194 Brazilian Journal of Physics, vol. 36, no. 1B, March, 2006

Noncommutative Configuration Space. Classical and
Quantum Mechanical Aspects

F. J. Vanhecke, C. Sigaud, and A. R. da Silva
Instituto de Fsica, Instituto de Mateatica, UFRJ, Rio de Janeiro, Brazil

Received on 17 October, 2005

In this work we examine noncommutativity of position coordinates in classical symplectic mechanics and its
quantisation. In coordinatgg)', px} the canonical symplectic two-form isg = dd Adp. It is well known in
symplectic mechanics [5, 6, 9] that the interaction of a charged particle with a magnetic field can be described in
a Hamiltonian formalism without a choice of a potential. This is done by means of a modified symplectic two-
form w= wy — eF, whereeis the charge and the (time-independent) magneticFédctlosed:dF = 0. With this
symplectic structure, the canonical momentum variables acquire non-vanishing Poisson bigmkeis: =
ek (). Similarly a closed two-form irp-spaceG may be introduced. Suchdual magnetic fields interacts
with the particle’dual charger. A new modified symplectic two-forro = wp — eF +rG is then defined. Now,
both p- and g-variables will cease to Poisson commute and upon quantisation they become noncommuting
operators. In the particular case of a linear phase spateit makes sense to consider constarindG fields.

It is then possible to define, by a linear transformation, global Darboux coordif#fesi} = &'x. These can
then be quantised in the usual Wmi/,ﬁk} = ihd'y. The case of a quadratic potential is examined with some
detail whenN equals 2 and 3.
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I. INTRODUCTION canonical symplectic two-forrdd A dp implements the cor-
responding Hamiltonian vector field. We also recall the less
. . _—_ . . well known procedure of avoiding the introduction of a poten-
The idea to consider non vanishing commutation relationg; | using a modified symplectic structue— dd Ad g — eF.

g _ . 2
between position operatorfx,y] = i¢%, analogous to the The coupling with the charge is hidden in the symplectic

canonical commutation relations between position and. . re and does not show up in the Hamiltoniestg, p) —
conjugate momenturx,py] = i &, is ascribed to Heisenberg, 5K om+ In section Il a closed two-fér;n im-
who saw there a possibility to introduce a fundamental P pr/2m + 7(0). ' o

lenght¢ which. might control the short distance singglgrities fﬁ : gimtgleejgt?é fslterlgctﬁrg :1/ dz qG A (dp&d_néé\ E Eéllivﬁg?;diéo
of quantum field theory. However, noncommutativity of adual char

) ) L : ge
coordinates appeared first nonrelativistically in the work of
Peierls [2] on the diamagnetism of conduction electrons. In Such an approach with a modified symplectic structure
the limit of a strong magnetic field in thedirection, the has been previously considered by Duval and Horvathy [11,
gap between Landau levels becomes large and, to leadingt] emphasizing thé&l = 2-dimensional case in connection
order, one obtaingx,y] = ihc/eB. In relativistic quantum with the quantum Hall effect. We should also mention
mechanics, noncommutativity was first examined in 1947 byPlyushchay'’s interpretation [18] of such a dual chargenen
Snyder [3] and, in the last five years, inspired by string andN = 2 as the anyon spin. Considering here an arbitrary num-
brane-theory, many papers on field theory in noncommutativ@er of dimensiond\, no such interpretation afis assumed.
spaces appeared in the physics literature. The apparent unitathe crucial point is that, now, bot+ andg-variables cease to
ity problem related to time-space noncommutativity in field Poisson commute and upon quantisation they should become
theory was studied and solved in [10]. Also (nonrelativistic)noncommuting operators. In the particular case of a linear
quantum mechanics on noncommutative twodimensionaphase space?", it makes sense to consider constamindG
spaces has been examined more thorougly in the recefields. Itis then possible to define global Darboux coordinates
years: [11-16]. The above mentionned unitarity problemwith Poisson bracket&' 1} = &'x. These can then be quan-

in quantum physics is also examined in Balachandran et ajjcqq uniquely [1] in the usual wayé', 7i] = in 3. However
[17]. ’ ’

in general, the dynamics become non-linear and there is no
guarantee that the Hamiltonian vector field is complete. It is
In this work we discuss noncommutativity of configura- then not trivial to quantise the Hamiltonian, which becomes
tion spaceQ in classical mechanics on the cotangent bundlenonlocal. However, for a linear or quadratic Hamiltonian, this
T*(Q) and its canonical quantisation in the most simple caseis possible and it is seen that the noncommutativity generates a
In section Il we review the classical theory of a non relativis-magnetic moment type interaction. The cades2andN =3
tic particle interacting with a time-independent magnetic fieldare discussed in detail in section IV. In section V we examine
F=1/2F;j(q)dd Add' ; dF = 0. This is done in every text- the problem of symmetries in the modified symplectic mani-
book introducing a potential in a Lagrangian formalism. Thefold. Finally, in section VI general comments are made and
Legendre transformation defines then the Hamiltonian and thirther developments are suggested. In appendix A we recall
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basic notions in symplectic geometry and in appendix B weAssumingQ, to be Euclidean avoids topological subtleties, so
give a brief account of the Gotay-Nester-Hinds algorithm [7]that there exists a global potential one-foftg) = A(q) dd'

for constrained Hamiltonian systems.

