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A Note on Cosmological Parameters and the Topology of the Universe
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Given the wealth of increasingly accurate cosmological observations, especially the recent results from the
WMAP, and the development of methods and strategies in the search for cosmic topology, it is reasonable to
expect that we should be able to detect the spatial topology of the Universe in the near future. Motivated by
this, we examine to what extent a possible detection of a nontrivial topology of positively curved universe may
be used to place constraints on the matter content of the Universe. We show through concrete examples that
the knowledge of the spatial topology allows to place constraints on the density parameters associated to dark
matter (Ωm) and dark energy (ΩΛ).

I. INTRODUCTION

Questions such as whether the Universe will expand for-
ever or eventually re-collapse and end with a Big Crunch, and
what its shape and size may be, are among the most funda-
mental challenges in cosmology. Regarding the former ques-
tion, it is well known that the ultimate fate of the Universe is
intrinsically associated with the nature of its dominant compo-
nents. In the Friedmann-Lemaı̂tre-Robertson-Walker (FLRW)
class of models, for instance, a universe that is dominated by a
pressureless fluid (as, e.g., baryons and/or dark matter) or any
kind of fluid with positive pressure (as radiation, for example)
will expand forever if its spatial geometry is Euclidean or hy-
perbolic, or will eventually re-collapse if it is spherical. This
predictable destiny for the Universe, however, may be com-
pletely modified if it is currently dominated by some sort of
negative-pressure dark component, as indicated by a number
of independent observational results (see, e.g., Ref. [1]). In
this case, not only the dynamic but also the thermodynamic
fate of the Universe may be completely different, with the
possibility of an eternally expanding closed model [2], an in-
creasingly hot expanding universe [3] or even a progressive
rip-off of the large and small scale structure of matter ending
with the occurrence of a curvature singularity, the so-called
big smash [4].

The remaining questions, concerning the shape and size
of our 3–dimensional world, go in turn beyond the scope
of general relativity (GR), since they have an intrinsically
topological nature. In this way, approaches or answers to
these questions are ultimately associated with measurements
of the global structure (topology) of the Universe and, as a
local metric theory, GR cannot say much about it, leaving
the global topology of the Universe undetermined[22]. Over
the past few years, several aspects of the cosmic topology
have become topical (see, e.g., the review articles Ref. [5]),
given the wealth of increasingly accurate cosmological obser-
vations, especially the recent results from the Wilkinson Mi-
crowave Anisotropy Probe (WMAP) experiment [6], which

have heightened the interest in the possibility of a universe
with a nontrivial spatial topology[23].

A pertinent question the reader may ask at this point is
whether the current values of cosmological density parame-
ters, which help us to answer the above first question (associ-
ated with the ultimate fate of the Universe), can be constrained
by a possible detection of the spatial topology of the Universe.
Our primary objective here is to address this question by fo-
cusing our attention on possible topological constraints on the
density parameters associated with the baryonic/dark matter
(Ωm) and dark energy (ΩΛ). Motivated by the best fit value
for the total energy densityΩT ≡ Ωm + ΩΛ = 1.02± 0.02
(1σ level) reported by WMAP team [8], which includes a
positively curved universe as a realistic possibility, we shall
consider globally homogeneous spherical manifolds, some of
which account for the suppression of power at large scales
observed by WMAP [8], and also fits the WMAP tempera-
ture two-point correlation function [11, 12]. To this end, in
the next section we present our basic context and prerequi-
sites, while in the last section we discuss our main results and
present some concluding remarks.

II. BASIC CONTEXT AND PREREQUISITES

Within the framework of standard cosmology, the universe
is described by a space-time manifoldM4 = R×M with a
locally homogeneous and isotropic Robertson–Walker (RW)
metric

ds2 =−dt2 +a2(t)
[
dχ2 + f 2(χ)(dθ2 +sin2 θdφ2)

]
, (1)

where f (χ) = (χ , sinχ, or sinhχ) depends on the sign of the
constant spatial curvature (k = 0,1,−1, respectively). The3–
spaceM is usually taken to be one of the following simply-
connected spaces: EuclideanR3, sphericalS3, or hyperbolic
H3. However, given that the simple-connectedness of our
spaceM has not been established, our3–space may equally
well be any one of the possible quotient manifoldsM = M̃/Γ,
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whereΓ is a fixed point-free group of isometries of the cover-
ing spaceM̃ = (R3,S3,H3). Thus, for example, in a universe
whose geometry of the spatial section is Euclidean (k = 0),
besidesE3 there are 6 classes of topologically distinct com-
pact orientable3–spacesM that admits this geometry, while
for universes with either spherical (k = 1) and hyperbolic (k =
−1) spatial geometries there is an infinite number of topolog-
ically non-homeomorphic (inequivalent) manifolds with non-
trivial topology that can be endowed with these geometries.

