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In this work we examine noncommutativity of position coordinates in classical symplectic mechanics and its
quantisation. In coordinates{qi , pk} the canonical symplectic two-form isω0 = dqi ∧dpi . It is well known in
symplectic mechanics [5, 6, 9] that the interaction of a charged particle with a magnetic field can be described in
a Hamiltonian formalism without a choice of a potential. This is done by means of a modified symplectic two-
form ω = ω0−eF, wheree is the charge and the (time-independent) magnetic fieldF is closed:dF = 0. With this
symplectic structure, the canonical momentum variables acquire non-vanishing Poisson brackets:{pk, pl} =
eFkl(q). Similarly a closed two-form inp-spaceG may be introduced. Such adual magnetic fieldG interacts
with the particle’sdual charger. A new modified symplectic two-formω = ω0−eF+ rG is then defined. Now,
both p- and q-variables will cease to Poisson commute and upon quantisation they become noncommuting
operators. In the particular case of a linear phase spaceR2N, it makes sense to consider constantF andG fields.
It is then possible to define, by a linear transformation, global Darboux coordinates:{ξi ,πk} = δi

k. These can

then be quantised in the usual way[ξ̂i , π̂k] = i~δi
k. The case of a quadratic potential is examined with some

detail whenN equals 2 and 3.
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I. INTRODUCTION

The idea to consider non vanishing commutation relations
between position operators[x,y] = i `2, analogous to the
canonical commutation relations between position and
conjugate momentum[x,px] = i ~, is ascribed to Heisenberg,
who saw there a possibility to introduce a fundamental
lenght` which might control the short distance singularities
of quantum field theory. However, noncommutativity of
coordinates appeared first nonrelativistically in the work of
Peierls [2] on the diamagnetism of conduction electrons. In
the limit of a strong magnetic field in thez-direction, the
gap between Landau levels becomes large and, to leading
order, one obtains[x,y] = i ~c/eB. In relativistic quantum
mechanics, noncommutativity was first examined in 1947 by
Snyder [3] and, in the last five years, inspired by string and
brane-theory, many papers on field theory in noncommutative
spaces appeared in the physics literature. The apparent unitar-
ity problem related to time-space noncommutativity in field
theory was studied and solved in [10]. Also (nonrelativistic)
quantum mechanics on noncommutative twodimensional
spaces has been examined more thorougly in the recent
years: [11–16]. The above mentionned unitarity problem
in quantum physics is also examined in Balachandran et al.
[17].

In this work we discuss noncommutativity of configura-
tion spaceQ in classical mechanics on the cotangent bundle
T∗(Q ) and its canonical quantisation in the most simple case.
In section II we review the classical theory of a non relativis-
tic particle interacting with a time-independent magnetic field
F = 1/2Fi j (q)dqi ∧dqj ; dF = 0. This is done in every text-
book introducing a potential in a Lagrangian formalism. The
Legendre transformation defines then the Hamiltonian and the

canonical symplectic two-formdqi ∧dpi implements the cor-
responding Hamiltonian vector field. We also recall the less
well known procedure of avoiding the introduction of a poten-
tial using a modified symplectic structure:ω = dqi∧dpi−eF.
The coupling with the chargee is hidden in the symplectic
structure and does not show up in the Hamiltonian:H0(q, p) =
δkl pk pl/2m + V (q). In section III, a closed two-form inp-
space, thedual field: G = 1/2Gkl(p)dpk∧ dpl , is added to
the symplectic structureω = dqi ∧dpi −eF + rG, wherer is
adual charge.

Such an approach with a modified symplectic structure
has been previously considered by Duval and Horvathy [11,
14] emphasizing theN = 2-dimensional case in connection
with the quantum Hall effect. We should also mention
Plyushchay’s interpretation [18] of such a dual charger when
N = 2 as the anyon spin. Considering here an arbitrary num-
ber of dimensionsN, no such interpretation ofr is assumed.
The crucial point is that, now, bothp- andq-variables cease to
Poisson commute and upon quantisation they should become
noncommuting operators. In the particular case of a linear
phase spaceR2N, it makes sense to consider constantF andG
fields. It is then possible to define global Darboux coordinates
with Poisson brackets{ξi ,πk}= δi

k. These can then be quan-

tised uniquely [1] in the usual way:[ξ̂i , π̂k] = i~δi
k. However,

in general, the dynamics become non-linear and there is no
guarantee that the Hamiltonian vector field is complete. It is
then not trivial to quantise the Hamiltonian, which becomes
nonlocal. However, for a linear or quadratic Hamiltonian, this
is possible and it is seen that the noncommutativity generates a
magnetic moment type interaction. The casesN = 2andN = 3
are discussed in detail in section IV. In section V we examine
the problem of symmetries in the modified symplectic mani-
fold. Finally, in section VI general comments are made and
further developments are suggested. In appendix A we recall
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basic notions in symplectic geometry and in appendix B we
give a brief account of the Gotay-Nester-Hinds algorithm [7]
for constrained Hamiltonian systems.

II. NON RELATIVISTIC PARTICLE INTERACTING
WITH A TIME-INDEPENDENT MAGNETIC FIELD

A particle of massmand chargee, with potential energyV ,
moving in a Euclidean configuration spaceQ , with cartesian
coordinatesqi , interacts with a (time-independent) magnetic
field given by a closed two-formF(q) = 1

2 Fi j (q)dqi ∧ dq j .
The dynamics is given by the Laplace equation:

m
d2qi

dt2 = δi j
(

eFjk(q)
dqk

dt
− ∂V (q)

∂q j

)
. (II.1)

AssumingQ to be Euclidean avoids topological subtleties, so
that there exists a global potential one-formA(q) = Ai(q)dqi

such thatF = dA. A global Lagrangian formalism can then be
established with a Lagrangian function on the tangent bundle
{τ : T(Q )→ Q }:

L(q, q̇) =
1
2

mδi j q̇i q̇ j +eq̇i Ai(q)−V (q) .

The Euler-Lagrange equation is obtained as:

0 =
∂L
∂qi −

d
dt

∂L
∂q̇i =−∂V

∂qi +eq̇k ∂Ak(q)
∂qi − d

dt

(
mδi j q̇ j + eAi(q)

)

= −∂V
∂qi +eq̇k

(
∂Ak(q)

∂qi − ∂Ai(q)
∂qk

)
−m

d
dt

δi j q̇ j

= −∂V
∂qi +eFik(q) q̇k−mδi j q̈ j , (II.2)

and coincides with the Laplace equation (II.1).
The Legendre transform

(qi , q̇ j)→
(

qi , pk =
∂L
∂q̇k = mδkl q̇

l + eAk(q)
)

,

defines the Hamiltonian on the cotangent bundle{T∗(Q ) κ→
Q }:

HA(q, p) =−L(q, q̇)+ pi q̇
i =

1
2m

δkl(pk− eAk(q))(pl − eAl (q))+V (q) .