IIl.  NON RELATIVISTIC PARTICLE INTERACTING
WITH A TIME-INDEPENDENT MAGNETIC FIELD

A particle of massnand charge, with potential energyl/,

moving in a Euclidean configuration spaQe with cartesian
coordinateqy, interacts with a (time-independent) magnetic

field given by a closed two-fornf(q) = 3 F;j(g)dg A dg’.
The dynamics is given by the Laplace equation:

dq ij dg“ 97(q)
Mgz =9 (eﬁk@dt‘ 3 )

(I1.1)

o 9L _doL oV
T 9g dtog  og o1
_07” (9A(a)  OAi(a) d
- et ()
oV

= —— +eFi(q)d—ms;§’,

oq

and coincides with the Laplace equation (11.1).
The Legendre transform

o : 0L .
(d.9') — (q', Pk = K — mdu §' + eAk(Q)) ,

defines the Hamiltonian on the cotangent bunfdlé(Q)

Q)
Ha(a,p) = —L(q,0) +p g =

-8 (i eAa) (P — eA() +(q).

With the canonical symplectic two-form

wo = dd' Adp, (11:3)
the Hamiltonian vector field affy is:

_6” _ 0 e . 0A oV a
Kog = E(pj —eA) aiqi—i— <m6 afqi(Pl —ehA) — oG ) ap
Its integral curves are solutions of:

dg & Lodp e g 0A 0V
E*ﬁ(pJ*eAJ)a Fiﬁé afqi(pI*eA)*afqi,
(1.4)

which is again equivalent to (11.1).

-kaAk(Q) d (

ogK

such thaF = dA. A global Lagrangian formalism can then be

established with a Lagrangian function on the tangent bundle

{1:T(Q) — Q)
L(0,9) = 5m&; ¢'q’ +eq A(q) — V().
The Euler-Lagrange equation is obtained as:

aq dt

(I1.2)

If the second de Rham cohomology were not trivial,
H3:(Q) # 0, there is no global potentigh and a local La-
grangian formalism is needed. This can be done enlarging the
configuration space) to the total space of a principalU (1)
bundle overQ with a connection, given locally b&[19]. This
can be avoided using a global Hamiltonian formalism[20] in
the cotangent bundlE*(Q) using a modified symplectic two-
form:

=~ eF =dd Adp — ZeF(@)dd Add,  (15)

and a "charge-free” Hamiltonian:

#(p.) = 5 3PP + V(@)

The Hamiltonian vector fields corresponding to an observable
f(q, p) are now defined relative t® aslyr W= df and given

by:
af & [oaf af )
XF.<+e )
“apmog \ag ap¥ @) 5

With the Hamiltonian, the dynamics are again given by the
Laplace equation (II.1) in the form:

dg & dp [0V e
E_HDJ'W__a Td+aplﬁl(q) . (1.6)
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The Poisson brackets, relative to the symplectic structure I1.9n matrix notation this two-form (lll.1) is represented as:
are:

of ag of ag _eF 1
fogl=—— ——— . 1.7 =
119 =3¢ o~ op o ap ehuld ) o U7 @) ( -1 +rG>

In particular, the coordinates themselves have Poisson brack- (0 1 TG} 1 0

ets: 1 +rG 0 1 —eF 1
{d.g'} =0, {d,p} =3, _ <eF 1> (1 o) <1 rG> n.2)
(ped}=-8, {p.p}=eRi(@. (I1.8) 10 0 @ o 1 /)

Obviously, the meaning of thég, p} variables in (11.3) and

(11.5) are different. However both formalisnisx, #3) and ~ Where[21]® = (1—€FrG); ¥ = (1—rGeF).

(w, Ho) lead to the same equations of motion and thus, they he fundamental Hamiltonian equatiogw = df, in (A.1),
must be equivalent. Indeed, in each operuseomeomorphic ~ reads:

to RS, the vanishingdF = 0 implies the existence ok such

thatF = dA in U and, locally: af of

i iy . _ | _
(X' —rGX;)dpi — (X —eFRaX')dg® o - dgf +ap dpi .

1 .
w=dq Adp; — >eFj dg' Adg! = —d[(pi +eA)dq]. (111.3)
This can be rewritten as
Thus there exist local Darboux coordinates:

i of ;i of o, of of
|:I7 — +e , 11.9 W2 y—whoxl - (22 _ Sy | .
€ =0, k= px+eAd) (11.9) (ap. rG aqj) WX ’(aqk e"_klap|) D X
such thato = d&' A drg, which is the form (11.3). . (11.4)
Obviously, from (111.2) or (Ill.4), the closed two-fornmw
The dynamics defined by the Hamiltoniat(q, p) = will be non degenerate, and hence symplectiajef(Q) =

p?/2m+ V(q), with symplectic two-forme, is equivalent ~det(¥) = det(®) # 0, so thaf(Q) has an inverse:

to the dynamics defined by the Hamiltoniaf (¢, ) = (T1—
eA€))?/2m+ 7/(§) and canonical symplectic structuie= w1 G 1
d&¢' Adm. Equivalence is trivial since both symplectic two- (Q)‘l = ( = 1) < B 0 1> ( _5 0)
forms are equal, but expressed in different coordinftep} te
and{&, 1}, related by (I1.9). It seems worthwhile to note that +¥-1rG g1y (s

+eFYIrG+1 —eFwt ) '

1 +rG -1 0 0 1

0 1 0 ot 1 —eF

o1 _ “loF
<+r rGoleF 1) . (111.6)

a change of Darboux coordinates

(&1} = (& =&, 1, = T+ edup}

i.e. a symplectic transformation. =

a gauge transformatioh — A’ = A + gradg corresponds to
—oleF

. NONCOMMUTATIVE COORDINATES - .
Explicitely:
Let us consider an affine configuration spa@e= AN

so that points of phase space, identified with = RN = (X1)' = (WL (af/ap; — rGkaf /agk)
Rg‘ X R"\)‘, may be given py I|_near coordma_ltéq;, p). Together  (y-qf _ {
with the (usual) magnetic field, we may introduce a (dual)
magnetic fieldG = 1/2 G (p)dpx A dpy, a closed two-form,
dG =0, in R space. Lee be the usual electric charge and
r, a dual charge, which couples the particle withand G.
Consider the closed two-form:

