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Quasi-Elastic Barrier Distribution as a Tool for Investigating Unstable Nuclei
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The method of fusion barrier distribution has been widely used to interpret the effect of nuclear structure
on heavy-ion fusion reactions around the Coulomb barrier. We discuss a similar, but less well known, barrier
distribution extracted from large-angle quasi-elastic scattering. We argue that this method has several advantages
over the fusion barrier distribution, and offers an interesting tool for investigating unstable nuclei.

I. INTRODUCTION

It has been well recognized that heavy-ion collisions at
energies around the Coulomb barrier are strongly affected by
the internal structure of colliding nuclei [1, 2]. The couplings
of the relative motion to the intrinsic degrees of freedom (such
as collective inelastic excitations of the colliding nuclei and/or
transfer processes) results in a single potential barrier being
replaced by a number of distributed barriers. It is now well
known that a barrier distribution can be extracted experimen-
tally from the fusion excitation functionσfus(E) by taking the
second derivative of the productEσfus(E) with respect to the
center-of-mass energyE, that is,d2(Eσfus)/dE2 [3]. The ex-
tracted fusion barrier distributions have been found to be very
sensitive to the structure of the colliding nuclei [1, 4], and thus
the barrier distribution method has opened up the possibility
of exploiting the heavy-ion fusion reaction as a “quantum tun-
neling microscope” in order to investigate both the static and
dynamical properties of atomic nuclei.

The same barrier distribution interpretation can be applied
to the scattering process as well. In particular, it was sug-
gested in Ref. [5] that the same information as the fusion
cross section may be obtained from the cross section for quasi-
elastic scattering (a sum of elastic, inelastic, and transfer cross
sections) at large angles. Timmerset al. proposed to use the
first derivative of the ratio of the quasi-elastic cross section
σqel to the Rutherford cross sectionσR with respect to energy,
−d(dσqel/dσR)/dE, as an alternative representation of the
barrier distribution [6]. Their experimental data have revea-
led that the quasi-elastic barrier distribution is indeed similar
to that for fusion, although the former may be somewhat sme-
ared and thus less sensitive to nuclear structure effects (see
also Refs.[7–9] for recent measurements). As an example, we
show in Fig. 1 a comparison between the fusion and the quasi-
elastic barrier distributions for the16O + 154Sm system [10].

In this contribution, we undertake a detailed discussion of
the properties of the quasi-elastic barrier distribution [10],
which are less known than the fusion counterpart. We shall
discuss possible advantagges for its exploitation, putting a
particular emphasis on future experiments with radioactive
beams.

II. QUASI-ELASTIC BARRIER DISTRIBUTIONS

Let us first discuss heavy-ion reactions between inert nu-
clei. The classical fusion cross section is given by,

σcl
fus(E) = πR2

b

(
1− B

E

)
θ(E−B), (1)

whereRb andB are the barrier position and the barrier height,
respectively. From this expression, it is clear that the first deri-
vative ofEσcl

fus is proportional to the classical penetrability for
a 1-dimensional barrier of heightB or eqivalently the s-wave
penetrability,

d
dE

[Eσcl
fus(E)] = πR2

b θ(E−B) = πR2
bPcl(E), (2)

and the second derivative to a delta function,

d2

dE2 [Eσcl
fus(E)] = πR2

b δ(E−B). (3)

In quantum mechanics, the tunneling effect smears the delta
function in Eq. (3). If we define the fusion test function as

Gfus(E) =
1

πR2
b

d2

dE2 [Eσfus(E)], (4)

this function has the following properties: i) it is symmetric
aroundE = B, ii) it is centered onE = B, iii) its integral over
E is unity, and iv) it has a relatively narrow width of around
~Ω ln(3+

√
8)/π∼ 0.56~Ω, where~Ω is the curvature of the

Coulomb barrier.
We next ask ourselves the question of how best to define

a similar test function for a scattering problem. In the pure
classical approach, in the limit of a strong Coulomb field, the
differential cross sections for elastic scattering atθ = π is gi-
ven by,

σcl
el(E,π) = σR(E,π)θ(B−E), (5)

whereσR(E,π) is the Rutherford cross section. Thus, the ratio
σcl

el(E,π)/σR(E,π) is the classical reflection probabilityR(E)
(= 1−P(E)), and the appropriate test function for scattering
is [6],

Gqel(E) =−dR(E)
dE

=− d
dE

(
σel(E,π)
σR(E,π)

)
. (6)
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FIG. 1: (a) The fusion barrier distribution for the16O + 154Sm re-
action. The solid line is obtained with the orientation-integrated for-
mula with β2 = 0.306 andβ4= 0.05. The dashed lines indicate the
contributions from the six individual eigenbarriers. These lines are
obtained by using a Woods-Saxon potential with a surface diffuse-
ness parametera of 0.65 fm. The dotted line is the fusion barrier
distribution calculated with a potential which hasa = 1.05 fm. (b)
Same as Fig. 1(a), but for the quasi-elastic barrier distribution. (c)
Comparison between the barrier distribution for fusion (solid line)
and that for quasi-elastic scattering (dashed line). These functions
are both normalized to unit area in the energy interval between 50
and 70 MeV.