With the canonical symplectic two-form

ω0 = dqi ∧dpi , (II.3)

the Hamiltonian vector field ofHA is:

XH =
δi j

m
(p j−eAj)

∂
∂qi +

(
e
m

δkl ∂Ak

∂qi (pl −eAl ) − ∂V
∂qi

)
∂

∂pi
.

Its integral curves are solutions of:

dqi

dt
=

δi j

m
(p j − eAj) ,

d pi

dt
=

e
m

δkl ∂Ak

∂qi (pl − eAl ) − ∂V
∂qi ,

(II.4)
which is again equivalent to (II.1).

If the second de Rham cohomology were not trivial,
H2

dR(Q) 6= 0, there is no global potentialA and a local La-
grangian formalism is needed. This can be done enlarging the
configuration spaceQ to the total spaceP of a principalU(1)
bundle overQ with a connection, given locally byA[19]. This
can be avoided using a global Hamiltonian formalism[20] in
the cotangent bundleT∗(Q ) using a modified symplectic two-
form:

ω = ω0−eF = dqi ∧dpi − 1
2

eFi j (q)dqi ∧dq j , (II.5)

and a ”charge-free” Hamiltonian:

H0(p,q) =
1

2m
δkl pk pl + V (q) .

The Hamiltonian vector fields corresponding to an observable
f (q, p) are now defined relative toω asıXF

f
ω = d f and given

by:

XF
f =

∂ f
∂pi

∂
∂qi −

(
∂ f
∂ql +

∂ f
∂pk

eFkl(q)
)

∂
∂pl

.

With the HamiltonianH0, the dynamics are again given by the
Laplace equation (II.1) in the form:

dqi

dt
=

δi j

m
p j ;

d pl

dt
=−δki

(
∂V
∂qi +

e
m

pi Fkl(q)
)

. (II.6)
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The Poisson brackets, relative to the symplectic structure II.5,
are:

{
f ,g

}
=

∂ f
∂qi

∂g
∂pi

− ∂ f
∂pi

∂g
∂qi +

∂ f
∂pk

eFkl(q)
∂g
∂pl

. (II.7)

In particular, the coordinates themselves have Poisson brack-
ets:

{
qi ,q j} = 0 ,

{
qi , pl

}
= δi

l ,
{

pk,q
j} =−δk

j ,
{

pk, pl
}

= eFkl(q) . (II.8)

Obviously, the meaning of the{q, p} variables in (II.3) and
(II.5) are different. However both formalisms(ω0,HA) and
(ω,H0) lead to the same equations of motion and thus, they
must be equivalent. Indeed, in each open setU homeomorphic
to R6, the vanishingdF = 0 implies the existence ofA such
thatF = dA in U and, locally:

ω = dqi ∧dpi − 1
2

eFi j dqi ∧dq j =−d[(pi +eAi)dqi ].

Thus there exist local Darboux coordinates:

ξi = qi , πk = pk +eAk(q) , (II.9)

such thatω = dξi ∧dπi , which is the form (II.3).

The dynamics defined by the HamiltonianH0(q, p) =
p2/2m+ V (q), with symplectic two-formω, is equivalent
to the dynamics defined by the HamiltonianHA(ξ,π) = (π−
eA(ξ))2/2m+ V (ξ) and canonical symplectic structureω =
dξi ∧ dπi . Equivalence is trivial since both symplectic two-
forms are equal, but expressed in different coordinates{q, p}
and{ξ,π}, related by (II.9). It seems worthwhile to note that
a gauge transformationA → A′ = A + gradφ corresponds to
a change of Darboux coordinates

{ξi ,πk} ⇒ {ξi ′ = ξi ,π ′k = πk +e∂kφ} ,

i.e. a symplectic transformation.

III. NONCOMMUTATIVE COORDINATES

Let us consider an affine configuration spaceQ = AN

so that points of phase space, identified withM .= R2N =
RN

q ×RN
p , may be given by linear coordinates(q, p). Together

with the (usual) magnetic fieldF, we may introduce a (dual)
magnetic fieldG = 1/2 Gkl(p)dpk∧dpl , a closed two-form,
dG = 0, in Rn

p space. Lete be the usual electric charge and
r, a dual charge, which couples the particle withF and G.
Consider the closed two-form:

ω = ω0−eF+ rG

= dqi ∧dpi − 1
2

eFi j (q)dqi ∧dq j +
1
2

rGkl(p)dpk∧dpl .

(III.1)

In matrix notation this two-form (III.1) is represented as:

(Ω) =
( −eF 1
−1 +r G

)

=
(

0 1
1 +r G

) ( −Ψ 0
0 1

) (
1 0

−eF 1

)

=
(

eF 1
1 0

) ( −1 0
0 Φ

) (
1 −r G
0 1

)
. (III.2)

where[21]Φ = (1−eF rG) ; Ψ = (1− rGeF).
The fundamental Hamiltonian equationıXω = d f , in (A.1),
reads:

(Xi − rGi j Xj)dpi − (Xk−eFklX
l )dqk =

∂ f
∂qk dqk +

∂ f
∂pi

dpi .

(III.3)
This can be rewritten as

(
∂ f
∂pi

− rGi j ∂ f
∂q j ) = Ψi

j X
j ; (

∂ f
∂qk − eFkl

∂ f
∂pl ) =−Φk

l Xl .

(III.4)
Obviously, from (III.2) or (III.4), the closed two-formω
will be non degenerate, and hence symplectic, ifdet(Ω) =
det(Ψ) = det(Φ) 6= 0, so that(Ω) has an inverse:

(Ω)−1 =
(

1 0
+eF 1

) ( −Ψ−1 0
0 1

) ( −rG 1
1 0

)

=
(

+Ψ−1 r G −Ψ−1

+eFΨ−1 rG+1 −eFΨ−1

)
; (III.5)

=
(

1 +rG
0 1

) ( −1 0
0 Φ−1

) (
0 1
1 −eF

)

=
(

+r GΦ−1 −rGΦ−1eF−1
Φ−1 −Φ−1eF

)
. (III.6)

Explicitely:

ω[ : d f →




(Xf )i = (Ψ−1)i
j

(
∂ f/∂p j − rG jk ∂ f/∂qk

)

(Xf )k =−(Φ−1)k
l (

∂ f/∂ql − eFl j ∂ f/∂p j
)

(III.7)
The corresponding Poisson brackets are given by:

{ f ,g}= ω(X f ,Xg) = (∂q f ∂p f ) (Λ)
(

∂qg
∂pg

)
(III.8)

with the matrix
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(Λ) =−(Ω)−1 =
( −(Ψ−1 rG = rGΦ−1) +Ψ−1

−Φ−1 +(Φ−1eF = eFΨ−1)

)
. (III.9)

Explicitely:

{ f ,g} = −∂ f
∂q

(Ψ−1 rG)
∂g
∂q
− ∂ f

∂p
(Φ−1)

∂g
∂q

+
∂ f
∂q

(Ψ−1)
∂g
∂p

+
∂ f
∂p

(Φ−1eF)
∂g
∂p

. (III.10)

In particular, for the coordinates(qi , pk), we have:

{
qi ,q j} = −(Ψ−1)i

k rGk j = − rGik (Φ−1)k
j
,{

qi , pl
}

= (Ψ−1)i
l ,

{
pk,q

j} = −(Φ−1)k
j
,

{
pk, pl

}
= (Φ−1)k

j
eFjl = eFk j (Ψ−1) j

l . (III.11)

With H (q, p) = (δkl pk pl/2m)+ V (q), the equations of mo-
tion read:

dqi

dt
=

{
qi ,H

}
= (Ψ−1)i

j

(
− rG jk ∂H

∂qk +
∂H
∂p j

)
,

= (Ψ−1)i
j

(
− rG jk ∂V

∂qk +
p j

m

)
,

dpk

dt
=

{
pk,H

}
= (Φ−1)k

l
(
− ∂H

∂ql + eFl j
∂H
∂p j

)

= (Φ−1)k
l
(
− ∂V

∂ql + eFl j
p j

m

)
. (III.12)

The celebrated Darboux theorem guarantees the existence of
local coordinates(ξ i ,πk), such thatω = dξi ∧dπi . When one
of the charges(e, r) vanishes, such Darboux coordinates are
easily obtained using the potential one-formsA = Ai(q)dqi

andÃ = Ãk(p)dpk, such thatF = dA andG = dÃ.
Indeed, ifr = 0, as in section II, Darboux coordinates are pro-
vided byξi = qi ; πk = pk + eAk(q). A modified symplectic
potential and two-form are defined by:

θ = (pk +eAk)dqk ; ω =−dθ . (III.13)

The Hamiltonian and corresponding equations of motion are:

H (ξ,π) =
1
2

δkl(πk−eAk(ξ))(πl −eAl (ξ))+V (ξ) , (III.14)

dξi

dt
= δi j (π j −eAj(ξ)) ,

dπi

dt
= eδkl(πk− eAk)

∂Al

∂ξi −
∂V
∂ξi ,

(III.15)
which yields the second order equation inξ, as in (II.1):

d2 ξi

dt2 = δi j
(
− ∂V (ξ)

∂ξ j + eFjl (ξ)
dξl

dt

)
. (III.16)

Whene= 0, Darboux variables are

ξi = qi + rÃi(p) ; πk = pk , (III.17)

and we define

θ = pk d(qk + rÃk) ; ω =−dθ . (III.18)

The Hamiltonian and equations of motion are now given by:

H (ξ,π) =
1
2

δkl πk πl +V (ξ− r Ã(π)) , (III.19)

dξi

dt
= δi j π j − r∂kV (q)

∂Ãk

∂πi
,

dπi

dt
=− ∂V

∂qi (q) . (III.20)

The second order equation, obeyed byπ (!), is given by

d2 πi

dt2 = ∂2
i j V (q)

(
−δ jkπk + rG jk(π)

dπl

dt

)
. (III.21)

Here theq-variable is assumed to be solved in terms of
π̇ from equationπ̇k = −∂V (q)/∂qk and this is possible if
det(∂2

i j V (q)) 6= 0 !
In the case of nonzero charges(e, r) and non-constantF and
G fields, there is no generic formula to define global Dar-
boux coordinates(ξi ,πk). However, if the fieldsF and G
are constant, the Poisson matrix (III.2) is brought in canon-
ical Darboux form by a linear symplectic orthogonalization
procedure,̀a la Hilbert-Schmidt. In the next section this is
done explicitely forN = 2 andN = 3. Obviously such a lin-
ear transformation:(qi , pk)⇒ (ξi ,πk) is defined up to a linear
symplectic map ofSp(2n). These variables(ξi ,πk) ∈R2n can
be canonically quantised as operators obeying the commuta-
tion relations

[
ξ̂i , ξ̂ j

]
= 0 ;

[
ξ̂i , π̂l

]
= i ~δi

l ; [π̂k, π̂l ] = 0. (III.22)

As von Neumann taught us in [1], they are realised on the
Hilbert space of square integrable functions of the variableξ
as

(ξ̂iΨ)(ξ) = ξi Ψ(ξ) ; (π̂kΨ)(ξ) =
~
i

∂Ψ(ξ)
∂ξk . (III.23)

The original variables(qi , pk) being linear functions of the
(ξi ,πk) are then also quantised.
Whendet(Ψ) = det(Φ) = 0, the closed two-formω is singu-
lar. When its rank is constant,ω defines a presymplectic struc-
ture on phase space which we call the primary constraint man-
ifold denoted byM1. The consistency of the resulting con-
strained Hamiltonian system will be examined in theN = 2
andN = 3 cases.
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IV. EXAMPLES: N = 2 AND 3

In the two examples below, we consider a classical Hamil-
tonian of the form

H =
1

2m
δkl pk pl + V (q) . (IV.1)

A complete resolution will be given for a harmonic oscillator
potential:

V (q) .=
κ
2

δi j qi q j . (IV.2)

Also of interest is the case of a constant ”electric field”:
V (q) = −Ek qk, which is exactly solvable and left to the
reader.

A. Dynamics in the noncommutative plane

The magnetic fields in two dimensions, are written as:

eFi j = Bεi j ; rGkl = Cεkl , (IV.3)

whereB andC are pseudoscalars. The closed two-form (III.1)
becomes

ω = dqi ∧dpi −Bdq1∧dq2 +Cdp1∧dp2 . (IV.4)

The equationıXω = d f reads

Xi −Cεi j Xj =
∂ f
∂pi

; Xk−BεklX
l =− ∂ f

∂qk . (IV.5)

Denotingχ .= (1+CB), the matricesΦ andΨ are written as
Φi

j = χδi
j andΨk

l = χδk
l . The matrix (III.2) is then invert-

ible if χ does not vanish.

1. The non degenerate case

Here, we will assumeχ to be strictly positive. The above
equation(IV.5) can then be inverted with Hamiltonian vector
fields given by:

Xi = χ−1
(

∂ f
∂pi

−Cεi j ∂ f
∂q j

)
, Xk =−χ−1

(
∂ f
∂qk −Bεkl

∂ f
∂pl

)
.

(IV.6)
The Poisson brackets(III.11) become:

{
qi ,q j} =−Cχ−1εi j ;

{
qi , pl

}
= χ−1 δi

l ,
{

pk,q
j} =−χ−1 δk

j ;
{

pk, pl
}

= Bχ−1 εkl . (IV.7)

Substitution of the Ansatz

ξi = αqi +β
C
2

pk εki ; πk = γ
B
2

q j ε jk +δ pk , (IV.8)

in the canonical Poison brackets, leads to the equations

α2−αβ−CB
4

β2 = 0 , δ2−δγ−CB
4

γ2 = 0 ,

αδ+
CB
2

(αγ+δβ)−CB
4

βγ = χ . (IV.9)

We choose the solution:

α = δ =
√

u ; β = γ =
1√
u

; u =
1
2
(1+

√
χ) , (IV.10)

such that (IV.8) reduces to (II.9) whenC = 0 or to (III.17)
in caseB = 0. The 2-form (III.1) has the canonical Darboux
form ω = dξi ∧dπi in the variables

ξi =
√

u

(
qi − C

2u
εik pk

)
; πk =

√
u

(
pk− B

2u
εki q

i
)

.