9
© — G- eF+1G (1.0} 6o Xg) = @af 1) () (319 ) ()
1 : -
= dq' Adp — SeFj(a)dd Adg’ + S5rG¥ (p)dpcndpr.
(n.2) with the matrix

(X =—(®1) (8F/od — eF;af /apy) )
.7z
The corresponding Poisson brackets are given by:
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_ 1 [ —(WwlrG=rGo ) +y-1
N=—-(Q) "= ( o1 (Ol —eFWY) ) (111.9)
\
Explicitely: Whene = 0, Darboux variables are
_ 0 1,699 0F (109 & =0+ rA(p): = pr. (.17)
and we define
+ 2 w99, 9 16029 (n110) A
oq op 0Jp op 0= pd(gf+rAY) ; w=—de. (111.18)
In particular, for the coordinates, px), we have: The Hamiltonian and equations of motion are now given by:
. “1\i ki K (1) ] -
{d.d'} = —(P)YrGY = —1G* (@), HET) = 28 1iey + V(E —r AT)), (111.19)
i =N 2
{q ) p|} = (LIJ ) | »
{pkaqj} = 7(¢_1)k17 dEI agk d A
_ , 28 i —  —1=—-2"(q). .
[Pep) = @ DleR —eRgw . iy a0 VW5 g = e @ (120

With #(qg, p) = (8 pxpi/2m) + V(q), the equations of mo-

tion read:
dd—(j _ {qi,}[}Z(q’il)ij <_rGik gg—&— gg) )
), (_rij g;’i+ ':;) ,
R R - SRRy

, 0V i
(@) <—aq|+eﬁ,- ﬁq) . (11.12)

The celebrated Darboux theorem guarantees the existence
local coordinatesg', 1), such thato = d&' A dm. When one
of the chargege, r) vanishes, such Darboux coordinates are

easil~y obtained using the potential one—form~s: Ai(q)dd
andA = A¥(p)dp, such thaF = dA andG = dA.

Indeed, ifr = 0, as in section Il, Darboux coordinates are pro-
vided by&' = d'; Tk = px +eA(q). A modified symplectic

potential and two-form are defined by:

0= (pc+eA)dd<; w=—de. (11.13)

The second order equation, obeyedrtf), is given by

2
dd% =05 7(q) (—6Jknk+ rGJk(n)(:jth> . (n.22)
Here theg-variable is assumed to be solved in terms of
7t from equationiy, = —89/(q)/dg< and this is possible if
det(959/(q)) # 0!
In the case of nonzero chargésr) and non-constarft and
G fields, there is no generic formula to define global Dar-
boux coordinategg', ). However, if the fieldsF and G
are constant, the Poisson matrix (I1.2) is brought in canon-
ical Darboux form by a linear symplectic orthogonalization
rfocedurea la Hilbert-Schmidt. In the next section this is
one explicitely foN = 2 andN = 3. Obviously such a lin-
ear transformation(q', px) = (&', Tk) is defined up to a linear
symplectic map oSp(2n). These variable', 1) € R?" can
be canonically quantised as operators obeying the commuta-
tion relations
.81 =0; [§.a] =ind); i) =0, (1.22)
As von Neumann taught us in [1], they are realised on the
Hilbert space of square integrable functions of the varigble

The Hamiltonian and corresponding equations of motion are@S

(€, 1) = 28 (16— eAE) (1% — €A (€)) + V(E), (11.14)

dg' i dm oA 0V
O =8 (e (€)= e emg Ot~ O
(I1.15)

which yields the second order equatiortiras in (11.1):

d2¢i i 07 (%) dé
w0 (T e )

(111.16)

@) =gv); v =1 2o

(111.23)

The original variablegq', px) being linear functions of the
(&', 1¢) are then also quantised.

Whendet(W) = det(®) = 0, the closed two-fornw is singu-

lar. When its rank is constanh defines a presymplectic struc-
ture on phase space which we call the primary constraint man-
ifold denoted by#M;. The consistency of the resulting con-
strained Hamiltonian system will be examined in the= 2
andN = 3 cases.



198

IV. EXAMPLES: N=2AND 3

In the two examples below, we consider a classical Hamil-

tonian of the form

1
H = z—mék' pp + Y(q). (IV.1)

A complete resolution will be given for a harmonic oscillator

potential:

V(q) = (V.2)

K . .
§5ijQ' q.

Also of interest is the case of a constant "electric field”:

V(q) = —Exg¥, which is exactly solvable and left to the

reader.

A. Dynamics in the noncommutative plane

The magnetic fields in two dimensions, are written as:

eFRj =Bgjj; rGN =ce¥, (IV.3)
whereB andC are pseudoscalars. The closed two-form (111.1)
becomes
w=dqg Adp; —Bdg* Adg? +Cdpi Adp;. (IV.4)
The equationxw = df reads
X' —CellX; = g;. Xi — BggX' = c%k . (IV.5)
Denotmgx (1+CB), the matricesp and¥ are written as

=x&) andWX = x&. The matrix (111.2) is then invert-
|ble if x does not vanish.