In realistic systems, due to the effect of nuclear distortion,
the differential cross section deviates from the Rutherford
cross section even at energies below the barrier. Using the
semi-classical perturbation theory, we have derived a semi-
classical formula for the backward scattering which takes into
account the nuclear effect to the leading order [10]. The result
for a scattering angleθ reads,

σel(E,θ)
σR(E,θ)

= α(E,λc) · |S(E,λc)|2, (7)

whereS(E,λc) is the total (Coulomb + nuclear)S-matrix at
energyE and angular momentumλc = ηcot(θ/2), with η
being the usual Sommerfeld parameter. Note that|S(E,λc)|2
is nothing but the reflection probability of the Coulomb bar-
rier, R(E). For θ = π, λc is zero, and|S(E,λc = 0)|2 is given
by

|S(E,λc = 0)|2 = R(E) =
exp

[− 2π
~Ω (E−B)

]

1+exp
[− 2π

~Ω (E−B)
] (8)
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FIG. 2: The ratio of elastic scattering to the Rutherford cross section
at θ = π (upper panel) and the quasi-elastic test functionGqel(E) =
−d/dE(σel/σR) (lower panel) for the16O + 144Sm reaction.

in the parabolic approximation.α(E,λc) in Eq. (7) is given
by

α(E,λc) = 1+
VN(rc)

ka

√
2aπkη
E

(9)

×
[
1− rc

ZPZTe2 ·2VN(rc)
( rc

a
−1

)]
, (10)

wherek =
√

2µE/~2, with µ being the reduced mass for the
colliding system. The nuclear potentialVN(rc) is evaluated at
the Coulomb turning pointrc = (η +

√
η2 +λ2

c)/k, anda is
the diffuseness parameter in the nuclear potential.

Figure 2 shows an example of the excitation function of the
cross sections and the corresponding quasi-elastic test func-
tion,Gqel atθ = π for the16O +144Sm reaction. Because of the
nuclear distortion factorα(E,λc), the quasi-elastic test func-
tion behaves a little less simply than that for fusion. Neverthe-
less, the quasi-elastic test functionGqel(E) behaves rather si-
milarly to the fusion test functionGfus(E). In particular, both
functions have a similar, relatively narrow, width, and their
integral overE is unity. We may thus consider that the quasi-
elastic test function is an excellent analogue of the one for
fusion, and we exploit this fact in studying barrier structures
in heavy-ion scattering.

In the presence of the channel couplings, the fusion and the
quasi-elastic cross sections may be given as a weighted sum
of the cross sections for uncoupled eigenchannels,

σfus(E) = ∑
α

wασ(α)
fus(E), (11)

σqel(E,θ) = ∑
α

wασ(α)
el (E,θ), (12)
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whereσ(α)
fus(E) and σ(α)

el (E,θ) are the fusion and the elastic
cross sections for a potential in the eigenchannelα. These
equations immediately lead to the expressions for the barrier
distribution in terms of the test functions,

Dfus(E) =
d2

dE2 [Eσfus(E)] = ∑
α

wαπR2
b,α G(α)

fus(E), (13)

Dqel(E) = − d
dE

(
σqel(E,π)
σR(E,π)

)
= ∑

α
wαG(α)

qel(E). (14)

III. ADVANTAGES OVER FUSION BARRIER
DISTRIBUTIONS

There are certain attractive experimental advantages to me-
asuring the quasi-elastic cross sectionσqel rather than the fu-
sion cross sectionsσfus to extract a representation of the bar-
rier distribution. These are: i) less accuracy is required in the
data for taking the first derivative rather than the second deri-
vative, ii) whereas measuring the fusion cross section requires
specialized recoil separators (electrostatic deflector/velocity
filter) usually of low acceptance and efficiency, the measu-
rement ofσqel needs only very simple charged-particle de-
tectors, not necessarily possessing good resolution either in
energy or in charge, and iii) several effective energies can be
measured at a single-beam energy, since, in the semi-classical
approximation, each scattering angle corresponds to scatte-
ring at a certain angular momentum, and the cross section can
be scaled in energy by taking into account the centrifugal cor-
rection. Estimating the centrifugal potential at the Coulomb
turning pointrc, the effective energy may be expressed as [6]

Eeff ∼ E− λ2
c~2

2µr2
c

= 2E
sin(θ/2)

1+sin(θ/2)
. (15)

Therefore, one expects that the function−d/dE(σel/σR) eva-
luated at an angleθ will correspond to the quasi-elastic test
function (6) at the effective energy given by eq. (15).