(IV.11)
These have an inverse if, and only ifχ 6= 0:

√
χ qi =

√
u

(
ξi +

C
2u

εik πk

)
;
√

χ pk =
√

u

(
πk +

B
2u

εki ξi
)

.

(IV.12)
With the complex variables

q = q1 + i q2 , p = p1 + i p2 ; ξ = ξ1 + i ξ2 , π = π1 + i π2 ,
(IV.13)

the above changes of variables are written as:

ξ =
√

u

(
q+ i

C
2u

p

)
; π =

√
u

(
p+ i

B
2u

q

)
. (IV.14)

The inverse transformations are:

q =
√

u/χ
(

ξ− i
C
2u

π
)

; p =
√

u/χ
(

π− i
B
2u

ξ
)

. (IV.15)

The Hamiltonian (IV.2) becomes

H =
1

2m′ δkl πk πl +
κ ′

2
δi j ξi ξ j − ω ′

L Λ

=
1

2m′
π†π+ππ†

2
+

κ ′

2
ξ†ξ+ξξ†

2
− ω ′

L Λ ,(IV.16)

whereΛ is angular momentum

Λ =
1
2

(
εi j ξi δ jkπk− εkl πk δl j ξ j

)

=
1
2

(
(ξ1π2−ξ2π1) − (π1ξ2 +π2ξ1)

)

=
1
4i

(
(ξ†π−ξπ†) − (πξ† +π†ξ)

)
. (IV.17)

The ”renormalised” mass and elasticity constant are given by:

1
m′ =

1
m

u
χ

(
1+

c2

4u2

)
; κ ′ = κ

u
χ

(
1+

b2

4u2

)
. (IV.18)

where

b =
B√
mκ

; c = C
√

mκ . (IV.19)

The corresponding frequencyω ′
0 =

√
κ ′/m′ is given in terms

of the ”bare” frequencyω0 =
√

κ/mby:

ω ′
0 =

ω0

2χ

(
(b−c)2 + 4χ

)1/2
. (IV.20)
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andω ′
L, the induced Larmor frequency, by:

ω ′
L =

ω0

2χ
(b−c) . (IV.21)

The solution of Hamiltonian’s equations with (IV.16) is stan-
dard. With[22]

m′ω′0 =
√

m′κ′ =
√

mκ

((
1+

b2

4u2

)(
1+

c2

4u2

)−1
)1/2

(IV.22)
reduced variables are introduced by:

Q
.= (m′ω′0)

1/2 ξ ; P
.= (m′ω′0)

−1/2 π . (IV.23)

The original(q, p) are expressed as:

q =
√

u/χ(m′ω′0)
−1/2

(
Q− i

c′

2u
P

)
,

p =
√

u/χ(m′ω′0)
+1/2

(
P− i

b′

2u
Q

)
, (IV.24)

where

c′ = C(m′ω′0) = C
√

m′κ′ , b′ = B/(m′ω′0) = B/
√

m′κ′ .
(IV.25)

The symplectic structure and the Poisson brackets are:

ω =
1
2

(
dQ†∧dP + dQ∧dP†

)

{ f ,g} = 2

(
∂ f
∂Q

∂g
∂P† +

∂ f
∂Q†

∂g
∂P
− ∂ f

∂P
∂g

∂Q† −
∂ f
∂P†

∂g
∂Q

)
.

(IV.26)

The fundamental nonzero Poisson bracket is

{Q,P†}= 2 . (IV.27)

In these variables, the Hamiltonian(IV.16) reads:

H =
ω ′

0

4

(
(P†P+PP†)+(Q†Q+QQ†)

)
− ω ′

L Λ , (IV.28)

where

Λ =
1
4i

(
(Q†P−QP†) − (PQ† +P†Q)

)
. (IV.29)

The corresponding equations of motion are:

dQ
dt

= {Q,H } = 2
∂H
∂P† = ω ′

0P− i ω ′
L Q

dP
dt

= {Q,H } = −2
∂H
∂Q† = −ω ′

0Q− i ω ′
L P .(IV.30)

With the shift variables

A(+) =
1
2

(Q+ i P) ; A(−) =
1
2

(
Q† + i P†

)
, (IV.31)

the symplectic structure and the Poisson brackets are given
by:

ω = −i
(

dA†
(+)∧dA(+) +dA†

(−)∧dA(−)

)
, (IV.32)

{ f ,g} = −i

(
∂ f

∂A(+)

∂g

∂A†
(+)

+
∂ f

∂A(−)

∂g

∂A†
(−)

− ∂ f

∂A†
(+)

∂g
∂A(+)

− ∂ f

∂A†
(−)

∂g
∂A(−)

)
,(IV.33)

with fundamental nonzero brackets:

{A(±),A
†
(±)}=−i . (IV.34)

The Hamiltonian, with the (positive !) frequencies

ω(±) = (ω ′
0 ± ω ′

L) , (IV.35)

reads now:

H =
ω(+)

2

(
A†

(+)A(+) +A(+)A
†
(+)

)
+

ω(−)

2

(
A†

(−)A(−) +A(−)A
†
(−)

)
. (IV.36)

The corresponding equations of motion and their solutions are given by:

dA(±)

dt
= {A(±),H } = − i

∂H
∂A†

(±)

= − i ω(±) A(±) ; (IV.37)

A(±)(t) = exp
{−i ω(±) t

}
A(±)(0) . (IV.38)
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The relations between variables are given by:

A(+) =
1
2

(Q+ iP)

=
√

u
2

(
(m′ω′0)

+1/2 (1− b′

2u
)q+ i (m′ω′0)

−1/2 (1+
c′

2u
) p

)

A†
(−) =

1
2

(Q− iP)

=
√

u
2

(
(m′ω′0)

+1/2 (1+
b′

2u
)q− i (m′ω′0)

−1/2 (1− c′

2u
) p

)
. (IV.39)

The inverse transformations are:

q = (m′ω′0)
−1/2

√
u/χ

(
Q− i

c′

2u
P

)
,

= (m′ω′0)
−1/2

√
u/χ

(
(1− c′

2u
)A(+) +(1+

c′

2u
)A†

(−)

)
,

p = (m′ω′0)
+1/2

√
u/χ

(
P− i

b′

2u
Q

)

= i (m′ω′0)
+1/2

√
u/χ

(
(1− b′

2u
)A†

(−)− (1+
b′

2u
)A(+)

)
. (IV.40)

Quantisation is trivial though the substitution of the funda-
mental Poison brackets (IV.27),(IV.34) by operator commuta-
tors

[
Q,P†

]
= 2i ~ ;

[
A(±),A

†
(±)

]
= ~ . (IV.41)

Having kept the initial ordering, the quantum Hamiltonian has
eigenvalues:

E(n(+),n(−)) = ~ω(+) (n(+) +1/2) + ~ω(−) (n(−) +1/2) ,
(IV.42)

where n(±) are nonnegative integers. The corresponding
eigenvectors are denoted by|n(+),n(−) >.