1. The non degenerate case

Here, we will assumg to be strictly positive. The above
equation(lV.5) can then be inverted with Hamiltonian vector
fields given by:

; of of of of
X'= =— B .
x (ap. g an) K= (aqk 8k'a|o'>
(IV.6)
The Poisson bracke{fll.11) become:
{d.d}=-Cxtl ; {d,pm}=x""3
{pd} =—x"&" ; {pp}=Bxtew. (IV.7)
Substitution of the Ansatz
. . C . B .
g=aq+p3 P ; Me=Y5 0 g +3pk.  (IV.8)

in the canonical Poison brackets, leads to the equations
a?—ap— —BZ 0,5 —dy— —yz 0,

ad+ TB(O‘V+5I3)—TBV=X- (IV.9)
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We choose the solution:

0= 8= Vi Boy= o u= (L4 VX).

such that (IV.8) reduces to (11.9) wheh = 0 or to (l1l.17)
in caseB = 0. The 2-form (Ill.1) has the canonical Darboux
form w = d&' AdTj in the variables

C B :
Zuﬁ'kpk) ;T[k:\m<pk_2uskiql) .

(v.11)

(IV.10)

g =

Vu (q‘ -
These have an inverse if, and onlyit£ O:

\qui:\m(zuf kW)iﬂDk=ﬁ<Tﬁ<+z€kiEi>
(v.12)

With the complex variables
q=0"+ig?, p=pr+ipy; E=E+i8 m=m+imp,

(IV.13)
the above changes of variables are written as:

£ = ﬁ(q+i Zcup) = ﬁ(p+i ;q> L (va4)

The inverse transformations are:
g=+u < fl— > =/u/x ( f|— ) . (IV.15)
The Hamiltonian (1V.2) becomes

H L s + <

5|,E g -

K &g +£z*
2 2

2m’
1 T+ ot
2m’ 2

whereA is angular momentum

— o A(IV.16)
A %(sijiié“‘m—sk'm&jﬁj)
2 (€' —Em) — (g 4+ ogY)
i((an gt — (&' 417 )

The "renormalised” mass and elasticity constant are given by:

(IV.17)

1 1u ¢\ , u b?
o my (” 4uz) TR <” 4uz) - (V49
where
_ i c=CvmK (IvV.19)
Uk ' '

The corresponding frequenay, = /k’/m’ is given in terms
of the "bare” frequencyy = \/K/mby:
= o2

— ((b— )? + 4)() i

o (IV.20)
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andwy , the induced Larmor frequency, by:

W = (b c). (IV.21)

2X

The solution of Hamiltonian’s equations with (1V.16) is stan-

dard. With[22]

b? 2\ * 12
— ! — - R
mop = VMK = /MK ((l—i— 4u2> <1+ 4u2>
(IV.22)
reduced variables are introduced by:
Q= (Mup)Y?E; P= (Mup) ¥2m (IV.23)

The original(q, p) are expressed as:

a = V(e V2 (Q-i5:P)

p = Vu/x(mawp)*Y? <P i;;Q>, (IV.24)
where
¢/ =C(muwh) = CVmk', b’ =B/(mMup) = B/VMK .

(IV.25)
The symplectic structure and the Poisson brackets are:

w

% (olQT AdP + dQA dPT)

_ (995 ot o ot oy of og
theh = 2<6Q6PT+6QT6P aP aQ" aPTaQ)
(1V.26)

The fundamental nonzero Poisson bracket is

{Q P} =2.

In these variables, the HamiltoniélV.16) reads:

(IV.27)

H = % (P'P+PPH+(QQ+QQ") — WA, (V.28)

J

Q) (pt t
H=—~ (A<+)A<+) + A<+)A<+))

2

199
where
1/ .t T t o of
- ((Q P_QP) — (PQ'+P Q)) . (IV.29)

The corresponding equations of motion are:

0H , -
() = 200 = P - i Q
dP a}[
With the shift variables

1 . 1 .
Asy=5Q+iP)i A =5 (QM+iPT),  (va
the symplectic structure and the Poisson brackets are given
by:

. t t
©=~i(dAl AdAG) +dAT AdAC)) L (V.32)
[ of dg of 0dg
{f7g} = _I< +
OAC) OA, | OAC) AT
of dg of dg
aAT 0A) aAT 0A )(Lv.ss)
with fundamental nonzero brackets:
{A(i>,A<Ti)} =—j. (IV.34)

The Hamiltonian, with the (positive !) frequencies

The corresponding equations of motion and their solutions are given by:

dt

Ay (t) =exp{—iwut} AL

d
o A, H}y = —

= (wh+ ), (1V.35)
reads now:

YO (At A 1A AT IV.36
+T< LAGTACAL) - (IV.36)
. OH .

IaT =~y A(i) ; (|V.37)

()

(IV.38)
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The relations between variables are given by:

1 .
Ay = 5(Q+iP)
o ﬁ /\+1/2 b’ : /\—1/2 c’
= () V2= G a (k) (1 )
1 .
ALy = 5(Q-iP)
_ W 1204, B 1204 C
= () V2 )0 i) P21 Sp)
The inverse transformations are:
q = (M) 1/2F<Ql >7
C/
= (mop) Y2/ u/ <1— )+(1+2u)A(T>),
p = (mag)™/? /7<P—| )
— i) V27K (1 Al - (14 20 ) -
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(IV.39)

(IV.40)

(

Quantisation is trivial though the substitution of the funda-where n.., are nonnegative integers.
mental Poison brackets (IV.27),(IV.34) by operator commuta-€igenvectors are denoted oy, ),n_ >.

tors
} —h.

