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Given the wealth of increasingly accurate cosmological observations, especially the recent results from the
WMAP, and the development of methods and strategies in the search for cosmic topology, it is reasonable to
expect that we should be able to detect the spatial topology of the Universe in the near future. Motivated by
this, we examine to what extent a possible detection of a nontrivial topology of positively curved universe may
be used to place constraints on the matter content of the Universe. We show through concrete examples that
the knowledge of the spatial topology allows to place constraints on the density parameters associated to dark
matter Qm) and dark energyCa).

I. INTRODUCTION have heightened the interest in the possibility of a universe
with a nontrivial spatial topology[23].

Questions such as whether the Universe will expand for- A Pertinent question the reader may ask at this point is
ever or eventually re-collapse and end with a Big Crunch, and/nether the current values of cosmological density parame-
what its shape and size may be, are among the most fundiers, w_hwh help_ us to answer the a_bove first question (as§00|-
mental challenges in cosmology. Regarding the former quesalted with Fhe uIt|mat_e fate of the Unlverse), can be consfcralned
tion, it is well known that the ultimate fate of the Universe is PY @ possible detection of the spatial topology of the Universe.
intrinsically associated with the nature of its dominant compo-OUr Primary objective here is to address this question by fo-
nents. In the Friedmann-Letee-Robertson-Walker (FLRW) €using our attention on p05_3|ble to_polog|cal con;tramts on the
class of models, for instance, a universe that is dominated by $€NSity parameters associated with the baryonic/dark matter
pressureless fluid (as, e.g., baryons and/or dark matter) or afj§?m) and dark energy(,). Motivated by the best fit value
kind of fluid with positive pressure (as radiation, for example)f0r the total energy densitdt = Qp + Qp = 1.024 0.02
will expand forever if its spatial geometry is Euclidean or hy- (10 |evel) reported by WMAP team [8], which includes a
perbolic, or will eventually re-collapse if it is spherical. This POSitively curved universe as a realistic possibility, we shall
predictable destiny for the Universe, however, may be Comgonsmer globally homogeneous _spherlcal manifolds, some of
pletely modified if it is currently dominated by some sort of Which account for the suppression of power at large scales
negative-pressure dark component, as indicated by a numb@pserved by WMAP [8], and also fits the WMAP tempera-
of independent observational results (see, e.g., Ref. [1]). I§ir€ wo-point correlation function [11, 12]. To this end, in
this case, not only the dynamic but also the thermodynami&1® next section we present our basic context and prerequi-
fate of the Universe may be completely different, with the Sites, while in the last section we discuss our main results and
possibility of an eternally expanding closed model [2], an in-Present some concluding remarks.
creasingly hot expanding universe [3] or even a progressive
rip-off of the large and small scale structure of matter ending
with the occurrence of a curvature singularity, the so-called
big smash [4]. o )

The remaining questions, concerning the shape and size W|th|n the framework of.standard. cosmology, the universe
of our 3-dimensional world, go in turn beyond the scope'S described by a space-time manifaldy = R x M with a
of general relativity (GR), since they have an intrinsically '0cally homogeneous and isotropic Robertson-Walker (RW)
topological nature. In this way, approaches or answers t§"€trc
these questions are ultimately associated with measurementsyg — _qt2 4 a2(t) [dx?+ f2(x)(d6? +siPd¢?)] , (1)
of the global structure (topology) of the Universe and, as a
local metric theory, GR cannot say much about it, leavingwheref(x) = (X, sinx, or sinhx) depends on the sign of the
the global topology of the Universe undetermined[22]. Overconstant spatial curvaturk € 0,1, —1, respectively). Th&-
the past few years, several aspects of the cosmic topologgpaceM is usually taken to be one of the following simply-
have become topical (see, e.g., the review articles Ref. [5])gonnected spaces: Euclide®A, sphericalS?, or hyperbolic
given the wealth of increasingly accurate cosmological obsefl®. However, given that the simple-connectedness of our
vations, especially the recent results from the Wilkinson Mi-spaceM has not been established, d#space may equally
crowave Anisotropy Probe (WMAP) experiment [6], which well be any one of the possible quotient manifdidis= M /T,

II.  BASIC CONTEXT AND PREREQUISITES
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whererl is a fixed point-free group of isometries of the cover- ap = a(tp), reduces to

ing spaceM = (R3,S3 H3). Thus, for example, in a universe

Who_se geometry of the spatial section is_ Euclid_elqﬁ: 0, X = \/m

besidesE? there are 6 classes of topologically distinct com-

pact orientablé8—spacedM that admits this geometry, while

for universes with either sphericél € 1) and hyperbolick= ~ Wherex = 1+zis an integration variable, ar@ = 1—Qr.

