of a given point to the nu-
clear surface

The depth of the central potential is parameterized by:

V0 = V0[1±0.63(N −Z)/(N +Z)] (4)

with positive signal for protons and negative for neutrons.
The spin-orbit term is defined by

Vso(r,z,ε, α̂) = λ
(

h
2Mc

)2

∇V (r,z,ε, α̂)(−→σ ×−→p ) (5)

where M is the nucleonic mass, the vector operator −→σ stands
for the Pauli matrices and −→p is the linear momentum operator.

The Coulomb potential is assumed to be that corresponding
to the nuclear charge (Z − 1)e, and uniformly distributed in-
side the nucleus.

In order to diagonalize the Hamiltonian, the eigenfunctions
of the axially-symmetric harmonic oscillator in the cylindrical
coordinates were used:

∣∣nρnzΛΣ
〉

= ΨΛ
nρ(ρ)Ψnz(z)ΨΛ(ϕ)χ(Σ) (6)

where

ΨΛ(ϕ) =
1√
2

eiΛϕ

Ψnz(z) = Nnz

[
Mωz

�

]1/4

e−ξ
2/2Hnz(ξ)

ΨΛ
nρ(ρ) = NΛ

nρ

[
2Mω⊥

�

]1/4

ηΛ/2e−η/2LΛnρ(η)

n⊥ = 2nρ +Λ

Here, nz−1 and n⊥−1 are the number of nodes of the basis
functions in the z-direction and the r-direction, respectively;
Λ and Σ are the projections of the orbital and spin angular
momenta on the symmetry axis, respectively. In the above
equations,

η1/2 ≡
√

Mω⊥
�

r, (7)

ξ ≡
√

Mωz

�
z, (8)

Nnz ≡
[√

π2nznz!
]−1/2

, (9)

NΛ
nρ ≡

√
nρ!(

nρ +Λ
) (10)

The energy of a given basis state is given by

Enρ,nz,Λ =
(

nz +
1
2

)
�ωz +(n⊥ +1)�ω⊥ (11)

The parameters of Woods-Saxon (W-S) potential for neu-
trons were obtained from ref. [7], and for protons they were
adjusted in order to describe the main sequence of angular
momentum and parity of the low energy single particle states,
as well as the proton binding energy of 155Eu. The values ob-
tained are compared with those from Cwiok et al. [3], called
Universal (see Table 1). We can notice that the main diffe-
rence is in the spin-orbit coupling parameter, which in our
result is almost a half of the universal one.

In Figure 2, our calculation of the single particle states as
well as deformation parameters are compared with FRDM [4],
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V0(MeV) r0(fm) a(fm) r0−so(fm) aso(fm) λ
Present Work 51.5 1.258 0.61 1.14 0.61 19.8

Universal 49.6 1.275 0.70 1.32 0.7 36.0

TABLE I: Parameters of W-S potential

FIG. 2: Proton single particle energies of 155Eu obtained from diffe-
rent formalisms.

HF-BCS [5] models and Cwiok et al. [3] calculations. As we
can see, the recommended RIPL single particle energy and
spin of Fermi level are in a total disagreement with the expe-
rimental values of ground state spin and parity. For the Uni-
versal parameters of Cwiok they are very well reproduced, but
the gap between the ground state and the first excited single-
proton level is underestimated.

III. QUASI-PARTICLE STATES

The pairing energy was evaluated in the usual prescription
of the BCS approach. The Hamiltonian operator in the BCS
model contains two parts: the first, Ĥsp, corresponding to the
single particle states and the second Ĥpair corresponding to the
pairing interaction. If the single particle term is diagonal, the
BCS operator can be written in the formalism of the second
quantization as

Ĥ = Ĥsp + Ĥpair =

∑εΩi(a
†
i ai +a†

ı̄ aı̄)−∑G jia
†
ja

†
j
aı̄ai

(12)

were εΩi is the single-particle energy of level i and G is the
pairing strength between orbitals j and i. In the monopole
pairing approximation, all the two-body matrix elements G ji,
are taken to be equal to a single G.

The pairing interaction was taken into account by applying
the BCS theory in the Lipkin-Nogami approximation to each

configuration. All residual interactions except pairing are ne-
glected.