Having kept the initial ordering, the quantum Hamiltonian has

[Q.PT] =2in; [Au,AlL (IV.41)

The corresponding

2. The degenerate or constraint case

eigenvalues: The conditiony = (14 BC) = 0 determineso as a presym-
plectic structure oM and shall be called the primary con-
E(n), ) = hoy) (N +1/2) + hoy -y (n-) +1/2), straint. Again, the notation is simplified using complex
(IV.42)  variables[23]. The presymplectic two-form reads

J

% (qu/\dp+ qude)

B (44t 1\, C (gt 1
VT (dq /\dq—qudq>+4i (dp /\dp—dpAdp). (IV.43)
The Hamiltonian (IV.2) becomes
_ 1 p'prpp’  kq'gt+aq

H= om 5 > 5 , (Iv.44)

Writing a vector field as
X =X'0/0q +Xc0/dpc =U d/aq+UTa/aq" +Vva/ap+VTa/ap",
e = %((u +icv)dd +(UT—icvhdg
—(V—i—iBU)de—(VT—iBUT)dp). (IV.45)
(

The homogeneous equatiopw = 0 has nontrivial solutions.  (1V.45) yields the system:

Indeed, withUg = Z'+iZ2 and Vo = Z; +iZ,, equation

Ug+iCVp=0;0r Vp+iBUy=0,

(IV.46)
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of which the determinantig =1+ BC=0. and defines the secondary constraint maniftfd
The inhomogeneous equatiogw = d#, i.e. the Hamil- On 94, a particular solution ofxw = d# is given by:
tonian dynamics, reads
P
Up=—;Vw=0. (IV.51)
U+iCV23§2;V+iBU23§[Kq. (IV.47) m
The general solution is given by:
It will have a solution if
_p o
(d#H]Z) = 0. (IV.48) U= mJon,V =Vp. (IV.52)
This condition, termed secondary constraint, is explicitelywhere(Up,Vp) is restricted to obey (1V.46). This vector field,
given by: restricted toM, should conserve the constraints i.e. must be
83t 89t 89t 83t tangent taMs:
a——ica—zo;or a——iBa—zo. (IV.49) 1
P q q P 0= (= dp+iCkdglX), (IV.53)

For the Hamiltonian (IV.44) this condition (1V.49) is linear:
The vector field&) andV are completely defined amt, with

1 . 1 . : :
= p+iCkq=0;0r Kq+i Bﬁ p=0. (IV.50)  ensuing equations of motion:
|
dg . . vmkC B p
a = VT T e 9T Ik m
dp ., . V/mkC ~ mkC?
@t = VT T ke P T Tirmkee (IV:54)
In terms of the frequency: And, with the reduced Hamiltonia#; given by
vMKC B/v/mMK L
O = ka2 = T B mk (IV.55) He = ( )59 (IV.61)
the solution is given by this yields equation (IV.56). WheB > 0, henceC < 0, we
define
q(t) =exp{iaxt} qo; p(t) =exp{ioxt}po.  (IV.56)
(1+mKC?) +
Obviously, if g9 and po obey the secondary constraints a= e a, (IV.62)
(IV.50), g(t) andp(t) obey them at all times.
The same result can be obtained by symplectic reduction, resch that
stricting the pre-symplectic two-form (1V.43) t&f,:
(AU VN N t
(1+mkC2? {aa't=—i; #H = 5 (a'a+ aa'). (IV.63)
Wap, = —i ———=———dq' Adaq. (IV.57)
Quantisation is again trivial introducing operataranda’,
2iC af ag  of ag obeying
i
f, =— —>S|=—=——-=—=—=]. (V58
{1 Ghag (1+mkC?)? <0qT oq  dq 6q*) (1V:58) [aal]=nh (IV.64)
The fundamental Poisson bracket is such that the quantum Hamiltonian
—2iC
+
= V.59
{a.9% 9y, (1+mkC2)2 (1V:59) Hy = %(aTa + aa). (IV.65)
The dynamics are given by: has eigenvalues:
dq 2iC 0H;
at (1+mkC)?2 oq" (1V.60) E(n) = Awy (N+1/2) . (1V.66)
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3. Thex — Olimitof (IVA1). Also:

We need the expansion of

b2 02 1\ V2 2 2
mayp) = (m 1+— ) (1+-5 _ W € _ o
(IV.67) (IV.71)
in powers ofe = /X, wherel+bc= e2and2u=1+c¢.
mwy -1
moh) = — (1
( OJO) |C| ( +CZ+18+ ) 1 ( )2c2 1
1 ?-1 Wy = G+ o = — oy S =,
_ (muwy)C
(Muwp) ™+ = b <1+ b2+18+ 1+ (muy)2C
1 b?—1
= |B(1+b2+18+--->. (Iv.68)
Also, from (IV.25), we obtain One of the frequencies ., diverges, while the othem, _
. tends towy defined in (IV.55). The relations in (IV.39) yield
¢ _ (mMop)C_C (2 ep... the initial conditions:
2u 2u IC| c2+1 ’
b’ B B 2
For definitenees, we assume in the followiBg> 0 and so
C < 0inthe limite — 0. We obtain
|B| 2 —1( . B > 2
A0 ~ {/—=(1+b +i— £+ 0(¢
Y2 . (+)(0) 5 ( )% (o2 Po ) ( (€9))
T2u 1+p2 T B 1
b’ 2 AL)(O) ~ % <q0—|B po> (1+0(£?)) . (IV.73)
1482 e
2u 1+c? ’
!
1-— g—u =2— ﬁ% e (IV.70)  The solutions (IV.40), in the — 0 limit are then written as
|
2 /1 . 1 4 .

Q

. |B .
(1+b%)1 <q0+l (m|w(|))2 po> exp{—iwt}
+(14¢%) "t (qo—i[B| ' p)) exp{+iwxt}; (IV.74)

(

The first term is a fast oscillating function with diverging fre- q(t). Similar considerations hold fqu(t) in such a way that
guency and so averages to zero. Furthermore, if the initiathe solution stays oll,.

conditions are o\, i.e. if (go+1i|B| po/(mup)?) = 0, this

first term behaves a®(g)exp{ivt/e?} converging to zero.