2. The degenerate or constraint case

The conditionχ .= (1+BC) = 0 determinesω as a presym-
plectic structure onM and shall be called the primary con-
straint. Again, the notation is simplified using complex
variables[23]. The presymplectic two-form reads

ω =
1
2

(
dq†∧dp+dq∧dp†

)

− B
4i

(
dq†∧dq−dq∧dq†

)
+

C
4i

(
dp†∧dp−dp∧dp†

)
. (IV.43)

The Hamiltonian (IV.2) becomes

H =
1

2m
p†p+ p p†

2
+

κ
2

q†q+qq†

2
, (IV.44)

Writing a vector field as

X = Xi ∂/∂qi +Xk ∂/∂pk = U ∂/∂q+U† ∂/∂q† +V ∂/∂p+V† ∂/∂p† ,

ıXω =
1
2

(
(U + iCV)dq† +(U†− iCV†)dq

−(V + i BU)dp†− (V†− i BU†)dp
)

. (IV.45)

The homogeneous equation,ıZω = 0 has nontrivial solutions.
Indeed, withU0 = Z1 + i Z2 and V0 = Z1 + i Z2, equation

(IV.45) yields the system:

U0 + iCV0 = 0 ; or V0 + i BU0 = 0, (IV.46)



F. J. Vanhecke et al. 201

of which the determinant isχ = 1+BC= 0.
The inhomogeneous equationıXω = dH , i.e. the Hamil-
tonian dynamics, reads

U + iCV = 2
∂H
∂p† =

p
m

; V + i BU =−2
∂H
∂q† = κq. (IV.47)

It will have a solution if

〈dH |Z〉= 0 . (IV.48)

This condition, termed secondary constraint, is explicitely
given by:

∂H
∂p

− iC
∂H
∂q

= 0 ; or
∂H
∂q

− i B
∂H
∂p

= 0 . (IV.49)

For the Hamiltonian (IV.44) this condition (IV.49) is linear:

1
m

p+ iCκq = 0 ; or κq+ i B
1
m

p = 0. (IV.50)

and defines the secondary constraint manifoldM2.
On M2, a particular solution ofıXω = dH is given by:

UP =
p
m

; VP = 0 . (IV.51)

The general solution is given by:

U =
p
m

+ U0 ; V = V0 . (IV.52)

where(U0,V0) is restricted to obey (IV.46). This vector field,
restricted toM2, should conserve the constraints i.e. must be
tangent toM2:

0 = 〈 1
m

dp + iCκdq|X〉 , (IV.53)

The vector fieldsU andV are completely defined onM2, with
ensuing equations of motion:

dq
dt

= U = −i
√

mκC
1+mκC2 ω0q =

1
1+mκC2

p
m

,

dp
dt

= V = −i
√

mκC
1+mκC2 ω0 p = − mκC2

1+mκC2 κq . (IV.54)

In terms of the frequency:

ωr =−
√

mκC
1+mκC2 ω0 =

B/
√

mκ
1+B2/mκ

ω0 , (IV.55)

the solution is given by

q(t) = exp{i ωr t} q0 ; p(t) = exp{i ωr t} p0 . (IV.56)

Obviously, if q0 and p0 obey the secondary constraints
(IV.50), q(t) andp(t) obey them at all times.
The same result can be obtained by symplectic reduction, re-
stricting the pre-symplectic two-form (IV.43) toM2:

ω|M2
= −i

(1+mκC2)2

2C
dq†∧dq. (IV.57)

{ f ,g}M2
=

2iC
(1+mκC2)2

(
∂ f
∂q†

∂g
∂q
− ∂ f

∂q
∂g
∂q†

)
. (IV.58)

The fundamental Poisson bracket is

{q,q†}M2
=

−2iC
(1+mκC2)2 (IV.59)

The dynamics are given by:

dq
dt

= − 2iC
(1+mκC)2

∂Hr

∂q† . (IV.60)

And, with the reduced HamiltonianHr given by

Hr = (1+mκC2)
κ
2

q†q, (IV.61)

this yields equation (IV.56). WhenB > 0, henceC < 0, we
define

a =
(1+mκC2)

|2C| q† , (IV.62)

such that

{a,a†}=− i ; Hr =
ωr

2
(a†a + aa†) . (IV.63)

Quantisation is again trivial introducing operatorsa anda†,
obeying

[a,a†] = ~ (IV.64)

such that the quantum Hamiltonian

Hr =
ωr

2
(a†a + aa†) . (IV.65)

has eigenvalues:

E(n) = ~ωr (n+1/2) . (IV.66)
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3. Theχ→ 0 limit of (IV A 1) .

We need the expansion of

(m′ω′0) = (mω0)×
((

1+
b2

4u2

)(
1+

c2

4u2

)−1
)1/2

,

(IV.67)
in powers ofε =

√χ, where1+bc= ε2 and2u = 1+ ε.

(m′ω′0) =
mω0

|c|
(

1+
c2−1
c2 +1

ε+ · · ·
)

=
1
|C|

(
1+

c2−1
c2 +1

ε+ · · ·
)

(m′ω′0)
−1 =

(mω0)−1

|b|
(

1+
b2−1
b2 +1

ε+ · · ·
)

=
1
|B|

(
1+

b2−1
b2 +1

ε+ · · ·
)

. (IV.68)

Also, from (IV.25), we obtain

c′

2u
=

(m′ω′0)C

2u
=

C
|C|

(
1− 2

c2 +1
ε+ · · · ,

)

b′

2u
=

B
(m′ω′0)2u

=
B
|B|

(
1− 2

b2 +1
ε+ · · · ,

)
.(IV.69)

For definitenees, we assume in the followingB > 0 and so
C < 0 in the limit ε→ 0. We obtain

1− b′

2u
=

2
1+b2 ε+ · · · ;

1+
b′

2u
= 2− 2

1+b2 ε+ · · ·

1+
c′

2u
=

2
1+c2 ε+ · · · ;

1− c′

2u
= 2− 2

1+b2 ε+ · · · . (IV.70)

Also:

ω′0 =
ω0

2ε2 (b−c)
(

1+
2ε2

(b−c)2

)
, ω′L =

ω0

2ε2 (b−c) ,

(IV.71)

ω(+) = ω′0 + ω′L =−ω0
1+(mω0)2C2

(mω0)C
1
ε2 ,

ω(−) = ω′0 − ω′L =−ω0
(mω0)C

1+(mω0)2C2 . (IV.72)

One of the frequenciesω(+) diverges, while the otherω(−)
tends toωr defined in (IV.55). The relations in (IV.39) yield
the initial conditions:

A(+)(0) ≈
√
|B|
2

(1+b2)−1
(

q0 + i
B

(mω0)2 p0

)
(ε+O(ε2))

A†
(−)(0) ≈

√
|B|
2

(
q0− i

1
|B| p0

)
(1+O(ε2)) . (IV.73)

The solutions (IV.40), in theε→ 0 limit are then written as

q(t) ≈
√

2
|B|

(
1
ε

A(+)(0)exp{−i ω(+)t} +
1

1+c2 A†
(−)(0)exp{i ωr t}

)