—1) spatial geometries there is an infinite number of topolog-Throughout this paper we shall measure the lengths in unit of

ically non-homeomorphic (inequivalent) manifolds with non- curvature radiuso.

trivial topology that can be endowed with these geometries. A typical characteristic length of nonflat manifoldd,
Quotient manifolds are compact in three independent diwhich we shall use in this paper, is the so-called injectivity ra-

rectionS, or Compact in two or at least one independent didiusrinj, which is defined as the radius of the smallest Sphere

rection. In compact manifolds, any two given points may be‘inscribable’ inM. An important mathematical result is that

joined by more than one geodesic. Since the radiation emittetinj, €xpressed in terms of the curvature radius, is a constant

by cosmic sources follows geodesics, the immediate observatopological invariant) for any given spherical and hyperbolic

tional consequence of a nontrivial detectable spatial topologynanifolds.

of M is that the Sky may show mu|t|p|e images of radiating In this work we shall focus our attention in gIOba”y homo-

sources: cosmic objects or specific correlated spots of the cogeneous spherical manifolds, as presented in Table | (see also

mic microwave background radiation (CMBR). At very large its caption for more details). These manifolds satisfy a topo-

scales, the existence of these multiple images (or pattern refgical principle of homogeneity, in the sense that all points in

etitions) is a physical effect that can be used to probesthe M are topologically equivalent.

space topology. In this work, we use the so-called “circles-

z 1+z dX
1 v/%3Qmo +2Qk + Qpo

®3)

in-the-sky” method (for cosmic crystallographic methods see, [ Name Covering Group _ Order off’_ fin; |
e.g., Refs. [13]), which relies on multiple copies of correlated Zn ~ Cyclic Z, n m/n
circles in the CMBR maps [15], whose existence is clear from Dm  Binary dihedraDy, . 4m /2m
the following reasoning: In a space with a detectable nontriv- g E:EZR’/ fé{:ﬁgg:;g ) ig g? g
ial topology, the last scattering sphere (LSS) intersects some D Binary icosahedrdl 120 m10

of its topological images along pairs of circles of equal radii,
centered at different points on the LSS, with the same distribu-
tion of temperature fluctuationdT. Since the mapping from TABLE I: The globally homogeneous spherical manifolds are of the
the LSS to the night sky sphere preserves circles [16], thesierm M = S3/I". The first column gives the name we use for the
pairs of matching circles will be inprinted on the CMBR tem- manifolds. The second column displays the covering gréupBi-
perature fluctuations sky maps regardless of the backgrourithlly, the remaining columns present the order of the groumd
geometry and detectable topo|ogy_ As a consequence, ltbe InjeCIIVIty radiust_’i.nj. The Cy.C”C and binary dihedral Case.s ac-
observationally probe a nontrivial topology on the availabletua”y_ constitute families of manifolds, whose members are given by
largest scale, one should scrutinize the full-sky CMB mapéhe different values of the integemsandm. The ordgr of” gives the

in order to extract the correlated circles, whose angular radnumber of fundamental polyhedra needed to fulfill the whole cover-

d relati . fthei b dtod ~ing spaceS3. Thus, for example, for the manifolgh which is the
and relative position of their centers can be used to etermlnﬁe well-known Poincd dodecahedral space, the fundamental poly-

the topology of the universe. Thus, a nontrivial topology Ofhedron is a regular spherical dodecahedrt0 of which tile the
the space section of the universe may be observed, and cgdsphere into identical cells that are copies of the FP.

be probed through the circles-in-the-sky for all locally homo-
geneous and isotropic universes with no assumption on the
cosmological density parameters.