According to each generated configuration, in the Lipkin-
Nogami approximation the pairing gap ∆, Fermi energy λ,
number fluctuation constant λ2, occupation probabilities υ2

k
, and shifted single-particle energies εk are determined from
the 2× (N2 −N1)+5 coupled nonlinear equations for protons
and neutrons:

N = 2
N2

∑
k=N1

υ2
k +2(N1 −1) , (13)

2
G

=
N2

∑
k=N1

[
(εk −λ)2 +∆2

]−1/2
, (14)

where

υ2
k =

1
2

1− (εk −λ)[
(εk −λ)2 +∆2

]1/2

 , (15)

u2
k = 1−υ2

k , k = N1,N1 +1, . . . ,N2, (16)

εk = ek +(4λ2 −G)υ2
k , k = N1, . . . ,N2, (17)

λ2 =
G
4
×

×



(
N2

∑
k=N1

u3
kυk

)(
N2

∑
k=N1

ukυ3
k

)
−

N2

∑
k=N1

u4
kυ

4
k(

N2

∑
k=N1

u2
kυ

2
k

)2

−
N2

∑
k=N1

u4
kυ

4
k


(18)

and ek are the known single particle energies.
The total configuration energy, according to the model, is

Ek =
[
(εk −λ)2 +∆2

]1/2 −λ2, ,k = N1,N1 +1, . . . ,N2.

(19)
The parity of this state is defined as

π =
N2

∏
k=1

πk. (20)

As the system of equations is solved separatelly for protons
(Z) and neutrons (N), all the combinations with the following
energies and quantum numbers are accounted for the nuclear
system:

EKπ = EΩπ (Z)+EΩπ (N) , (21)

K = Ω(Z)±Ω(N) , (22)

π = π(Z)π(N) . (23)

where Ω is the total angular momentum projection (for pro-
tons and neutrons), and K is the projection of Ω on nuclear
symmetry axis.
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FIG. 3: Calculated and experimental band heads of 155Eu .

The excitation energy is, on the other hand, calculated as
the difference between the total energy of a configuration and
the total energy of the ground state, where the first summation
includes only blocked orbitals. Using the previously calcu-

lated proton single particle energies and spins, the rotational
band heads are obtained, and are shown in Figure 3. As we
can see, there exists a remarkable agreement between experi-
mental and theoretical levels.

IV. CONCLUSIONS

We have calculated in a very successful way the excitation
energy of the rotational band heads, with their spin and parity,
for the nucleus 155Eu, by using the macroscopic-microscopic
method combined with residual pairing interaction in the BCS
prescription using the Lipkin-Nogami approximation [9, 10].
We have also obtained a better set of parameters for the
Woods-Saxon proton single particle potential of 155Eu as well
as the deformation parameters in a Cassinian ovals parametri-
zation.

Acknowledgments

This work was partially supported by CNPq and FAPESP.

[1] F. A. Genezini et al., Braz. Jour. Phys., 34, 722 (2004).
[2] W. Nazarewicz, M. A. Riley, and J. D. Garrett, Nucl. Phys. A

512, 61 (1990).
[3] S. Cwiok et al. , Comput. Phys. Commun. 46, 379 (1987).
[4] W. D. Myers and W. J. Swiatecki, Ann. Phys. 55, 395 (1969).
[5] S. Goriely, F. Tondeur, and J. M. A. Pearson, At. Data and Nucl.

Data Tables 77, 311 ( 2001).
[6] F. Garcia, O Rodriguez, J. Mesa, J. D. T. Arruda-Neto, V. P.

Likhachev, E. Garrote, R. Capote, and F. Guzman, Comput.
Phys. Commun. 120, 57 (1999).

[7] F. Garcia, E. Garrote, M. L. Yoneama, J. D. T. Arruda-Neto, J.
Mesa, F. Bringas, J. F. Dias, V. P. Likhachev, O. Rodriguez, and
F. Guzman, Eur. Phys. J. A 6, 49 (1999).

[8] Z. Lojewski, B. Nerlo-Pomorska, K. Pomorski, and J. Dudek,
Phys.Rev. C 51, 601 (1995).

[9] F. Garcia, O. Rodriguez, V. A. Rubchenya, and E. Garrote,
Comput. Phys. Commun. 86, 129 (1995).

[10] O. Rodriguez, F. Garcia, H. Dias, J. Mesa, J. D. T. Arruda-Neto,
E. Garrote, and F. Guzman, Comput. Phys. Commun. 137, 405
(2001).

[11] P. Moller, J. R. Nix, W. D. Myers, and W.J. Swiatecki, At. Data
Nucl. Data Tables 59, 185 (1995).

[12] R. W. Hasse, W. D. Myers, Geometrical Relationship of Ma-
croscopic Nuclear Physics, Spring Verlag, 83 (1988).