≈ (1+b2)−1
(

q0 + i
|B|

(mω0)2 p0

)
exp{−i ω(+)t}

+(1+c2)−1 (
q0− i |B|−1 p)

)
exp{+i ωr t} ; (IV.74)

The first term is a fast oscillating function with diverging fre-
quency and so averages to zero. Furthermore, if the initial
conditions are onM2, i.e. if

(
q0 + i |B| p0/(mω0)2

)
= 0, this

first term behaves asO(ε)exp{i ν t/ε2} converging to zero.
The second term is then reduced to the expression (IV.56) of

q(t). Similar considerations hold forp(t) in such a way that
the solution stays onM2.
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B. Noncommutative R3

In R3, the magnetic fieldsF andG are written in terms of
pseudovectorsB = {Bk} andC = {Ck} as:

eFi j = εi jk Bk ; rGi j = εi jk Ck . (IV.75)

The closed two-form (III.1) is written as:

ω = dqi ∧dpi − 1
2

εi jkBk dqi ∧dq j +
1
2

εklmCmdpk∧dpl .

(IV.76)
The fundamental equationıXω = d f reads

Xi −Ckεi jkXj =
∂ f
∂pi

; Xk−BiεkliX
l =− ∂ f

∂qk . (IV.77)

Definingϑ = C ·B = Ck Bk andχ = 1+ϑ, this is also written
as

χXi = (δi
j +Bi Cj)

∂ f
∂p j

−Ck εi jk ∂ f
∂q j

χXk = −
(

(δk
l +Ck Bl )

∂ f
∂ql −Bi εkli

∂ f
∂pl

)
. (IV.78)

The3×3 matricesΦ andΨ read:

Φi
j = χδi

j −Ci B
j ; Ψk

l = χδk
l −BkCl ,

with detΦ = detΨ = χ2. Assuming againχ 6= 0[24], these
matrices have inverses:

(Φ−1)i
j
=

1
χ

(
δi

j +Ci B
j
)

, (Ψ−1)k
` =

1
χ

(
δk

` +BkC`

)
.

The Hamiltonian vector fields are obtained from (IV.78):

Xi = χ−1
(

(δi
j +Bi Cj)

∂ f
∂p j

−Ck εi jk ∂ f
∂q j

)
,

Xk = −χ−1
(

(δk
l +Ck Bl )

∂ f
∂ql −Bi εkli

∂ f
∂pl

)
.(IV.79)

The Poissson brackets are given by:

{
qi ,q j} =−χ−1 εi jk Ck ,

{
qi , pl

}
= χ−1 (

δi
l +Bi Cl

)
,

{
pk,q

j} =−χ−1
(

δk
j +Ck B j

)
,

{
pk, pl

}
= χ−1 εklmBm . (IV.80)

The Ansatz (IV.8) has to be generalised to

ξi = αqi +α′Bi (Ck qk)−β
1
2

εi jk p j Ck ;

πk = α pk +α ′ (pi B
i)Ck +β

1
2

εklmBl qm . (IV.81)

For α,β similar equations as in (IV.9) are obtained:

α2−αβ− ϑ
4

β2 = 0 , α2 +ϑ(αβ)− ϑ
4

β2 = χ , (IV.82)

with a the same solution (χ assumed to be strictly positive):

α =
√

u ; β =
1√
u

; u =
1
2
(1+

√
χ) . (IV.83)

Furthermore, there is an additional equation forα′:

χ
(

ϑα′2 +2αα′
)

+
(

α2−αβ+
1
4

β2
)

= 0 . (IV.84)

Substituting (IV.83), one obtains

ϑα′2 +2
√

uα′+
1
4u

= 0 ,

with solution, remaining finite whenϑ→ 0,:

α′ =
√

uγ =
(1−√u)

ϑ
. (IV.85)

The formulae (IV.81) are finally written as:

ξi =
√

u

(
qi + γBi (Ck qk)− 1

2u
εi jk p j Ck

)
;

πk =
√

u

(
pk + γ(pi B

i)Ck +
1
2u

εklmBl qm
)

.(IV.86)

In old fashioned vector notation, this appears as:

ξ =
√

u

(
q+ γB(C ·q)− 1

2u
p×C

)
;

π =
√

u

(
p+ γ(p ·B)C+

1
2u

B×q
)

. (IV.87)

The inverse formulae of (IV.86) are obtained as:

qi =
√

u√χ

(
ξi + γ ′Bi (Ck ξk)+

1
2u

εi jk π j Ck

)
;

pk =
√

u√χ

(
πk + γ ′Ck(πl Bl )− 1

2u
εklmBl ξm

)
,(IV.88)

Or, in vector notation:

q =
√

u√χ

(
ξ+ γ ′B(C ·ξ)+

1
2u

π×C
)

;

p =
√

u√χ

(
π+ γ ′C(π ·B)− 1

2u
B×ξ

)
, (IV.89)
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where

γ ′ =
√χ−√u

ϑ
√

u
. (IV.90)

Again, for sake of simplicity, we consider a configuration
space which is EuclideanQ = E3 with metric < v;w >=
δi j vi w j = (v ·w) such thatvi = δi j vi . Substitution of (IV.88)
in a Hamiltonian of the form (IV.2), leads to a Hamiltonian
quadratic in(ξ,π) and to a system of linear evolution equa-
tions. In the case whenB andC point in the same direction:

B = BeZ ; C = CeZ , (IV.91)

a particularly simple Hamiltonian is obtained. Parallel coordi-
nates are defined byξ3 , π3 and transverse coordinate vectors

by ξ⊥ = ξ− ξ3eZ andπ⊥ = π− π3eZ. Indeed, eq. (IV.88)
becomes

q1 =
√

u√χ

(
ξ1 +

1
2u

π2C

)
, p1 =

√
u√χ

(
π1 +

1
2u

ξ2B

)
,

q2 =
√

u√χ

(
ξ2− 1

2u
π1C

)
, p2 =

√
u√χ

(
π2− 1

2u
Bξ1

)
,

q3 = ξ3 , p3 = π3 . (IV.92)

The Hamiltonian is:

H (ξ,π) =
(

1
2m⊥

(π⊥)2 +
k⊥
2

(ξ⊥)2
)

+
(

1
2m

(π3)2 +
k
2

(ξ3)2
)

+Hint(ξ,π) . (IV.93)

The transverse degrees of freedom are seen to have a
renormalised[25] mass and elasticity constant which are given
by the same expressions as in (IV.18):

1
m⊥

==
1
m

u
χ

(
1+

c2

4u2

)
; κ⊥ = κ

u
χ

(
1+

b2

4u2

)
, (IV.94)

where

b =
B√
mκ

; c = C
√

mκ .