Let us now state our basic cosmological assumptions and . MAIN RESULTS AND FINAL REMARKS
fix some notation. In addition to the RW metric (1), we as-
sume that the current matter content of the Universe is well
approximated by Cold Dark Matter (CDM) of densgiy, plus

To investigate the extent to which a possible detection of a
nontrival topology may place constraints on the cosmological

a cosmological constamt. In this standard\CDM context . .
X e . density parameters, we consider here the globally homoge-
for nonflat spaces the scale factgt) can be identified with neous spherical manifolds. In theespaces the number of

:ihn?ectuiv?tuv(/?qi:;digs i\c;;;h; spatial section of the universe aﬁairs of matching circles depends on the ratio of the injectiv-
o 9 y ity radiusrin; to the radiug, of LSS, which in turn depends
B k on the density parameters (see Ref. [12] for examples of spe-
% = m J (2 cific estimates of this number regardiig O and?D). Never-

0 theless, if the topology of a globally homogeneous spherical
where here and in what follows the subscidenotes eval- manifold is detectable[24] the correlated pairs will be antipo-
uation at present timi, Hp is the Hubble constant, ar@r dal, i.e. the centers of correlated circles are separaté@@y
is the total density at = tg. In this way, for nonflat spaces as shown in Figure 1.
the distancey of any point with coordinategy, 6, @) to the Clearly the distance between the centers of each pair of
origin (in the covering spacé) units of the curvature radiys  thefirst correlated circles is twice the injectivity radiug;.
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along with the latest Chandra measurements of the X-ray
gas mass fraction in 26 X-ray luminous, dynamically relaxed
galaxy clusters (spanning the redshift rafig@7 < z < 0.9)

as provided by Alleret al. [20] (see also [21] for details on
SNe la and X-ray statistics). THE and O spatial topology is
added to the conventional SNe la plus clusters data analysis
as a Gaussian prior on the value)gf,, which can be easily
obtained from an elementary combination of (4) and (3). In
other words, the contribution of the topology 6 is a term

of the formx2, 000y = (Xiee®— Xj3n)?/ (BXiss)?.

Figures 2b and 2c (central and right panels) show the re-
sults of our statistical analysis. Confidence regions — 68.3%
and 95.4% confidence limits (c.l.) — in the parametric space
Qn—Qa are displayed for the above described combination
of observational data. For the sake of comparison, we also
show in Fig. 2a th&@,— Qa plane for the conventional SNe la
plus Galaxy Clusters analysis, i.e., the one without the above
cosmic topology assumption. By comparing both analyses, it
is clear that a nontrivial space topology reduces considerably
the parametric space region allowed by the current observa-
tional data, and also breaks some degeneracies arising from
FIG. 1: A schematic illustration of two antipodal matching circles the current SNe la and X-ray gas mass fraction mgasurements.

- fzt 95.4% c.l. our SNe la+X-ray+Topology analysis provides

in the sphere of last scattering. These pair of circles occurs in al - C .
globally homogeneous positively curved manifolds with a detectable™M — 0.31+0.05 and Qp = 0.82+ 0.05 (binary octahedral

nontrivial topology. The relation between the angular ragisnd O ) @ndQm = 0.32+0.06andQx = 0.89+0.06 (binary tetra-
the angular sidesn; andy is givencosa = tanrinj Coty,qe- hedralT~).
Concerning the above analysis it is worth emphasizing three
important aspects. First, that the best-fit values depend weakly
Now, a straightforward use of known trigonometric rules toon the value used for radiwsof the circle. Second, the uncer-
the right-angled spherical triangle shown in Figure 1 yields dainty du alters predominantly the area corresponding to the
relation between the angular radiasand the angular sides confidence regions, without having a significant effect on the

rinj and radiug Of the last scattering sphere, namely best-fit values. Third, we also notice that there is a topological
degeneracy in that the same the best fits and arise from either
cOSq — tanrinj 4) Zg or Dy spatial topology. Similarlyp, Zg and Ds give rise

to identical bounds on the density parameters. This kind of
topological degeneracy passed unnoticed in Refs. [18].
whererip; is a topological invariant, whose values are givenin  Finally, we emphasize that given the wealth of increasingly
Table |, and the distancg, of the last scattering surface to accurate cosmological observations, especially the recent re-
the origin in units of the curvature radius is given by (3) with suits from the WMAP, and the development of methods and
Zss = 1089([8]. strategies in the search for cosmic topology, it is reasonable
Equations (4) along with (3) give the relations between theg expect that we should be able to detect it. Besides it im-
angular radiust and the cosmological density paramet@ys  portance as a major scientific achievement, we have shown
andQm, and thus can be used to set bounds on these paramg@rough concrete examples that the knowledge of the spatial
ters. To quantify this we proceed in the following way. Firstly, topology allows to place constraints on the density parameters

as an example, we assume the angular radius50°. Sec-  associated to dark matte®§,) and dark energyn).
ondly, since the measurements of the radiusravoidably in-

volve observational uncertainties, in order to obtain very con-
servative results we tal@ ~ 6°.[25]
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