Quotient manifolds are compact in three independent di-
rections, or compact in two or at least one independent di-
rection. In compact manifolds, any two given points may be
joined by more than one geodesic. Since the radiation emitted
by cosmic sources follows geodesics, the immediate observa-
tional consequence of a nontrivial detectable spatial topology
of M is that the sky may show multiple images of radiating
sources: cosmic objects or specific correlated spots of the cos-
mic microwave background radiation (CMBR). At very large
scales, the existence of these multiple images (or pattern rep-
etitions) is a physical effect that can be used to probe the3-
space topology. In this work, we use the so-called “circles-
in-the-sky” method (for cosmic crystallographic methods see,
e.g., Refs. [13]), which relies on multiple copies of correlated
circles in the CMBR maps [15], whose existence is clear from
the following reasoning: In a space with a detectable nontriv-
ial topology, the last scattering sphere (LSS) intersects some
of its topological images along pairs of circles of equal radii,
centered at different points on the LSS, with the same distribu-
tion of temperature fluctuations,δT. Since the mapping from
the LSS to the night sky sphere preserves circles [16], these
pairs of matching circles will be inprinted on the CMBR tem-
perature fluctuations sky maps regardless of the background
geometry and detectable topology. As a consequence, to
observationally probe a nontrivial topology on the available
largest scale, one should scrutinize the full-sky CMB maps
in order to extract the correlated circles, whose angular radii
and relative position of their centers can be used to determine
the topology of the universe. Thus, a nontrivial topology of
the space section of the universe may be observed, and can
be probed through the circles-in-the-sky for all locally homo-
geneous and isotropic universes with no assumption on the
cosmological density parameters.

Let us now state our basic cosmological assumptions and
fix some notation. In addition to the RW metric (1), we as-
sume that the current matter content of the Universe is well
approximated by Cold Dark Matter (CDM) of densityρm plus
a cosmological constantΛ. In this standardΛCDM context,
for nonflat spaces the scale factora(t) can be identified with
the curvature radius of the spatial section of the universe at
time t = t0, which is given by

a2
0 =

k

H2
0(ΩT−1)

, (2)

where here and in what follows the subscript0 denotes eval-
uation at present timet0, H0 is the Hubble constant, andΩT
is the total density att = t0. In this way, for nonflat spaces
the distanceχ of any point with coordinates(χ,θ,φ) to the
origin (in the covering space)in units of the curvature radius,

a0 = a(t0), reduces to

χ =
√
|Ωk|

Z 1+z

1

dx√
x3Ωm0 +x2Ωk +ΩΛ0

, (3)

wherex = 1+ z is an integration variable, andΩk = 1−ΩT.
Throughout this paper we shall measure the lengths in unit of
curvature radiusa0.

A typical characteristic length of nonflat manifoldsM,
which we shall use in this paper, is the so-called injectivity ra-
diusr in j , which is defined as the radius of the smallest sphere
‘inscribable’ in M. An important mathematical result is that
r in j , expressed in terms of the curvature radius, is a constant
(topological invariant) for any given spherical and hyperbolic
manifolds.

In this work we shall focus our attention in globally homo-
geneous spherical manifolds, as presented in Table I (see also
its caption for more details). These manifolds satisfy a topo-
logical principle of homogeneity, in the sense that all points in
M are topologically equivalent.

Name Covering GroupΓ Order ofΓ r in j

Zn Cyclic Zn n π/n
Dm Binary dihedralD∗m 4m π/2m
T Binary tetrahedralT∗ 24 π/6
O Binary octahedralO∗ 48 π/8
D Binary icosahedralI∗ 120 π/10

TABLE I: The globally homogeneous spherical manifolds are of the
form M = S3/Γ. The first column gives the name we use for the
manifolds. The second column displays the covering groupsΓ. Fi-
nally, the remaining columns present the order of the groupΓ and
the injectivity radiusr in j . The cyclic and binary dihedral cases ac-
tually constitute families of manifolds, whose members are given by
the different values of the integersn andm. The order ofΓ gives the
number of fundamental polyhedra needed to fulfill the whole cover-
ing spaceS3. Thus, for example, for the manifoldD which is the
the well-known Poincaŕe dodecahedral space, the fundamental poly-
hedron is a regular spherical dodecahedron,120 of which tile the
3–sphere into identical cells that are copies of the FP.