The fieldsB andC induce a sort of magnetic moment inter-
action along theZ-axis with the same Larmor frequency as
before:

H̃ind(ξ,π) =−ω ′
L Λ3 , (IV.95)

whereΛ3 = ξ1 π2−ξ2 π1. Acrtually, the condition (IV.91) re-
duces the(N = 3) case to a sum(N = 2)⊕ (N = 1). The three
relevant frequencies of our oscilator are:

ω3 =
√

k/m ; ω⊥ =
√

k⊥/m⊥ ; ω ′
L =

1
χ

ω0 (b−c) . (IV.96)

The spectrum of the quantum Hamiltonian is easily obtained
as

E(n(+),n(−),n3) = ~ω(+) (n(+) +1/2)+

~ω(−) (n(−) +1/2) + ~ω3(n3 +1/2) , (IV.97)

wheren(±),n3 are nonnegative integers. Corresponding eigen-
vectors are denoted by|n(+),n(−),n3 >.

V. SYMMETRIES

For Euclidean configuration spaceQ ≡EN, with metricδi j ,
an infinitesimal rotation is written as:

ϕ : qi → q′i = qi +
1
2

δεαβ(Mαβ
)i

j q
j , (V.98)

where
(
Mαβ

)i
j = δi

α δβ j − δi
β δα j are the generators of the

rotation group obeying the Lie algebra relations:

[Mαβ,Mµν] =−δαµMβν +δαν Mβµ−δβν Mαµ+δβµMαν .
(V.99)

This induces the push forward inT∗(Q ):

ϕ̃ : T∗(Q )→ T∗(Q ) : (qi , pk)→ (q′i , p′k) ,

q′ i = qi +
1
2

δεαβ(Mαβ
)i

j q
j ;

p′k = pk− 1
2

δεαβ pl
(
Mαβ

)l
k . (V.100)

In a basis[26]{eαβ} of L(SO(N)), let u = (1/2)eαβ uαβ de-
note a generic element. WithR (u) = exp

{
1
2 uαβ Mαβ

}
, finite

rotations are written as

qi → q′i = R (u)i
j q

j ; pk → p′k = pl R −1(u)
l
k . (V.101)

The vector fieldXu (see appendixA) is given by its compo-
nents:

(Xu)i =
1
2

uαβ(Mαβ)
i
j q

j ; (Xu)k =−1
2

uαβ pl (Mαβ)
l
k .

(V.102)
It conserves the canonical symplectic potential and two-form:

LXuθ0 = 0 ; LXuω0 = 0.
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The action is in fact Hamiltonian for thecanonical symplectic
structure. With the notation of appendixA, we have

Xu = ω]
0(dΞ(u)) ,

Ξ(u) =
1
2

uαβ J 0
αβ(q, p) ,

J 0 : T∗(Q )→ L∗(SO(N)) : (q, p)→ 1
2

J 0
αβ(q, p)eαβ ,

J 0
αβ(q, p) = pk (Mαβ)

k
j q

j . (V.103)

In terms of the momentaJ 0
αβ, the rotation (V.98) reads

δqi =
1
2

δεαβ {qi ,J 0
αβ}0 ; δpk =

1
2

δεαβ {pk,J 0
αβ}0 . (V.104)

The Lie algebra relations(V.99) become Poisson brackets:
{

J 0
αβ,J

0
µν

}
0
=−δαµJ 0

βν +δαν J 0
βµ−δβν J 0

αµ+δβµJ 0
αν .

(V.105)
Naturally, for the modified symplectic structure (III.1), the ac-
tion (V.100) will be symplectic if, and only if, the magnetic
fields obey:

Fkl(q) = Fi j (R (u)q)(R (u))i
k (R (u)) j

l , (V.106)

Gkl(p) = (R −1(u))k
i (R

−1(u))l
j G

i j (pR −1(u)) .(V.107)

For constant magnetic fields, this holds ifR (u) belongs to the
intersection of the isotropy groups ofF andG, which, in three
dimensions, is not empty if both magnetic fields are along the
same axis. A rotation along this ”z-axis” is then symplectic.
However, in general it will not be Hamiltonian and there will
be no momentumJZ such thatδq= {q,JZ}. Again the discus-
sion simplifies when one of the chargesr or e vanishes. If the
potentialsA or Ã are invariant underR (u), then the action is
Hamiltonian[27] with momentum defined by the symplectic
potentials (III.13) or (III.18) as

〈J (q, p)|u〉= 〈θ(e,0)|Xu〉 or 〈θ(0,r)|Xu〉 . (V.108)

Obviously there is always anSO(N) group action on the(ξ,π)
coordinates which is Hamiltonian with respect to(III.1) and
momentum given by:

Jαβ(ξ,π) = πk (Mαβ)
k

j ξ j . (V.109)

However, the hamiltonian (IV.2), looking apparentlySO(N)
symmetric, is explicitely seen not to be so when expressed in
the(ξ,π) variables.

VI. FINAL COMMENTS

The symplectic structure in cotangent space,T∗(Q ) κ→ Q ,
was modified through the introduction of a closed two-formF
on T∗Q , which has the geometic meaning of the pull-back of
the magnetic fieldF , a closed two-form onQ : F = κ∗(F). A
first caveat warns us that the other closed two-formG does not
have such an intrinsic interpretation. Indeed, it is obvious that

a mere change of coordinates inQ will spoil the form (III.1)
of ω. This means that our approach must be restricted to con-
figuration spaces with additional properties, which have to be
conserved by coordinate changes. The most simple example
is a flat linear[28] spaceQ = EN, when (III.1) is assumed to
hold in linear coordinates. Obviously, a linear change in coor-
dinates will then conserve this particular form. Although the
restriction to constant fieldsF andG is a severe limitation[29],
it allowed us to find explicit Darboux coordinates(IV.8) when
N = 2 and (IV.81) whenN = 3.

Finally, whendet{1− rGeF} = 0, the closed two-formω
is degenerate with constant rank and defines a pre-symplectic
structure onT∗(Q ). Its null-foliation decomposesT∗(Q ) in
disjoint leaves and on the space of leaves,ω projects to a
unique symplectic two-form. In two dimensions, the repre-
sentations of the corresponding quantum algebra in Hilbert
space and its reduction in the degeneracy case were studied in
[11–14, 18].