This last point not only improves the efficiency of the ex-
periment, but also allows the use of a cyclotron accelerator
where the relatively small energy steps required for barrier
distribution experiments cannot be obtained from the machine
itself [7]. Moreover, these advantages all point to greater ease
of measurement with low-intensity exotic beams, which will
be discussed in the next section.

In order to check the scaling property of the quasi-
elastic test function with respect to the angular momentum,
Fig. 3 compares the functionsσel/σR (upper panel) and
−d/dE(σel/σR) (lower panel) obtained at two different scat-
tering angles. The solid line is evaluated atθ = π, while the
dotted line atθ = 160o. The dashed line is the same as the
dotted line, but shifted in energy byEeff−E. Evidently, the
scaling does work well, both at energies below and above the
Coulomb barrier, although it becomes less good as the scatte-
ring angle decreases [10].
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FIG. 3: Comparison of the ratioσel/σR (upper panel) and its energy
derivative−d/dE(σel/σR) (lower panel) evaluated at two different
scattering angles.

IV. QUASI-ELASTIC SCATTERING WITH RADIOACTIVE
BEAMS

Low-energy radioactive beams have become increasingly
available in recent years, and heavy-ion fusion reactions in-
volving neutron-rich nuclei have been performed for a few
systems [11–13]. New generation facilities have been under
construction at several laboratories, and many more reaction
measurements with exotic beams at low energies will be per-
formed in the near future. Although it would still be difficult
to perform high-precision measurements of fusion cross sec-
tions with radioactive beams, the measurement of the quasi-
elastic barrier distribution, which can be obtained much more
easily than the fusion counterpart as we discussed in the pre-
vious section, may be feasible. Since the quasi-elastic barrier
distribution contains similar information as the fusion barrier
distribution, the quasi-elastic measurements at backward an-
gles may open up a novel way to probe the structure of exotic
neutron-rich nuclei.

In order to demonstrate the usefulness of the study of the
quasi-elastic barrier distribution with radioactive beams, we
take as an example the reaction32Mg and 208Pb, where the
quadrupole collectivity of the neutron-rich32Mg remains to
be clarified experimentally. Fig. 4 shows the excitation func-
tion of the quasi-elastic scattering (upper panel) and the quasi-
elastic barrier distribution (lower panel) for this system. The
solid and dashed lines are results of coupled-channels calcula-
tions where32Mg is assumed to be a rotational or a vibrational
nucleus, respectively. We include the quadrupole excitations
in 32Mg up to the second member (that is, the first 4+ state in
the rotational band for the rotational coupling, or the double
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FIG. 4: The excitation function for quasi-elastic scattering (upper
panel) and the quasi-elastic barrier distribution (lower panel) for the
32Mg + 208Pb reaction around the Coulomb barrier. The solid and the
dashed lines are the results of coupled-channels calculations which
assume that32Mg is a rotational and a vibrational nucleus, respecti-
vely. The single octupole-phonon excitation in208Pb is also included
in the calculations.

phonon state for the vibrational coupling). In addition, we in-

clude the single octupole phonon excitation at 2.615 MeV in
208Pb. We use a version of the computer codeCCFULL[14] in
order to integrate the coupled-channels equations. One clearly
sees well separated peaks in the quasi-elastic barrier distribu-
tion both for the rotational and for the vibrational couplings.
Moreover, the two lines are considerably different at energies
around and above the Coulomb barrier, although the two re-
sults are rather similar below the barrier. We can thus expect
that the quasi-elastic barrier distribution can indeed be utili-
zed to discriminate between the rotational and the vibrational
nature of the quadrupole collectivity in32Mg, although these
results might be somewhat perturbed by other effects which
are not considered in the present calculations, such as double
octupole-phonon excitations in the target, transfer processes
or hexadecapole deformations.

We mention that the distorted-wave Born approximation
(DWBA) yields identical results for both rotational and vi-
brational couplings (to first order). In order to discriminate
whether the transitions are vibration-like or rotation-like, at
least second-step processes (reorientation and/or couplings to
higher members) are necessary. The coupling effect plays a
more important role in low-energy reactions than at high and
intermediate energies. Therefore, we expect that quasi-elastic
scattering around the Coulomb barrier will provide a useful
means to allow the detailed study of the structure of neutron-
rich nuclei in the near future.
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