III. MAIN RESULTS AND FINAL REMARKS

To investigate the extent to which a possible detection of a
nontrival topology may place constraints on the cosmological
density parameters, we consider here the globally homoge-
neous spherical manifolds. In these3–spaces the number of
pairs of matching circles depends on the ratio of the injectiv-
ity radiusr in j to the radiusχlss of LSS, which in turn depends
on the density parameters (see Ref. [12] for examples of spe-
cific estimates of this number regardingT , O andD). Never-
theless, if the topology of a globally homogeneous spherical
manifold is detectable[24] the correlated pairs will be antipo-
dal, i.e. the centers of correlated circles are separated by180◦,
as shown in Figure 1.

Clearly the distance between the centers of each pair of
the first correlated circles is twice the injectivity radiusr in j .
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FIG. 1: A schematic illustration of two antipodal matching circles
in the sphere of last scattering. These pair of circles occurs in all
globally homogeneous positively curved manifolds with a detectable
nontrivial topology. The relation between the angular radiusα and
the angular sidesr in j andχlss is givencosα = tanr in j cotχlss.

Now, a straightforward use of known trigonometric rules to
the right-angled spherical triangle shown in Figure 1 yields a
relation between the angular radiusα and the angular sides
r in j and radiusχlss of the last scattering sphere, namely

cosα =
tanr in j

tanχlss
, (4)

wherer in j is a topological invariant, whose values are given in
Table I, and the distanceχlss of the last scattering surface to
the origin in units of the curvature radius is given by (3) with
zlss = 1089[8].

Equations (4) along with (3) give the relations between the
angular radiusα and the cosmological density parametersΩΛ
andΩm, and thus can be used to set bounds on these parame-
ters. To quantify this we proceed in the following way. Firstly,
as an example, we assume the angular radiusα = 50◦. Sec-
ondly, since the measurements of the radiusα unavoidably in-
volve observational uncertainties, in order to obtain very con-
servative results we takeδα' 6◦.[25]

In order to study the effect of the cosmic topology on the
density parametersΩm and ΩΛ , we consider the binary tetra-
hedralT and the binary octahedralO spatial topologies (see
Table I), to reanalyze with these two topological priors the
constraints on these parameters that arise from the so-called
gold sample of 157 SNe Ia, as compiled by Riesset al. [19],

along with the latest Chandra measurements of the X-ray
gas mass fraction in 26 X-ray luminous, dynamically relaxed
galaxy clusters (spanning the redshift range0.07 < z < 0.9)
as provided by Allenet al. [20] (see also [21] for details on
SNe Ia and X-ray statistics). TheT andO spatial topology is
added to the conventional SNe Ia plus clusters data analysis
as a Gaussian prior on the value ofχlss, which can be easily
obtained from an elementary combination of (4) and (3). In
other words, the contribution of the topology toχ2 is a term
of the formχ2

topology= (χObs
lss −χTh

lss)
2/(δχlss)2.

Figures 2b and 2c (central and right panels) show the re-
sults of our statistical analysis. Confidence regions – 68.3%
and 95.4% confidence limits (c.l.) – in the parametric space
Ωm– ΩΛ are displayed for the above described combination
of observational data. For the sake of comparison, we also
show in Fig. 2a theΩm– ΩΛ plane for the conventional SNe Ia
plus Galaxy Clusters analysis, i.e., the one without the above
cosmic topology assumption. By comparing both analyses, it
is clear that a nontrivial space topology reduces considerably
the parametric space region allowed by the current observa-
tional data, and also breaks some degeneracies arising from
the current SNe Ia and X-ray gas mass fraction measurements.
At 95.4% c.l. our SNe Ia+X-ray+Topology analysis provides
Ωm = 0.31± 0.05 andΩΛ = 0.82± 0.05 (binary octahedral
O∗) andΩm = 0.32±0.06andΩΛ = 0.89±0.06(binary tetra-
hedralT∗).

Concerning the above analysis it is worth emphasizing three
important aspects. First, that the best-fit values depend weakly
on the value used for radiusα of the circle. Second, the uncer-
tainty δα alters predominantly the area corresponding to the
confidence regions, without having a significant effect on the
best-fit values. Third, we also notice that there is a topological
degeneracy in that the same the best fits and arise from either
Z6 or D3 spatial topology. Similarly,O, Z8 andD3 give rise
to identical bounds on the density parameters. This kind of
topological degeneracy passed unnoticed in Refs. [18].

Finally, we emphasize that given the wealth of increasingly
accurate cosmological observations, especially the recent re-
sults from the WMAP, and the development of methods and
strategies in the search for cosmic topology, it is reasonable
to expect that we should be able to detect it. Besides it im-
portance as a major scientific achievement, we have shown
through concrete examples that the knowledge of the spatial
topology allows to place constraints on the density parameters
associated to dark matter (Ωm) and dark energy (ΩΛ).
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