APPENDIX A: ESSENTIAL SYMPLECTIC MECHANICS

Let {M ,ω} be a symplectic manifold with symplectic
structure defined by a two-formω which is closed,dω =
0, and nondegenerate such that the induced mappingω[ :
T(M ) → T∗(M ) : X → ıXω has an inverseω] : T∗(M ) →
T(M ) : α → ω](α). The paradigm of a (non-compact) sym-
plectic manifold is a cotangent bundleT∗(Q ) of a differential
configuration spaceQ . In a coordinate system{qi} of Q , a
cotangent vector may be written asαq = pi dqi . This defines
coordinatesz⇒{qi , pk} of pointsz∈M ≡ T∗(Q ) and an as-
sociated holonomic basis{dpk,dqi} of T∗z (M ). The canon-
ical one-form is defined asθ0

.= pi dqi . Obviously, the exact
two-form ω0

.=−dθ0 = dqi ∧dpi is symplectic.
To each observable, which is a differentiable functionf on
{M ,ω}, the symplectic structure associates aHamiltonian
vector field:

X f
.= ω](d f ) or ıX f ω = d f . (A.1)

Such a vector field generates a one-parameter (local) trans-
formation group: T f (t) : M → M : z0 → z(t), solution of
dz(t)/dt = X f (z(t)) , z(0) = z0.
In particular,the HamiltonianH generates the dynamics of
the associated mechanical system. With the usual interpre-
tation of time,XH is assumed to be complete such that its
flux is defined for allt ∈ [−∞,+∞]. Transformations, induced
by an Hamiltonian vector fieldX f , conserve the symplectic
structure[30]:

T f (t)
∗ω = ω or, locally:LX f ω = 0. (A.2)

More generally, the transformations conserving the symplec-
tic structure form the groupSympl(M ) of symplectomor-
phismsor canonical transformations. Vector fields obeying
LXω = 0, generate canonical transformations and are called
locally Hamiltonian, since [31]d ıXω = 0 implies that, lo-
cally in someU ⊂ M , there exists a functionf such that
d f|U = (ıXω)|U .
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TheDarboux theoremguarantees the existence of local charts
U ⊂ M with coordinates{qi , pk} such that, in eachU , ω is
written as:

ω|U = dqi ∧dpi . (A.3)

In the natural basis{∂/∂qi ,∂/∂pk} of Tz(M ), the Hamil-
tonian vector fields corresponding tof reads

X f =
∂ f
∂pi

∂
∂qi −

∂ f
∂qi

∂
∂pi

.

The Poisson bracketof two observables is defined by:{
f ,g

} .= ω(X f ,Xg), with the following properties:

{
f1, f2

}
=−{

f2, f1
}

{
f1,g1 ·g2

}
=

{
f ,g1

} ·g2 +g1 ·
{

f ,g2
}

{
f ,

{
g1,g2

}}
=

{{
f ,g1

}
,g2

}
+

{
g1,

{
f ,g2

}}

These properties, relating the pointwise productg1 · g2 with
the bracket

{
f ,g

}
, are said to endow the set of differen-

tiable functions onM with the structure of aPoisson algebra
P (M ). In a coordinate system(zA), whereω = 1

2 ωABdzA∧
dzB, it is given by:

{
f ,g

}
=

∂ f
∂zA ΛAB ∂g

∂zB , (A.4)

whereΛ is minusω−1. In Darboux coordinates it reads:

{
f ,g

}
0 =

∂ f
∂qi

∂g
∂pi

− ∂ f
∂pi

∂g
∂qi . (A.5)

The Poisson brackets of the Darboux coordinates themselves
are:
{

qi ,q j}
0 = 0 ,

{
qi , pl

}
0 = δi

l ,
{

pk,q
j}

0 =−δk
j ,

{
pk, pl

}
0 = 0 .

(A.6)
The dynamical evolution of an observable is given by:

d f
dt

=
−→
X H ( f ) = ıXH d f = ıXH ıX f ω = ω(X f ,XH ) =

{
f ,H

}
.

(A.7)
A Lie group G acts as a symmety group on a symplectic
manifold M , if there is a group homomorphismT : G →
Sympl(M ) : g→ T (g). An infinitesimal action defined by a
Lie algebra elementu∈G is given by the locally Hamiltonian
vector field

Xu(z) =
d
dt

(T (exp(tu))z)| t=0 . (A.8)

When eachXu is Hamiltonian, the group action is said to be
almost Hamiltonianand

{
M ,ω

}
is called asymplectic G-

space. In such a case, a linear mapΞ : G → P (M ) : u →
Ξ(u) can always be constructed such thatXu = ω](dΞ(u)).
When there is aΞ which is also a Lie algebra homomor-
phism: Ξ([u,v]) =

{
Ξ(u),Ξ(v)

}
, the group is said to have

a Hamiltonian actionand
{

M ,ω,Ξ
}

is called aHamiltonian

G-space. SinceΞ is linear inG , it defines amomentum map-
ping J from M to the dualG∗ of the Lie algebra defined by:
〈J (z)|u〉 = Ξ(u,z). WhenM is a HamiltonianG-space, the
momentum mapping is equivariant under the action ofG on
M and its co-adjoint action onG∗.
In general there may be topological obstructions to such a
Lie algebra homomorphism. However, whenG acts onQ :
ϕ : G→ Di f f (Q ) : g→ ϕ(g) : q→ q′ = ϕ(g)q, the action
is extended to a symplectic action in{M = T∗(Q ),ω0}:
ϕ̃ : G → Sympl(M ) : g → ϕ̃(g) : (q, p) → (q′, p′), where
p′ is defined byp = (ϕ(g))∗|q p′. It follows that ϕ̃(g)∗θ0 =
θ0 ; ϕ̃(g)∗ω0 = ω0. The infinitesimal action is given by
Xu(z) = (dϕ̃(exp(tu))z/dt)| t=0 andLXuθ0 = 0 ; LXuω0 = 0.

From ω[
0(Xu) = d〈θ0|Xu〉, it follows that the action is al-

most Hamiltonian withΞ(u) = 〈θ0|Xu〉. Moreover, since
〈θ0|X[u,v]〉= ω0(Xu,Xv) = {Ξ(u),Ξ(v)}, the action is Hamil-
tonian and

{
T∗(Q ),ω0,Ξ

}
is a HamiltonianG-space.

APPENDIX B: PRESYMPLECTIC MECHANICS

A manifold M1, endowed with a closed but degenerate[32]
2-formω, with constant rank, is said to be presymplectic. The
mappingω[ has a nonvanishing kernel, given by those nonzero
vector fieldsX0 obeyingω[(X0)

.= ıX0ω = 0. The fundamen-
tal dynamical equation

ω[(X) = dH , (B.1)

has then a solution if

〈dH |X0〉 = 0 ; ∀X0 ∈K er(ω[) . (B.2)

If this is nowhere satisfied onM1, the hamiltonianH does
not define any dynamics onM1. When (B.2) is identically
satisfied, a particular solutionXP of (B.1) is defined in the
entire manifoldM1 and so is the general solution obtained
summing the general solution of the homogeneous equation
ıX0ω = 0, i.eXG = XP+X0, which will contain arbitrary func-
tions. When(B.2) is satisfied for some pointsz∈ M1, we
shall asssume they form a submanifold, called the secondary
constrained submanifold with injectionı2 : M2 ↪→ M1. The
particular solutionXP of (B.1) is now defined inM2 and so
is the general solutionXG. Requiring thatXG conserves the
constraints amounts to ask thatXG is tangent toM2:

XG = ı2?(X2) ; X2 ∈ Γ(M2,TM2) . (B.3)

Again, when there are no points where this tangency condi-
tion is satisfied,(B.1) is meaningless. Another possibility is
that some of the arbitrary functions inX0 become determined
and the tangency condition is obeyed on the entireM2. The
general solution then still contains some arbitrary functions.
Finally it may happen that the conditions(B.3) are only satis-
fied on someM3 with ı3 : M3 ↪→M2. The story then goes on
until one of the first two alternatives are reached.
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