The second term is then reduced to the expression (IV.56) of
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B. Noncommutative R

In R3, the magnetic fields andG are written in terms of
pseudovectorB = {B¥} andC = {C;} as:

efj =&k B rG! =¢kc,. (IV.75)

The closed two-form (111.1) is written as:

w=dg Adpi — 1s.JkBkdq Adgl + Zsk'mcmdpkAdm
(IV.76)
The fundamental equatiopw = df reads
—Cekx; = of of (IV.77)

i —_
ap ; X — BlggiX! = g

Defining® = C-B = C¢BX andx = 1+ 9, this is also written
as

xX' = (3j+BC )— Cie'X a(;
of of
_ WYY R
XX = ((51( +Ck|3) aq Bsk"6p> (IV.78)
|
{d.9'} = —xteka

{podl} =—x7* (8 +cB)

The Ansatz (IV.8) has to be generalised to
. . . 1 ..
g = ad+a'B (G B 5™ piCa

; 1
e = apcta’(pB) G+ BoeamB g (1V.81)

Fora, 3 similar equations as in (IV.9) are obtained:

a —aB——BZ 0,a +8(GB)——BZ_x, (IV.82)
with a the same solutiorx(assumed to be strictly positive):
1 1
= i B=—;u==-(1 . IV.
Furthermore, there is an additional equationdar
1
X (8 a’2+2aa’) + (az—uB+ 4[32) = (1V.84)
Substituting (1V.83), one obtains
1
2 Iy =
$a’“+2y/ua’ + 2 0,
with solution, remaining finite whef — 0,:
o = Juy= (1_{)@) . (IV.85)

203
The3 x 3 matrices® andW¥ read:
o) =x5'-CBl; ¥ =x8-B“q,

with det® = detW = x2. Assuming agairx # 0[24], these
matrices have inverses:

(@1 = (6J+Q BJ) (WK, = <5k5+BkC/) :

><\H
><\|—\

The Hamiltonian vector fields are obtained from (IV.78):

; : ; of of
i -1 i i _ ijk i
X = X <<6J+BC.)apj Cye aq,)7
1 | i of
Xe = =X | (& +CkB)*—B Eli 5 an (IV.79)

The Poissson brackets are given by:

(8 +BC) ,

1 €umB™.

{d.p}=x"

{p.pi} =x" (IV.80)

(

The formulae (1V.81) are finally written as:
1
_ep, Ck)

f(pk+v<p.s'>ck+1sk.ms' ) (1V.86)

Ei

f(q +yB' (Cka) —

T[k:

In old fashioned vector notation, this appears as:

= — 1
£ = vi(a+yBC D) - ypxc);
1
m= ﬁ<p+y(p )C+2|3xq> (IV.87)
The inverse formulae of (IV.86) are obtained as:
i VU ky 4 T ik
q = ﬁ(ﬁ +Y'B' (C&") + 2uE T[]Ck>
u 1
b = g(mvc(mB')—zsk.mB' )(IVSS)
Or, in vector notation:
a- YU(s s L)
q= X E+YB(C-&)+ 5, mxC ),
VO (nyomB) . LBxE
p= X n+yC(mB) -5 Bxg), (IV.89)
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where by &, =& — &%&; andm, = m— Tge,. Indeed, eq. (IV.88)
SRV becomes
(E R AAN e V.
Y 9 VU (1V.90)

Again, for sake of simplicity, we consider a configuration 1 1
space which is Euclidea = E2 with metric < V;w >= q'= vu (El+ 2T[2C> , P1= vu <T[1—|— Z—EZ B) ,
&ijVw! = (v-w) such that; = &;; V'. Substitution of (IV.88) VX u VX u
in a Hamiltonian of the form (IV.2), leads to a Hamiltonian VU Ez—in c _ VU iBil
quadratic in(,T0) and to a system of linear evolution equa- T X g e ) o P2= S\ 20 ’
tions. In the case wheld andC point in the same direction: s _ g3 03 =T (IV.92)

B=Be&;C=Ce, (IV.91)

a particularly simple Hamiltonian is obtained. Parallel coordi-
nates are defined t?, T and transverse coordinate vectors The Hamiltonian is:

_ (.1 2, KLz 2 1 2 K3 :
HEm) = (g (P4 5 €2) + (5 (024 5 (692 + (e (v.93)
[
The transverse degrees of freedom are seen to have a V. SYMMETRIES
renormalised[25] mass and elasticity constant which are given
by the same expressions as in (1V.18): For Euclidean configuration spage= EN, with metricg;j,
) an infinitesimal rotation is written as:
1 1u c? b
— == 14+ 5 | k= 1+ — ) . (IV.99) . o -
my mX 4u X 4u b:d—q' =g+ EGSGB(MGB) J.qJ , (V.98)
where i . .
where (Mqg) = d'q8p; — '3 dq; are the generators of the
b= B c=CyVnK. rotation group obeying the Lie algebra relations:
/MK

- . . . [Mag, M| = — BapMpy + 8av Mgy — 8gy May + 3guMay -
The fieldsB andC induce a sort of magnetic moment inter- (V.99)
action along thez-axis with the same Larmor frequency as This induces the push forward i (Q):

before: . i
el = A o 6:T )—>T*(Q)'(q' P — (@, p%).
in , ) = — 35 . i
d W q q 4z 58(1[3( ) qu ;
where/As = £l — €21y, Acrtually, the condition (1V.91) re-
duces théN = 3) case to a surtiN = 2) & (N = 1). The three Pk = Px— 5 68“ o} (Maﬁ)l ‘- (V.100)

relevant frequencies of our oscilator are:
In a basis[26){e,p} of L(SQN)), letu = (1/2)e4pu*? de-
=vk/m; @, = vk /mp; of *000 (b—c). (IV.96)  note a generic element. Witk (u) = exp{ 3 u*¥ Mg}, finite
rotations are written as
The spectrum of the quantum Hamiltonian is easily obtained

as d—a' =R ;g p— =PRI . (V.101)
The vector fieldX, (see appendi®) is given by its compo-
E(N):N(),N8) = hod) (N +1/2) + nents:
(X)! = 5 U (Mag)' 0 (X )i = — 5 U (Mag)',
ho—) (N-) +1/2) + hog(ng+1/2), (IV.97) (V.102)

It conserves the canonical symplectic potential and two-form:
wheren,),nz are nonnegauve integers. Corresponding eigen-

vectors are denoted by N-),N3 >. Lx,00=0; Lx,0p=0.
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The action is in fact Hamiltonian for theanonical symplectic a mere change of coordinates@nwill spoil the form(l11.1)

structure With the notation of appendi&, we have of w. This means that our approach must be restricted to con-
figuration spaces with additional properties, which have to be
Xy = m%(d =(u)), conserved by coordinate changes. The most simple example
_ 1 4.0 is a flat linear[28] spac€ = EN, when (lIl.1) is assumed to
=(u) = su Jap(D,P) , hold in linear coordinates. Obviously, a linear change in coor-
1 dinates will then conserve this particular form. Although the
7°:T*(Q) — L*(SAN)) : (g, p) — > (0, p) e, restriction to constant fieldandG is a severe limitation[29],
- it allowed us to find explicit Darboux coordinat@¥.8) when
Jgp(P) = Pr(Map)“; - (V103) N —2and (v.81) wherN — 3, eue)
0 ) Finally, whendef{1— rGeF} = 0, the closed two-fornw
In terms of the momentd,;, the rotation (V.98) reads is degenerate with constant rank and defines a pre-symplectic

structure ol *(Q). Its null-foliation decompose$*(Q) in
5q = }&aB {quc?B}o; dpy = }&aﬁ{pk,]&}o- (v.104) disjoint leaves and on the space of leavesprojects to a
2 2 unique symplectic two-form. In two dimensions, the repre-
sentations of the corresponding quantum algebra in Hilbert
space and its reduction in the degeneracy case were studied in
[11-14, 18].

The Lie algebra relationd/.99) become Poisson brackets:

0 40 0 0 0 0
{.70([3’.7“\; }O = 60(;1][3\, + 6av jﬁp - 6Bv jqu + 6[3u.7gv .
(V.105)
Naturally, for the modified symplectic structure (ll.1), the ac- AppENDIX A: ESSENTIAL SYMPLECTIC MECHANICS
tion (V.100) will be symplectic if, and only if, the magnetic

fields obey: Let {M,w} be a symplectic manifold with symplectic

— E. [ j \V.106 structure defined by a two-forrm which is closed,dw =
GF"‘('I((?); B ;{(Q%(u)q) (R (RW, ( ) 0, and nondegenerate such that the induced map@ing

W) (R W) ;G (PR THULLO0T)  T(af) — T*(M) : X — Ixw has an inverses : T*(M) —

e ) i T(M): a — (a). The paradigm of a (non-compact) sym-
For constant magnetic fields, this holds{ifu) belongs to the  pjectic manifold is a cotangent bundfe(Q) of a differential
intersection of the isotropy groups BfandG, which, in three configuration spac®, In a coordinate systerf'} of Q, a
dimensions, is not empty if both magnetic fields are along th%otangent vector may be written ag = p dq. This defines
same axis. A rotation along this "z-axis” is then symplectic. .oqrdinateg = {d', p} of pointsze M = T*(Q) and an as-
However, in general it will not be Hamiltonian and there will ¢4ciated holonomic basi&lpy,dq } of T; (). The canon-
be no momentuntz such thabq = {q, Jz}. Again the disCus- ;.| gne. form is defined a8y = pidg'. Obviously, the exact
sion simplifies when one of the chargesr e vanishes. If the two-form wy = — dBp = dq Adp; is symplectic. ’
potentialsA or A are invariant unde® (u), then the actionis 1o each observable, which is a differentiable functioon

Hamiltonian[27] with momentum defined by the symplectic {as (5} the symplectic structure associatesamiltonian
potentials (111.13) or (lI.18) as vector field

(@ p)lu) = Beg)Xu) or (Bon|Xu) . (V.108) Xi=w(df) or ix,w=df. (A.1)

Obviously there is always &Q(N) group action on the€, 1) sych a vector field generates a one-parameter (local) trans-
coordinates which is Hamiltonian with respect(t.1) and  formation group: 7; (t) : M — M : 25 — z(t), solution of
momentum given by: dz(t) /dt = X (z(t)) , Z(0) = 2o
i In particular,the Hamiltonian # generates the dynamics of
- k zj
Jap(& 1) = Tk (Map)"; & - (V109)  the associated mechanical system. With the usual interpre-

I . tation of time, X, is assumed to be complete such that its
However, the hamiltonian (IV.2), looking apparen8IN) flux is defined for alt € [—, 4-]. Transformations, induced

tsgmrznetrl\(l:, rI|S glxphcnely seen not to be so when expressed 'By an Hamiltonian vector fiel& ¢, conserve the symplectic
e(&,m variables. structure[30]:

VI FINAL COMMENTS Ti(t)"w=wor, locally: Lx,w=0. (A.2)
More generally, the transformations conserving the symplec-
The symplectic structure in cotangent spacg,Q) £ Q, tic structure form the grouBymp(M) of symplectomor-
was modified through the introduction of a closed two-fégfm phismsor canonical transformations Vector fields obeying
onT*Q, which has the geometic meaning of the pull-back of Lxw = O, generate canonical transformations and are called
the magnetic fieldr, a closed two-form om: F = k*(F). A locally Hamiltonian since [31]dixw = 0 implies that, lo-
first caveat warns us that the other closed two-f@uioes not  cally in someU C M, there exists a functiorf such that
have such an intrinsic interpretation. Indeed, it is obvious that fiy = (1xw);y-
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TheDarboux theorenguarantees the existence of local chartsG-space Since= is linear in G, it defines anomentum map-
U c M with coordinates(d', px} such that, in eact, wis  ping J from M to the dualG* of the Lie algebra defined by:
written as: (J(2)|u) = =(u,z). WhenM is a HamiltonianG-space, the
_ momentum mapping is equivariant under the actioGain
wy =dg Adp; . (A.3) 4/ and its co-adjoint action oG*.
_ In general there may be topological obstructions to such a
In the natural basi§0/0q',0/dpx} of T,(M), the Hamil-  Lie algebra homomorphism. However, whénacts onQ;:

tonian vector fields corresponding faeads ¢:G—Diff(Q):g— ¢(g) :q— q = d(g)g, the action
is extended to a symplectic action fM = T*(Q),uwo}:

x;— o 0 ot 9 % : G — Symp(M) : g — 8(9) : (g,p) — (o, p), where

opi o' 0q' Opi p’ is defined byp = (¢(g));, P’. It follows that$(g)*6o =

B0 ; $(g)*wp = wp. The infinitesimal action is given by
Xu(2) = (dd(exp(tu))z/dt);;—o and Lx,80 = 0 ; Lx,wp = 0.
From w(Xy) = d(Bo|Xy), it follows that the action is al-
{f1,f2} = —{fa, f1} Zgo|st Ha>milton(ian Wit)hz(?) (:)<G%|)§§>.h Moreover, sincle

B o[ X[uy)) = Wo(Xu, Xv) ={=(u),=(v) }, t e action is Hamil-
{fhore}={fo} e+ta {fe} tonian and{T*(Q), wo, =} is a HamiltoniarG-space.
{f{on0}} = {{f.o1},02} + {9, { .02} }

These properties, relating the pointwise prodgictg, with

The Poisson bracketof two observables is defined by:
{f,9} = w(Xt,Xg), with the following properties:

the bracket{ f,g}, are said to endow the set of differen- APPENDIX B: PRESYMPLECTIC MECHANICS

tiable functions orM with the structure of #oisson algebra

P(M). In a coordinate systerfe*), wherew = %wAdeA A A manifold 94, endowed with a closed but degenerate[32]
dZ8, it is given by: 2-form w, with constant rank, is said to be presymplectic. The

mappingw’ has a nonvanishing kernel, given by those nonzero

¢ _of ARB Jg (A.4) vector fieldsXg obeyingwb(xo) = Ix,w= 0. The fundamen-
{ ,g} A 0B’ ' tal dynamical equation
whereA is minusw 1. In Darboux coordinates it reads: W (X) =d# (B.1)
_of ag  of ag o
{f.9}o= oG ap  9p aq (A.5)  has then a solution if
The Poisson brackets of the Darboux coordinates themselves (dH|Xo) =0 ; VXo € Ker(wr). (B.2)

are:
If this is nowhere satisfied off;, the hamiltonian# does

{d,d'},=0,{d.p}y=8", {Pd};=—3, {P.p},=0. not define any dynamics oft;. When (B.2) is identically
(A.6) satisfied, a particular solutiokp of (B.1) is defined in the

The dynamical evolution of an observable is given by: entire manifold; and so is the general solution obtained
df summing the general solution of the homogeneous equation
= Y ) =1x, df =1x, Ix, 0= (Xt,X,)={f, ). IXoW = 0,i.eXg :X_p+X9, Whlch will contalnlarbltraryfunc-

dt w(f) " > ( #) =4 ) tions. When(B.2) is satisfied for some pointse M3, we

(A.7)
A Lie group G acts as a symmety group on a symplectic
manifold 9, if there is a group homomorphis® : G —
Symp(M) : g — T(g). An infinitesimal action defined by a
Lie algebra element € G is given by the locally Hamiltonian
vector field

shall asssume they form a submanifold, called the secondary
constrained submanifold with injectiap : M, — M;. The
particular solutionXp of (B.1) is now defined irM, and so

is the general solutioXg. Requiring thatXg conserves the
constraints amounts to ask thég is tangent talb:

Xu(z) _ % (‘T(exqtu))z)lt:o . (A8) XG Iz*(XZ) ) Xz S r(Mz,TMz). (B.3)

' o o . Again, when there are no points where this tangency condi-
When eactXy is Hamiltonian, the group action is said to be tjon is satisfied(B.1) is meaningless. Another possibility is
almost Hamiltonianand {3, w} is called asymplectic G- that some of the arbitrary functions ¥y become determined
space In such a case, a linear m&: G — P(M) :u—  and the tangency condition is obeyed on the entife The
=(u) can always be constructed such tiat= w(d=(u)).  general solution then still contains some arbitrary functions.
When there is & which is also a Lie algebra homomor- Finally it may happen that the conditio(B.3) are only satis-
phism: =([u,v]) = {=(u),=(v)}, the group is said to have fied on someMz with 15 : Mz — Mp. The story then goes on

a Hamiltonian actiorand{fM,u), E} is called aHamiltonian  until one of the first two alternatives are reached.
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